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Abstract. One of the most challenging aspects of the microstructural evolution in polycrystalline
materials is to understand the role of topological reconfigurations during coarsening. In this paper, we
study these critical events in a one-dimensional grain-boundary system and a stochastic framework
for modeling texture evolution. The model is based on a master equation derived from numerically
determined statistical properties of the system.
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1. Introduction. Most technologically useful materials arise as polycrystalline
microstructures, composed of a myriad of small crystallites, termed grains, separated
by interfaces, called grain boundaries. The energetics and connectivity of the network
of boundaries are implicated in many properties across wide scales, for example, func-
tional properties, like conductivity in microprocessors, and lifetime properties, like
fracture toughness in structures.

A central problem is to engineer a microstructure to attain a desired set of mate-
rial characteristics. It likewise presents many challenges for mathematical modeling,
simulation, and analysis. Historical emphasis here has been on the geometry, or more
exactly, on statistics of simple geometric features of experimental and simulated poly-
crystalline networks, like grain area. We are now turning our attention to texture,
the mesoscopic description of arrangement and properties of the network described in
terms of both crystallography and geometry.

In recent years, we have witnessed a changing paradigm in the materials labo-
ratory with the introduction of automated data acquisition technologies. This has
permitted the collection of statistics on a vast scale and its use to optimize aspects of
material behavior. There are situations, for example, where it is possible to quantify
the amount of alignment or misalignment sufficient to produce a corrosion resistant
microstructure [1]. To rise beyond this level of anecdotal observation, the thermody-
namics of the material system must be related to texture and texture related prop-
erties. Said in a different way, are there any texture related distributions which are
material properties? Some geometric features of the configuration, like relative area
statistics have these properties in the sense that they are robust but they are not
strongly related to energetics. Recent work has provided us with a new statistic, the
grain boundary character distribution, which has enormous promise in this direction.
The grain boundary character distribution is a measure of relative amount of grain
boundaries with a given net misorientation. Owing to our new ability to simulate the
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evolution of large scale systems, we have been able to show that this statistic is robust
and, in elementary cases, easily correlated to the grain boundary energy [2]—[4].

However, the mechanisms by which the robust distributions develop from an initial
population are not yet understood. As a polycrystalline configuration coarsens, facets
are interchanged, some grains grow larger, and other grains disappear. We refer to
these topological rearrangements as critical events. Such critical events contribute to
the evolution of both the relative area and the grain boundary character distribution
via the motion of the triple junctions, with low energy boundaries sweeping out those
with higher energy. Further, when triple junctions collide, new boundaries are created.

The regular evolution of the network of grain boundaries in two dimensions is
governed by the Mullins equations of curvature-driven growth, supplemented by the
Herring condition of force balance at triple junctions—a system of parabolic equations
with natural boundary conditions [5]–[9]. (For the higher dimensional formulation
of capillary driven growth, see [10].) A main feature, first observed in [9] is that
the nonlinear system and boundary conditions satisfy complementing conditions [8].
When applied to a single evolving n−sided grain with constant grain boundary energy,
this mechanism leads to a Mullins-von Neumann n − 6 rule [11]—the rate of change
of the area of the grain is proportional to n− 6, i.e.,

dAn

dt
= γ(n− 6) where An is the area of an n-sided grain, (1.1)

and γ > 0 is some material constant (MacPherson and Srolovitz [6] have given, very
recently, higher dimensional generalizations of the n − 6 rule). In particular, grains
with 3, 4 or 5 sides decrease in area. When averaged over a population of grains,
equation (1.1) results in

dĀn

dt
= γ(n− 6) where Ān is the average area of n-sided grains. (1.2)

Inspection of Fig. 1.1 shows that, contrary to (1.2), the average area of five-sided
grains in a columnar aluminum structure increases several fold over the course of an
annealing experiment. The n − 6-rule does not fail for the continuous changes of
boundary positions, but most of the five-sided grains we observe at time t = 2 hours
had 6, 7, 8, ... sides at some earlier time t < 2 hours. Thus in the network setting, the
critical events grain deletion and side interchange play a major role.

A significant difficulty in developing a theory of the grain boundary character
distribution lies in the lack of understanding of these stochastic events associated
with coarsening. As a motivation for such theory consider the following, highly over-
simplified example. Let αt be a stochastic process in which low energy “boundaries”
grow at the expense of those with higher energy and new boundaries are created and
disappear at random

dα = −γ′(α)dt + εdBt . (1.3)

Here α represents the difference of “orientations” on either side of the grain boundary,
γ(α) represents the “energy” of the boundary, and ε is related to the rate at which
the new grain boundaries enter the system. The stationary distribution for α is given
by the Boltzmann-like expression

ρ(α) =
1
Z

e−
2γ(α)

ε2 ,
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Fig. 1.1. Average area of five-sided grains in an Al columnar structure.

that can be found by solving the stationary Fokker-Planck equation for (1.3). Note
that the maxima of this distribution function correspond to the minima of the energy–
this is an essential feature of a grain boundary character distribution [2]-[4].

There are several stochastic approaches one might adopt to develop a more re-
alistic model of the grain boundary character distribution. A framework based on
statistical mechanics is adopted in [12], where we constructed a Boltzmann-type equa-
tion modeling grain interaction that successfully reproduces simulation data on a long
timescale and has a good potential for generalization to higher dimensions.

In [13]-[14] we conjectured the fractional nature of the grain boundary kinetics
and proposed a unified approach to model it in terms of a fractional master equation.
We tested our theoretical ideas on the one-dimensional model by identifying the set
of stable statistics and confirming the subdiffusive nature of the underlying kinetics
for a prolonged transient regime exhibited by the system. Further, we demonstrated
a reasonable agreement between the statistics obtained by direct simulation and the
solution of the generalized master equation developed through the continuous time
random walk (CTRW) theory.

Through our investigations, however, it became apparent that, while some stages
of the evolution of one-dimensional system can be described using the formalism of
the fractional CTRW theory, a complete understanding of the observed dynamics may
require a new, more general stochastic framework. The main difficulty here is that
which framework is appropriate is not known in advance and, in fact, it may not be
available altogether.

In order to either develop a new or to select an existing theory, the statistical
characteristics of the process need to be determined through an experiment. Given
a deterministic mathematical model, the experiments can be conducted numerically
with an advantage over physical experiments being that a large number of trials can
be conducted in a relatively short time. Here we demonstrate the applicability of this
approach to grain boundary evolution by developing a stochastic model for the times
of grain boundary disappearance events. A generalization of our ideas to the entire
grain boundary kinetics is a subject of a forthcoming publication.
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Our main goal is to determine the equation governing the evolution of the arrival
rate—probability that a critical event will be observed at a given time—based on nu-
merically determined statistical properties of a large deterministic system. We study
a simplified one-dimensional model (Section 2) that we introduced in [12] exhibiting
the main features of the interacting grain boundary network. In particular, the model
incorporates boundaries and junctions between boundaries moving under a form of
gradient flow.

In Section 4 we develop a generalized arrivals master equation for independent,
but not identically distributed time increments. We show that the independence
assumption holds for the model one-dimensional system and find the probability den-
sity functions (pdfs) for waiting times between critical events. The waiting times are
not identically distributed but rather are time-dependent scalings of an exponential
distribution; this reflects the fact that the coarsening process slows down with time.

The arrival times master equation can be explicitly solved for the model system
(Section 5) and we have found that arrival rates obtained both analytically and via the
numerical experiment are in a close agreement. The form of the pdfs for waiting times
suggests that, initially, the arrival rate corresponds to a stationary Poisson process
while it can be approximated by a solution of a fractional ODE at later times.

2. Simplified model. Here we report on a model which emphasizes the role of
critical events. For a precise description, fix L > 0 and consider the intervals [xi, xi+1],
i = 0, . . . , n−1 on the real line where xi ≤ xi+1, i = 0, . . . , n−1 and xn = x0+L. The
locations of the endpoints xi, i = 0, . . . , n may vary in time and the total length L of all
intervals remains fixed. For each interval [xi, xi+1], i = 0, . . . , n− 1, choose a number
αi from the set {αj}j=1,...,n. The intervals [xi, xi+1] correspond to grain boundaries
and the points xi represent to the triple junctions. The parameters {αi}i=1,...,n can
be viewed as representing crystallographic orientations. The length of the ith grain
boundary is given by li = xi+1 − xi.

For a non-negative energy density γ(α), we define the energy

E(t) =
∑

γ(αi)(xi+1(t)− xi(t)) (2.1)

and consider gradient flow dynamics characterized by the system of ordinary differ-
ential equations

ẋi = γ(αi)− γ(αi−1), i = 1, . . . , n. (2.2)

An important feature of the thermodynamics of grain growth is that it is dissipa-
tive for the energy during normal grain growth. The dynamics (2.2) has this property
[13].

The parameter αi is randomly prescribed for each grain boundary and does not
change during its lifetime. The velocities of the grain boundaries can be computed
from the relation

vi = ẋi+1 − ẋi = γ(αi+1) + γ(αi−1)− 2γ(αi) (2.3)

Note that the velocities in the system remain constant between critical events
corresponding to disappearances of individual grain boundaries. Every such critical
event changes the statistical state of the model through its effect on the grain boundary
velocities and therefore affects further evolution of the grains.
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3. Stochastic properties of the system. The first step toward a mesoscopic
model is the identification of stable statistics. The stable statistics determined from
numerical experiments for a system of grain boundaries can be found in [13]. In
particular, the analog of the grain boundary character approaches a stable distribution
related to the energetics of the system (Fig. 3.1).
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Fig. 3.1. Evolution of the grain boundary character distribution for various choices of γ.

Our goal in this paper is to describe the dynamics of critical events by under-
standing the stochastic properties of waiting times between these events. Fig. 3.3
shows typical distributions for waiting times. Note that, although the waiting times
are close to being exponentially distributed, their means increase with time.

In what follows, we sometimes refer to each critical event as a simulation ”step”.
Hence, unless there are coincident events, n boundaries disappear exactly after n
steps.

Waiting times between successive critical events can be treated as random vari-
ables. To formulate a probabilistic theory, we need to establish the properties of these
variables, e.g. their joint probability distribution functions (pdf’s) etc. This task
would be significantly simpler if we could assume that the waiting times are mutually
independent so that it would be sufficient to determine marginal i-th waiting time
distribution wi(t). In all tests that follow, we use data collected from 15000 runs with
n = 5000 grain boundaries each. The runs are initialized with a random configuration
of orientations and lengths and utilize the same energy functional γ(x) = (x− 0.5)2.

Fig. 3.2 below provides the justification for the independence assumption. Fig.
3.2(a) shows the correlation coefficient between two successive waiting times Ti and
Ti−1, where 1 ≤ i ≤ 4500. Observe that this correlation does not grow with time.
Fig. 3.2(b) depicts the 2000-th row of the correlation matrix. This picture is generic
in the sense that an analogous plot is observed for an arbitrary j 6= 2000. Therefore,
the matrix is close to being diagonal, and there is no significant correlation between
the j-th and k 6= j-th waiting times.

Next, we identify the pdfs wi(t) for the waiting times. The histograms of wi(t) for
each 100-th arrival are plotted in Fig. 3.3 in log-log scale. The trend is clearly linear,
showing that each probability density exhibits an exponential behavior. However,
as shown in Fig. 3.3(b), the means of the exponential distributions increase with
time, due to the slowing effect of the grain growth dynamics attributed to increase
in the average grain boundary length. Hence we conclude that the waiting times
distributions depend on the step number and are given by

wi(t) = ri exp (−rit),
5
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Fig. 3.2. (a) Correlation between successive waiting times as a function of jump number,
showing no grow of dependence over time. (b) A j-th row of the correlation matrix with j = 2000,
showing the absence of long-order correlations.
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Fig. 3.3. (a) Double-log scale plot of the histograms for waiting times wi(t), revealing exponen-
tial behavior with decaying rates.(b) The mean of the waiting times distribution for the i-th waiting
time wi(t) grows with time.

where ri is a constant dependent on i. The dependence of ri on i is essentially quartic,
as demonstrated by the least-squares fit in Fig. 3.4. Hence ri ∼ (N∞ − i)4.
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Fig. 3.4. Least squares fit for the exponential distribution parameters ri.

4. Probabilistic derivation of the arrival rates master equation. We now
derive the arrival rate master equation. Consider the sequence of times of critical
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events during grain coarsening. These events can be described within the framework
of a renewal process as long as times T1, T2, . . . between consecutive steps of the
random walker are independent, identically distributed random variables. Here we
consider a more general case, where Ti, i = 1, 2, . . . are nonnegative, independent
random variables that may not be identically distributed, that is each Ti is drawn
from a distribution wi(t), i = 1, 2, . . ..

Set T (0) = 0 and let

T (n) =
n∑

i=0

Ti (4.1)

be the time of the n-th jump. Consider the random process

N(t) = max{n ≥ 0 : T (n) ≤ t} (4.2)

counting the number of jumps up to time t and denote

tk =
k∑

i=1

Ti, k ≥ 1

to be renewal times of the process. Denote the probability that at least k arrivals
have occurred prior to time t by

Λk(t) = P(tk ≤ t), (4.3)

and the corresponding density function by

λk(t) =
dΛk(t)

dt
. (4.4)

Note that λk(t)dt is the probability that the k-th arrival occurs during the time
interval [t, t + dt]. The probability that an arbitrary arrival will be observed during
the same time interval is given by

λ(t)dt = P (∪k {tk ∈ [t, t + dt]}) =
∞∑

k=0

λk(t)dt, (4.5)

where the last equality follows from independence of time increments. We call λ(t)
the arrival rate.

It is easy to see that while being a density of a sum of random variables Ti, i =
1, . . . , k, the density λk(t) can be computed as a k-fold convolution of individual
waiting time densities wi(t), i = 1, . . . , k, so that in the Laplace space

λ̂k(u) =
k∏

i=1

ŵi(u), (4.6)

where by f̂(u) we denote a Laplace transform of a well-behaved function f .
We can construct the master equation based on the last jump as follows:

λk+1(t) =
∫ t

0
λk(s)wk+1(t− s)ds

λ(t) = λ1(t) +
∞∑

k=1

λk+1(t) = w1(t) +
∑∞

k=1

∫ t

0
λk(s)wk+1(t− s)ds

= w1(t) +
∫ t

0
λ(s)W (s, t− s)ds,
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where

W (s, t− s) :=
∞∑

k=1

λk(s)
λ(s)

wk+1(t− s) (4.7)

is the kernel describing the probability of a single jump between times s and t. Hence
the arrival rates satisfy

λ(t) = w1(t) +
∫ t

0

λ(s)W (s, t− s)ds, (4.8)

which will be referred to as a generalized renewal equation from now on. In the case of
i.i.d waiting times distributed according to a common law w(t), we obtain a standard
renewal equation

λ(t) = w(t) +
∫ t

0

λ(s)w(t− s)ds, (4.9)

which, in turn, yields λ(t) = r = const in the case of a regular Poisson process with
the waiting times w(t) = re−rt. Notice, however, than the behavior of the arrival rate
is more complicated in the case of non-identically distributed variables. For instance,
if wi(t) = rie

−rit, by a simple but tedious calculation of k-fold convolutions we obtain

λ(t) =
∞∑

k=1

k∑
i=1

rie
−rit

k∏
i=1,i 6=j

rj

ri − rj
. (4.10)

In order to avoid possible convergence issues and to reflect the fact that the number
of events in the model systems is finite we will assume that the first summation in
(4.10) is performed up to a large m < ∞.

5. Comparison between theory and numerics. Our numerical experiments
show that the cumulative arrivals do not depend linearly on time. In Fig. 5.1, we plot
the cumulative number of arrivals N(t) (the number of critical events) before time
t, and again observe the slowing effect comparing to what we expect from regular
Poisson-type process (where N(t) grows linearly with time). What is even more
intriguing is that the arrival times match those obtained via the regular renewal
equation (4.9) for the choice of w(t) = 0.051 t−1.3 for 3500 ≤ i ≤ 4500, as shown in
Fig. 5.1. This suggests existence of an intermediate fractional diffusive regime in our
model [13]. To study this more precisely, we need to identify if the fractional exponent
β = 0.3 conforms with the arrival rates given above. Fig. 5.2(a) shows the log-log
graph of the number of intervals in the system surviving at time t, N∞ − N(t), for
the period from 1000 to 4500-th arrivals. This behavior conforms well with N(t) ∼ t
in the beginning. However the dependence of N∞ −N(t) on t for the period between
3000th and 5000th arrivals (Fig. 5.2(a)) is given by

N∞ −N(t) ∼ t−β , where β ∼ 0.3.

The dynamics of the process experiences a transition from one mode to another at
some critical point tcr in the simulation. At the same critical time tcr the stabilization
of relative distributions is observed. Note that, although by the time t = tcr, almost
half of the boundaries have disappeared, the absolute time elapsed from the onset of
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Fig. 5.1. Empirical cumulative arrivals at time t produced via simulation and analytically
determined from the generalized fractional renewal equation (4.9) with w(t) ∼ t−1.3.

simulation remains minuscule (of the order of 10−4 sec for a 1 sec long simulation).
The change in the behavior of the system can be attributed to ”washing-out” of
transients during the relaxation stage of coarsening. Note, however, that the ”stable”
regime corresponding to the stabilized distributions deviates significantly from regular
diffusion, with β = 0.3, in contrast with the normal diffusion, where β = 1. Hence we
have a case of an anomalous (sub)diffusion.

Further, note that the analytical solution of the generalized renewal equation
(4.10) predicts both stationary Poisson and fractional behavior observed in our ex-
periments. Indeed, there is a close match between the arrival rates at the intermedi-
ate stage of coarsening as can be seen in Fig. 5.2(b). Here, for the interval between
i = 3600 and i = 4500, we compare the empirical arrival rate versus the solution of the
renewal master equation (4.10). We approximate waiting times to match the least-
squares fit in Fig. 3.4 by setting wi(t) = ri exp (−rit) with ri = 3.7 · 10−9(1400− i)4.
We compensate for the time elapsed before the 3600 arrival by translating the absolute
time by 3.4 · 10−2—the mean of

∑3600
i=1 Ti. The plot shows a close agreement in the

double-logarithmic scale, indicating that the generalized renewal equation captures
the system dynamics in this interval.

If, on the other hand, we examine the expression ri ∼ (N∞ − i)4, we observe
that ri ≈ N4

∞ for i � N∞. Hence, at its initial stages, the renewal process is close
to a stationary Poisson process. The drawback of this is that the solution (4.10)
of the generalized renewal equation is numerically ill-behaved for i � 5000. Having
made these observations, it is clear that the jump process underlying the grain growth
dynamics in the one-dimensional case is far from being simple. Not only it does not
fit into the regular diffusion framework but, due to the decaying arrival rates, it also
deviates from the more general framework of continuous time random walks. By
means of the generalized renewal theory, we have been able to completely determine
the arrival rates throughout the evolution. Moreover, we have shown that the model
bears striking similarity to the fractional sub-diffusion in an intermediate regime where
most relevant distributions stabilize. Similar observations can be made for the full
process that takes into account jumps in orientation, as we will show in a forthcoming
paper.
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Fig. 5.2. (a) Least square power law fit for the number of surviving grain boundaries at time
t. (b) Comparison of arrival rates in log-log scale obtained in simulations of the full system and
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