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Abstract

This paper discusses boundary conditions appropriate to a theory of single-crystal plasticity (Gurtin,
2002) that includes an accounting for the Burgers vector through energetic and dissipative depen-
dences on the tensor G = curlHp, with Hp the plastic part in the additive decomposition of the
displacement gradient into elastic and plastic parts. This theory results in a flow rule in the form
of N coupled second-order partial differential equations for the slip-rates γ̇α (α = 1, 2 . . . , N), and,
consequently, requires higher-order boundary conditions. Motivated by the virtual-power principle
in which the external power contains a boundary-integral linear in the slip-rates, hard-slip conditions
in which

(A) γ̇α = 0 on a subsurface Shard of the boundary

for all slip systems α are proposed. In this paper we develop a theory that is consistent with that
of (Gurtin, 2002), but that leads to an external power containing a boundary-integral linear in the
tensor Ḣp

ijεjrlnr, a result that motivates replacing (A) with the microhard condition

(B) Ḣp
ijεjrlnr = 0 on the subsurface Shard.

We show that, interestingly, (B) may be interpreted as the requirement that there be no flow of the
Burgers vector across Shard.

What is most important, we establish uniqueness for the underlying initial/boundary-value
problem associated with (B); since the conditions (A) are generally stronger than the conditions
(B), this result indicates lack of existence for problems based on (A). For that reason, the hard-slip
conditions (A) would seem inappropriate as boundary conditions.

Finally, we discuss conditions at a grain boundary based on the flow of the Burgers vector at
and across the boundary surface.

Keywords: A. Dislocations; C. Crystal plasticity; D. Non-local plasticity

1 Introduction

We work within the framework of small deformations, neglecting geometric changes.
Let u(x, t) denote the displacement of an arbitrary point x in B, the region of space occupied by

the body. We base our discussion on the standard decomposition

∇u = He + Hp, (1.1)
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in which He represents stretching and rotation of the lattice, while Hp, the plastic distortion, represents
local deformation due to slip. The symmetric part of He, namely

Ee = 1
2 (He + He�), (1.2)

is the lattice strain.
Single-crystal plasticity is based on the hypothesis that plastic flow take place through slip on

prescribed slip systems α = 1, 2, . . . , N , with each system α defined by a slip direction sα and a slip-
plane normal mα, where

sα ·mα = 0, |sα|, |mα| = 1, sα,mα = constant. (1.3)

This hypothesis manifests itself in the requirement that Hp be characterized by slips (microshears)
γα(x, t) on the individual slip systems via the kinematical constitutive assumption

Hp =
∑
α

γα Sα, (1.4)

with
S
α = sα⊗mα (1.5)

the Schmid tensor for α. Here and in what follows, lower case Greek superscripts α, β, . . . denote
slip-system labels and as such have the range 1, 2, . . . , N .

Recently, Gurtin (2002)1 developed a gradient theory of single-crystal plasticity that accounts for
the Burgers vector2 as characterized by the field

G = curlHp
(
Gij = εirs

∂Gjs

∂xr

)
.

Central to this theory is the introduction of a system of microforces whose working accompanies slip
as described by the slips γα; specifically, the microforce system consists of vector stresses ξα and scalar
internal forces πα whose power expenditure, within any part R of the body B, is given by∑

α

∫
R

(παγ̇α + ξα · grad γ̇α) dV. (1.6)

This theoretical structure leads — via the principle of virtual power in conjunction with thermodynam-
ically admissible constitutive equations based on a free energy dependent on G —

(‡) to a flow rule in the form of N coupled second-order partial differential equations for the slips

and to the microscopic external power-expenditure∑
α

∫
∂R

(ξα · n)γ̇α dA. (1.7)

Here n is the outward unit normal to ∂R.
Because of (‡), microscopic boundary conditions are needed over and above the standard conditions

for the macroscopic fields. Here, following (G-2002), we limit our discussion to two types of conditions:

(i) microscopically hard boundary conditions meant to characterize, for example, microscopic behavior
at the boundary of a ductile metal perfectly bonded to a ceramic;

(ii) microscopically free boundary conditions meant to characterize microscopic behavior at a boundary
whose environment exerts no microscopic forces on the body.

1Henceforth referred to as (G-2002).
2We refrain from using the term geometrically necessary dislocations, which we believe to be misleading in a continuum

theory. The sensitivity of single-crystal plasticity to the local Burgers vector at small length scales is clear from the
discrete-dislocation simulations of Cleverlinga, Van der Giessen, and Needleman (1999).
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Based on (1.7) with R = B, boundary conditions for microscopically hard and microscopically free
portions of ∂B are introduced in (G-2002); for the former the hard-slip conditions

γ̇α = 0 for all α (1.8)

are proposed, while
ξα · n = 0 for all α (1.9)

are considered for the latter. Because of the transparent nature of the hard-slip conditions and because
of (‡), the hard-slip conditions would, at first sight, seem a reasonable mathematical characterization
of a microscopically hard boundary.

While gradient dependences are introduced in (G-2002) through a free energy dependent on G, the
framework itself applies equally well to more general dependences on slip gradients. This feature begs
the question as to whether the Burgers tensor G, since it represents a fundamental ingredient of the
theory, could be introduced directly within the virtual-power framework. In this study we answer this
question and in so doing arrive at an interesting and unexpected conclusion regarding the the hard-slip
conditions (1.8).

To include the Burgers tensor G in the basic structure of the theory, we introduce a defect stress T
that expends power over Ġ and replace the microscopic power expenditure (1.6) by∫

R

(
T : Ġ +

∑
α

παγ̇α
)
dV. (1.10)

When combined with constitutive equations consistent with those of (G-2002), this change results in
exactly the same local equations within the body as those derived in (G-2002), the two formulations
being related by the expression

ξα = mα× Tsα (ξαi = εijkm
α
j Tkrs

α
r ). (1.11)

But the same cannot be said for the boundary conditions suggested by the two formulations.
The present study leads to an external microscopic power-expenditure∫

∂R

(
T
�(n×)

)
: Ḣp dA

︸ ︷︷ ︸
(L)

= −
∫
∂R

T
�
P(n) :

(
Ḣp(n×)

)
dA

︸ ︷︷ ︸
(R)

, (1.12)

of which (R) suggests a consideration of the microhard condition

Ḣp(n×) = 0 (Ḣp
ijεjrlnr = 0). (1.13)

On the other hand, virtual power applied to (L) of (1.12) would require that the natural boundary
condition be one that renders (L) zero for any choice of Ḣp, and would therefore seem to suggest a
mechanical boundary condition requiring that the deviatoric part of T�(n×) vanish. But, in light of
(1.4), such a condition is implied by the vanishing of (L) only when the Schmid tensors Sα = sα⊗mα

span the space of deviatoric tensors.3 More generally, in view of (1.4), the vanishing of (L) for any
choice of slips suggests boundary conditions asserting that

S
α:

(
T
�(n×)

)
= 0 (SαijTriεrkjnk = 0) for all α. (1.14)

The existence of two sets of boundary conditions — one set in terms of slip-rates γ̇α and microstresses
ξα · n, the other in terms of the plastic distortion-rate Ḣp and the defect stress T — and the form of
the condition (1.13) lead to the following questions:

3Cermelli’s Theorem (G-2002) asserts that for FCC and BCC crystals the N Schmid tensors S
α

span the space of
deviatoric tensors. For such crystals any deviatoric tensor Hp may be written in the form (1.4). This result is clearly
not true for HCP crystals, which have only four systems, or for any other crystal with less than 8 slip systems; for such
crystals, the tensor space spanned by the Schmid tensors is not the space of deviatoric tensors, a restriction that we need
bear in mind in what follows.
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(i) Are the two sets of boundary conditions in any way related?

(ii) What is the physical meaning of the kinematical conditions (1.13)?

Regarding (i), it is not difficult to show, using (1.11), that Sα:
(
T
�(n×)

)
= 0 for all α if and only if

ξα · n = 0 for all α (Cermelli, 2003; private communication); thus the mechanical boundary conditions
(1.9) and (1.14) are equivalent.

On the other hand, the hard-slip conditions (1.8) are generally not equivalent to the microhard
condition (1.13). Indeed, by (1.4), (1.8) implies that Ḣp = 0, a condition stronger than Ḣp(n×) = 0.
In §9 we establish uniqueness for the underlying boundary-value problem using the weaker condition
Ḣp(n×) = 0. Thus one would expect lack of existence for this problem using the conditions (1.8). For
that reason,

(†) the hard-slip conditions (1.8) would seem inappropriate as boundary conditions.4

To answer (ii) we note in §2.1 that G�e provides a measure of the (local) Burgers vector for the
plane with unit normal e, and hence may be viewed as the local Burgers vector, per unit area, for those
dislocation lines that pierce this plane (Burgers, 1939; Kröner, 1960). We show that, for any constant
(unit) vector e,

˙G�e = −div
(
− Ḣp(e×)

) (
˙Gjiej =

∂

∂xl

(
Ḣp
ijεjrler

))
,

a balance that establishes −Ḣp(e×) as a Burgers-vector flux and leads, after some analysis (cf. the
argument leading to (2.17)), to the conclusion that Ḣp(n×) = 0 at a boundary point if and only if
there is no flow of the Burgers vector across the boundary at that point. Thus the microscopically hard
condition Ḣp(n×) = 0 has a precise physical meaning.

We close the paper by developing microscopic interface conditions at a grain boundary G. These
interface conditions are phrased in terms of the Burgers-vector flow across S and involve the fields
Ḣp(m×) and T�(m×), where m is the unit normal field for G.5 The resulting grain-boundary flow
rules seem consistent with experiments of Sun et al. (1998, 2000), who determine the Burgers tensor in
a bicrystal through measurements of lattice rotations.

4The simulations of Bittencourt, Needleman, Gurtin, and Van der Giessen (2002) and Nicola, Van der Geissen, and
Needleman (2003) used the hard-slip conditions (1.8) with good result when discussing problems involving symmetric
double slip, but in those special cases the “hard” boundary conditions (1.8) and (1.13) are equivalent. However, in the
composite calculations of Bittencourt et al. (2003), which involved single slip, γ̇ was taken to vanish on all matrix-particle
interfaces, including those parallel to the slip direction. The considerations here indicate that γ̇ should have been taken
to vanish only on matrix-particle interfaces perpendicular to the slip direction (cf. the sentence containing (8.13)).

5Cf. Cermelli and Gurtin (2002) who, working within the framework of (G-2002), develop grain-boundary conditions
conditions consisting of 2N relations between the slip-rates and microstresses at G.
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2 Macroscopic characterization of the Burgers vector

2.1 The Burgers tensor G

For A a tensor field,

(curlA)ij = εirs
∂Ajs
∂xr

,

with εirs the alternating symbol.
By Stokes’ theorem, for C the boundary curve of a smooth oriented surface S with unit normal e,∫

C

Hp dx =
∫
S

(curlHp)�e dA, (2.1)

This integral is generally nonzero, as the plastic distortion Hp is not the gradient of a vector field, and
we associate the vector measure (curlHp)�e dA with the Burgers vector corresponding to the “boundary
curve” of a surface-element e dA. Thus, for

G = curlHp, (2.2)

G�e provides a measure of the (local) Burgers vector for the plane Π with unit normal e. We refer to
G as the Burgers tensor and to G�e as the Burgers vector associated with small loops on Π, it being
understood that this Burgers vector is measured per unit area. Since

(
curl (γα sα⊗mα)

)
ij

= εirq
∂γα

∂xr
sαj m

α
q =

(
(∇γα×mα)⊗ sα

)
ij
,

(1.4) yields (Fleck, Muller, Ashby, Hutchinson, 1994)

G =
∑
α

(∇γα×mα)⊗ sα
(
Gij =

∑
α

(
εirq

∂γα

∂xr
mα
q s
α
j

))
. (2.3)

2.2 The tensor (a×) and the projection P(e)

The following notation and terminology is useful in discussing the evolution of the Burgers vector.
Given any vector a, we write (a×) for the tensor defined by

(a×)ij = εikjak;

then
(a×)�= −(a×) (2.4)

and
(a×)(b⊗ c) = (a× b)⊗ c, (b⊗ c)(a×) = b⊗ (c× a). (2.5)

For e a unit vector, we write

P(e) = 1− e⊗ e, Pij(e) = δij − eiej , (2.6)

for the projection onto the plane perpendicular to e. We then have the following identities:

(e×)P(e) = P(e)(e×) = (e×), (e×)(e×) = −P(e), P(e) = P(e)�. (2.7)

By (2.5), (e×)(e⊗e) = (e⊗e)(e×) = 0, which implies (2.7)1; (2.7)2 is easily verified using components
and the identity εijkεipq = δjpδkq − δjqδkp.

Given any pair of tensors A and B, we have the transfer identities:(
A(e×)

)
:B = −A :

(
B(e×)

)
, (2.8)

= −
(
AP(e)

)
:
(
B(e×)

)
. (2.9)
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The first of these identities follows from (2.4). To prove the second, note that by (2.7)1,3,

A :
(
B(e×)

)
= A :

(
B(e×)P(e)

)
=

(
AP(e)

)
:
(
B(e×)

)
.

For A a tensor, we write ∣∣∣∣A∣∣∣∣ =
√

A :A (2.10)

for the norm of A and note that∣∣∣∣AP(e)
∣∣∣∣2 =

∣∣∣∣A(e×)
∣∣∣∣2 =

∣∣∣∣A∣∣∣∣2 − ∣∣∣∣An
∣∣∣∣2, (2.11)

so that
AP(e) = 0 ⇔ A(e×) = 0. (2.12)

To verify (2.11), we write P = P(e) and note that, by (2.7),

(AP) : (AP) = −
(
AP

)
:
(
A(e×)(e×)

)
=

(
AP(e×)

)
:
(
A(e×)

)
=

(
A(e×)

)
:
(
A(e×)

)
,

which is the first equality in (2.11). Next, since A : (An ⊗ n) =
∣∣∣∣An

∣∣∣∣2 and
∣∣∣∣An ⊗ n

∣∣∣∣2 =
∣∣∣∣An

∣∣∣∣2, it
follows that ∣∣∣∣AP∣∣∣∣2 =

∣∣∣∣A− (An⊗ n)
∣∣∣∣2 =

∣∣∣∣A(e×)
∣∣∣∣2 =

∣∣∣∣A∣∣∣∣2 − ∣∣∣∣An
∣∣∣∣2,

which is the remainder of (2.11).
We close this section by establishing the following important result: given any tensor A,

A(m×) :D = 0 for every deviatoric tensor D︸ ︷︷ ︸
(�)

=⇒ A(m×) = 0. (2.13)

Assume that (�) is satisfied. Choose a tensor S and let D = S − (trS)m ⊗m. Then D is deviatoric
and A(m×) :S = A(m×) :D, so that A(m×) :S = 0. Since S was arbitrarily chosen, A(m×) = 0.

2.3 Burgers-vector balance. Burgers-vector flow

Choose a fixed unit vector e. Then the Burgers vector G�e associated with small loops perpendicular
to e evolves according to a balance. To derive this balance note that

eiεijk
∂Ḣp

rk

∂xj
=

∂

∂xj

(
Ḣp
rkεkijei

)
,

an identity whose left side represents (curl Ḣp)�e = ˙G�e. We therefore have the Burgers-vector balance

˙G�e = −div
(
− Ḣp(e×)

)
(2.14)

in which −Ḣp(e×) represents a tensorial Burgers-vector flux. An inspection of this balance shows that,
given a plane Π(n) with normal n, −

(
Ḣp(e×)

)
n represents — for the Burgers vector associated with

small loops perpendicular to e — the Burgers-vector flow across Π(n) in the direction n. Since

−
(
Ḣp(e×)

)
n = −Ḣp(e × n) = Ḣp(n × e) =

(
Ḣp(n×)

)
e, (2.15)

flow in the direction n associated with small loops perpendicular to e is equal to the negative of the
flow in the direction e associated with small loops perpendicular to n. Therefore the tensor

Ḣp(n×) (2.16)

represents the Burgers-vector flow across Π(n); that is, Ḣp(n×) applied to any unit vector e represents
— for small loops perpendicular to e — the flow of the Burgers-vector across Π(n) in the direction n.
Thus

Ḣp(n×) = 0 (2.17)

at a particular point x on Π(n) if and only if there is no flow of the Burgers vector across Π(n) at x.



March 2, 2004 7

2.4 Burgers vector for plane-strain with planar slip systems

Strict plane-strain

Under plane strain the displacement has the component form

ui(x1, x2, t) (i = 1, 2), u3 = 0,

and results in a displacement gradient ∇u that is independent of x3, so that

(∇u)j3 = (∇u)3j = 0 (j = 1, 2, 3); (2.18)

i.e.,
(∇u)e = (∇u)�e = 0, with e ≡ e3, (2.19)

the out-of-plane normal.
When discussing plane deformations we restrict attention to planar slip systems; that is, slip systems

α that satisfy
sα · e = 0, mα · e = 0, sα×mα = e, (2.20)

with slips γα independent of x3; all other slip systems are ignored. The assumption of planar slip
systems yields restrictions on the components of Hp and (hence) He, Ee, and We strictly analogous
to those of ∇u as specified in (2.18) and (2.19). There is a large literature based on this approxima-
tive hypothesis. The resulting fully two-dimensional kinematics is important in constructing simple
mathematical models, often based on two slip systems.6

Burgers vector g. Burgers vector flow

The following notation for first and second slip-directional derivatives of a scalar field Φ and a vector
field v is convenient:

Φ,β = sβ · ∇Φ, Φ,αβ = sα · (∇∇Φ)sβ , v,β = (∇v)sβ . (2.21)

Then, since e · ∇γα = 0, it follows that ∇γα×mα = (sα · ∇γα)(sα×mα) = γα,α e, so that, by (2.3),

G = e⊗ g, g =
∑
α

γα,α sα. (2.22)

Thus, since each slip direction sα is orthogonal to e, it follows that g ⊥ e. Further, because g = G�e,
the vector g represents the Burgers vector (per unit area) for small loops on the cross-sectional plane
(the plane with unit normal e); for convenience, we restrict attention to such loops.

In discussing the flow of the Burgers vector we restrict attention to small loops perpendicular to e.
Then, by (1.4), (1.5), and (2.20)3,

−Ḣp(e×) =
∑
α

γ̇αsα⊗ (e×mα) = −
∑
α

γ̇αsα⊗ sα,

and the Burgers-vector balance (2.14) takes the simple form

ġ = −div
( ∑

α

γ̇αsα⊗ sα
) (

ġi = −
( ∑

α

∂γ̇α

∂xj
sαi s

α
j

))
. (2.23)

In this case the flow of the Burgers vector in the direction n has the form∑
α

γ̇α(sα · n)sα. (2.24)

6Cf., e.g., Asaro 1983, pp. 45-46, 84-97 and the references therein.
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3 Principle of virtual power. Macroscopic and microscopic
force balances

We write
γ = (γ1, γ2, . . . , γN )

for the list of slips. The theory presented here is based on the presumption that the power expended by
each independent “rate-like” kinematical descriptor is expressible in terms of an associated force system
consistent with its own balance. But the basic “rate-like” descriptors, namely u̇, Ḣe, and γ̇ are are not
independent, as they are constrained by

∇u̇ = Ḣe +
∑
α

γ̇α Sα (3.1)

(cf. (1.1), (1.2), (1.4)), and it is not apparent what forms the associated force balances should take.
For that reason, we determine these balances using the principal of virtual power.

3.1 Principle of virtual power

Internal and external power expenditures

With each evolution of the body we associate macroscopic and microscopic force systems characterized
by the manner in which they expend power. We assume that power is expended within the body in
consort with elastic straining, with slip, and with the formation of defects; we therefore consider a
system of stresses consisting of:

(i) a symmetric lattice stress T that expends power over the lattice strain-rate Ḣe;

(ii) a defect stress T that expends power over Ġ and hence over temporal changes in the Burgers
vector;

(iii) an internal microforce πα for each slip system α; πα expends power over the slip-rate γ̇α.

Therefore, given any part R (subregion of the body), we assume that the power expended within R has
the form

Wint(R) =
∫
R

(T : Ḣe + T : curl Ḣp) dV +
∑
α

∫
R

παγ̇α dV (3.2)

The internal power is balanced by power expended externally by tractions on ∂R and body forces
acting within R. As is standard, we consider, as power conjugates for the macroscopic displacement u,
a traction t(n) (for each unit vector n) and an external body force f , presumed to account for inertia.
The internal power (3.2) contains terms ∂Ḣp

ij/∂xk (because of the presence of curl Ḣp) and — based
on experience with other gradient theories — we assume that power is expended externally by a defect
traction X(n) conjugate to the plastic-distortion rate Ḣp. We therefore assume that the external power
expended on R has the form

Wext(R) =
∫
∂R

t(n) · u̇ dA +
∫
R

f · u̇ dV +
∫
∂R

X(n) : Ḣp dA. (3.3)

We restrict attention to distortion rates Ḣp that are consistent with (1.4) and hence that belong to the
tensor space spanned by the Schmid tensors; consistent with this we require that X(n) also belong to
this space:

X(n) ∈ span
{
S
α : α = 1, 2, . . . N

}
(3.4)
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Power expenditures in terms of slip-rates

We now show that, for each α, there are a microstress ξα and a microtraction Ξα(n) such that

T : Ġ =
∑
α

ξα · ∇γ̇α,

X(n) : Ḣp =
∑
α

Ξα(n)γ̇α.


 (3.5)

By (2.3) and the identity A : (a⊗ b) = Aijaibj ,

T : Ġ = T :
∑
α

(∇γα×mα)⊗ sα =
∑
α

Tijεirk
∂γ̇α

∂xr
mα
k s
α
j =

∑
α

(
mα× Tsα

)
· ∇γ̇α

and this yields (3.5)1 provided

ξα
def= mα× Tsα ≡mα× (Tsα)

(
ξαi = εijkm

α
j Tkrs

α
r

)
(3.6)

for each α. On the other hand, by (1.5),

X(n) : Ḣp =
∑
α

γαX(n) :Sα

and therefore, if we define

Ξα(n) def= S
α:X(n)

(
Ξα(n) = SαijXij(n)

)
, (3.7)

we are led to (3.5)2.
Using (3.5), we may rewrite the internal and external power expenditures (3.2) and (3.3) in terms

of slips and slip gradients (G-2002):

Wint(R) =
∫
R

T : Ḣe dV +
∑
α

∫
R

(παγ̇α + ξα · ∇γ̇α) dV,

Wext(R) =
∫
∂R

t(n) · u̇ dA +
∫
R

f · u̇ dV +
∑
α

∫
∂R

Ξα(n) γ̇α dA.




(3.8)

Virtual velocities. Principle of virtual power

Fix the time and consider the fields u̇, Ḣe, and γ̇ as virtual velocities to be specified independently in
a manner consistent with (3.1); that is, denoting the virtual fields by ũ, H̃e, and γ̃ to distinguish them
from fields associated with the actual evolution of the body, we require that

∇ũ = H̃e +
∑
α

γ̃αSα. (3.9)

Further, we define a generalized virtual velocity to be a list

V = (ũ, H̃e, γ̃)

of such fields and write Wext(R,V) and Wint(R,V) for Wext(R) and Wint(R) when the actual fields u̇,
Ḣe, and γ̇ are replaced by their virtual counterparts ũ, H̃e, and γ̃.

We postulate a principle of virtual power requiring that, given any generalized virtual velocity V
and any part R,

(i) the corresponding internal and external virtual powers are balanced:

Wext(R,V) =Wint(R,V); (3.10)

(ii) the internal virtual power Wint(R,V) is invariant under superposed (infinitesimal) rigid rotations.
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3.2 Macroscopic and microscopic force balances

In applying the power balance (3.10) we are at liberty to choose any V consistent with the constraint
(3.9).

Macroscopic force and moment balance

Under a superposed rigid rotation, the only field associated with the the internal power that is not
invariant is H̃e, which transforms to H̃e + W, with W a skew tensor; thus a necessary and sufficient
condition that the internal power be invariant is that∫

R

T :W dv = 0

for all skew tensors W and all all parts R; we therefore have the classical result

T = T�. (3.11)

Consider next a generalized virtual velocity without slip (γ̃ ≡ 0); then ∇ũ = H̃e, T : H̃e = T :∇ũ,
and the power balance (3.10) takes the form∫

∂R

t(n) · ũ dA =
∫
R

(T :∇ũ− f · ũ) dV.

Equivalently, ∫
∂R

(t(n)−Tn) · ũ dA = −
∫
R

ũ · (divT + f) dV,

and since this relation must hold for all R and all ũ, a standard argument leads to the traction condition

t(n) = Tn (3.12)

and the classical local force balance
divT + f = 0. (3.13)

Microscopic force balances

Consider a generalized virtual velocity with ũ ≡ 0, choose the virtual field γ̃ arbitrarily, so that, by
(3.9), ∑

α

γ̃α (sα⊗mα) = −(Ẽe + W̃e),

with Ẽe and W̃e the symmetric and skew parts of H̃e. Then, since T is symmetric, T : H̃e = T : Ẽe =
−

∑
α ταγ̃α, with

τα = sα ·Tmα = S
α:T (3.14)

the resolved shear, and the power balance (3.10) yields the microscopic virtual-power relation∑
α

∫
∂R

Ξα(n)γ̃α dA =
∑
α

∫
R

[
(πα − τα)γ̃α + ξα · ∇γ̃α

]
dV (3.15)

to be satisfied for all for all γ̃ and all R. Equivalently,∑
α

∫
∂R

(
Ξα(n)− ξα ·n

)
γ̃α dA = −

∑
α

∫
R

(
div ξα + τα − πα

)
γ̃α dV,

and arguing as before this yields the microtraction conditions

Ξα(n) = ξα · n (3.16)

and the microforce balances
div ξα + τα − πα = 0 (3.17)

on each slip system α.
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Microscopic balances and traction conditions in terms of T

By (3.6),

div ξα = mα
k εrki

∂Tij
∂xr

sαj = −mα
k εkri

∂T�ji
∂xr

sαj = −Sα: (curlT�)�,

and thus, since τα = Sα:T, the microforce balances (3.17) may be written equivalently as

S
α:

(
− (curlT�)�+ T

)
− πα = 0. (3.18)

Further, by (3.6),

ξα · n = mα
k εrkiTijs

α
j nr = −εkrinrTijm

α
k s
α
j = −

(
(n×)T

)
:
(
mα⊗ sα

)
,

so that
ξα · n = Sα:

(
T
�(n×)

)
. (3.19)

Thus ξα·n is T�(n×) resolved on the α-th slip system; hence the N tractions ξα·n cannot generally be
prescribed arbitrarily. The result (3.19) has the immediate, but important, corollary:

ξα · n = 0 for all α ⇔ S
α:

(
T
�(n×)

)
= 0 for all α; (3.20)

that is, ξα · n = 0 for all α if and only if the orthogonal projection of T�(n×) onto the tensor subspace
spanned by the Schmid tensors vanishes.

To determine the traction condition satisfied by T, we note that, by (3.7), (3.16), and (3.19),

S
α:

(
X(n)− T�(n×)

)
= 0 for all α; (3.21)

thus, since X(n) belongs to the space spanned by the Schmid tensors (cf. (3.4)), X(n) is the perpen-
dicular projection of T�(n×) onto this space. Note that, by Cermelli’s Theorem (footnote 3), for the
special case of FCC or BCC crystals, (3.21) yields an explicit expression for the traction:

X(n) = dev
(
T
�(n×)

)
,

where dev(. . . ) denotes the deviatoric part of (. . . ).

4 Energy imbalance

We consider a purely mechanical theory based on a second law in which the temporal increase in free
energy of any part R is less than or equal to the power expended on R. Precisely, letting ψ denote the
free energy per unit volume, we take the second law in the form of an energy imbalance asserting that

˙∫
R

ψ dV ≤ Wext(R) (4.1)

for all subbodies R. In view of (3.2), (3.3), the symmetry of T, and the identity Wext(R) =Wint(R),
(4.1) has the alternative forms

˙∫
R

ψ dV ≤
∫
∂R

Tn · u̇ dA +
∫
R

f · u̇ dV +
∑
α

∫
∂R

(ξα · n)γ̇α dA,

˙∫
R

ψ dV ≤
∫
R

T : Ėe dV +
∑
α

∫
R

(παγ̇α + ξα · ∇γ̇α) dV.




(4.2)

Since R is arbitrary, (4.2)2 yields the free-energy inequality

ψ̇ −T : Ėe −
∑
α

(ξα · ∇γ̇α + παγ̇α) ≤ 0, (4.3)

or equivalently, by (3.5),
ψ̇ −T : Ėe − T : curl Ḣp + παγ̇α ≤ 0. (4.4)

We shall use this second inequality as a guide in developing a suitable constitutive theory.
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5 Constitutive theory. Thermodynamic restrictions

Our goal is a theory that allows for constitutive dependences on G, but that does not otherwise depart
drastically from the classical theory. Toward this end, we begin with a constitutive equation for the
free energy in which the classical elastic strain-energy is augmented by a defect energy Ψ(G):

ψ = 1
2E

e:C[Ee] + Ψ(G). (5.1)

Let G = G(t). Then, by (2.3),

˙Ψ(G) = T : Ġ =
∑
α

(∇γ̇α×mα) · Tsα =
∑
α

(
mα× Tsα

)
· ∇γ̇α, (5.2)

showing that the normal slip-gradients mα · ∇γα do not affect temporal changes in the defect energy.
Next, by (5.1) and (5.2),

ψ̇ = C[Ee] : Ėe +
∑
α

(
mα× Tsα

)
· ∇γ̇α, (5.3)

and the free-energy inequality (4.3) takes the form

{
T−C[Ee]

}
: Ėe +

{
T− ∂Ψ(G)

∂G

}
: Ġ + παγ̇α ≥ 0. (5.4)

The left side of this inequality represents the dissipation, per unit volume. Consider constitutive equa-
tions giving T, T, and πα as functions of Ee, G, and the list γ̇ = (γ̇1, γ̇2, . . . , γ̇A) of slip-rates. We
require that the inequality (5.4) hold for all choices of Ėe, γ̇, and Ġ; the linearity of this inequality in
Ėe and Ġ then reduces the constitutive equation for T to the classical form

T = C[Ee] (5.5)

and — what is more important — requires that

T =
∂Ψ(G)
∂G

. (5.6)

Thus (5.4) reduces to
∑
α παγ̇α ≥ 0. Guided by this inequality and more classical theories, we posit a

constitutive relation for πα in the form
πα = σαf(γ̇α), (5.7)

where, for each fixed α,
f(γ̇α) = −f(−γ̇α), f(γ̇α)γ̇α ≥ 0, (5.8)

and where the slip resistances σα are consistent with the hardening equations

σ̇α =
∑
β

kαβ(σ1, σ2, . . . , σN ,G) |γ̇β |, σα(x, 0) = 1, (5.9)

The constitutive relations (5.1) and (5.5)–(5.9) are then consistent with the free-energy inequality. Note
that πα is dissipative, while ξα is energetic. Note also that the constitutive theory is completely specified
by the elasticity tensor C, the defect energy Ψ, the viscosity function f , and the hardening moduli kαβ ;
and that the dissipation is given by

∑
α σαf(γ̇α) γ̇α.

6 Viscoplastic flow rules

Given any slip system α, the microforce balance div ξα + τα − πα = 0 — augmented by the relation
ξα = mα×Tsα and the constitutive equations for πα and T — plays the role of a viscoplastic flow rule
for α:

τα − (−1)div (mα× Tsα)︸ ︷︷ ︸
backstress due to a

nonzero Burgers vector

= σαf(γ̇α)︸ ︷︷ ︸
dissipative hard-
ening due to slip

, T =
∂Ψ(G)
∂G

. (6.1)
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Since T = T(G), the backstress depends on G and ∇G, and hence on the first and second gradients ∇γβ

and ∇∇γβ , β = 1, 2, . . . , N , thereby rendering the flow rule strongly nonlocal. Using the microforce
balance in the form (3.18) we can write this flow rule alternatively as

S
α:

(
− (curlT�)�+ T

)
= σαf(γ̇α).

The flow rule (6.1) embodies two different hardening mechanisms: that provided by the harden-
ing equations (5.9) and that which results, via the backstress, from an energetic dependence on G.7

Hardening imposed by by the hardening equation is strictly dissipative; hardening resulting from the
backstress is strictly energetic.

7 Basic system of field equations

The basic field equations of the theory consist of:

• the kinematical equations (1.1), (1.2), (1.4), (2.2), and (2.3),

∇u = He + Hp, Ee = 1
2 (He + He�),

Hp =
∑
α γα Sα, G = curlHp =

∑
α(∇γα×mα)⊗ sα;

}
(7.1)

• the macroscopic balance (3.13) supplemented by the stress-strain relation (5.5),

divT + f = 0, T = C[Ee], (7.2)

• the flow rule (6.1), which is the microforce balance (3.17) supplemented by (3.6), the constitutive
equations (5.6) and (5.7), and the hardening equations (5.9),

div ξα + τα = πα, ξα = mα× Tsα,

T =
∂Ψ(G)
∂G

, πα = σαf(γ̇α),

σ̇α =
∑
β kαβ(σ1, σ2, . . . , σN ,G) |γ̇β |, σα(x, 0) = 1.


 (7.3)

8 Microscopically powerless boundary conditions

8.1 Microscopic power expenditure

The external power expended on a part R is given by (3.3) and the microscopic portion of this power
is given by ∫

∂R

X(n) : Ḣp︸ ︷︷ ︸
M(n)

dA. (8.1)

The integrand M(n) represents the microscopic power expended, per unit area, on any (oriented) surface
with unit normal n. Multiplying (3.21) by γ̇α and summing over α, we find, using (1.4), that

M(n) def= X(n) : Ḣp =
(
T
�(n×)

)
: Ḣp

(
M(n) = SαijXij(n) = TjiεjklnkḢ

p
il

)
, (8.2)

which is the first of the following expressions for this power:

M(n) =
(
T
�(n×)

)
: Ḣp, (8.3)

= −T�P(n) :
(
Ḣp(n×)

)
, (8.4)

=
∑
α

(ξα ·n
)
γ̇α. (8.5)

The identity (8.4) follows from (2.8), while(8.5) follows from (3.16), (3.19), and (8.3).
7Cf. the discrete-dislocation computations of Cleveringa, Van der Giessen, and Needleman (1999), which display large

backstresses.
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8.2 Microhard and microfree boundary conditions

Focusing on the boundary ∂B, with outward unit normal n, the quantity M(n) defined in (8.2) repre-
sents the microscopic power expended, per unit area, on ∂B by the material in contact with the body.
We here limit our discussion to boundary conditions that are microscopically powerless in the sense
that

M(n) = 0 on ∂B. (8.6)

Let Shard and Sfree denote complementary subsurfaces of ∂B. We consider the boundary condition

Ḣp(n×) = 0 on Shard (microhard condition) (8.7)

asserting that there be no flow of the Burgers-vector across Shard (cf. §2.3, §8.3). We supplement (8.7)
by the requirement that X(n) = 0 on Sfree, or, equivalently, by (3.4), (3.19), and (3.21), that either of
the following two equivalent boundary conditions are satisfied:

S
α:

(
T
�(n×)

)
= 0 on Sfree for all α

ξα · n = 0 on Sfree for all α

}
(microfree condition), (8.8)

When expressed in indicial notation, the microhard condition and the (first) microfree condition have
the form

Ḣp
ijεjklnk = 0 on Shard and S

α
ijTriεrkjnk = 0 on Sfree..

Note that, for FCC and BCC crystals we may use the discussion of footnote 3 to rewrite the microfree
condition in the form

dev
(
T
�(n×)

)
= 0 on Sfree. (8.9)

The following remark is a direct consequence of (8.3) and (8.5):

(#) The microhard and microfree boundary conditions together imply that M(n) = 0 on ∂B.

8.3 Microhard boundary points

General results

A boundary point is microhard if, there, Ḣp(n×) = 0 , or, equivalently, by (2.12), if

Ḣp
P(n) = 0. (8.10)

An interesting and important property of a microhard boundary point is that, at that point, Ḣp

represents single slip with slip-plane tangent to the boundary :

Ḣp = b⊗ n, b ⊥ n. (8.11)

To verify (8.11) note first that, by (8.10),

Ḣp
P(n) = Ḣp(1− n⊗ n) = Ḣp − (Ḣpn)⊗ n.

Thus, defining b = Ḣpn, it follows that Ḣp
P(n) = 0 if and only if Ḣp = b ⊗ n (with b ⊥ n since

trḢp = 0).
We next show that if the entire boundary is microhard, then the mean value of the Burgers tensor

is constant :
d

dt

∫
B

G dV = 0. (8.12)

By hypothesis, Ḣp(n×) = 0 on ∂B. Choose an arbitrary unit vector e. Then (2.14), the divergence
theorem, and (2.15) imply that,

d

dt

∫
B

G�e dV =
∫
∂B

Ḣp(e × n) dA = −
∫
∂B

Ḣp(n × e) dA = 0.

Since e is constant and arbitrary, this yields (d/dt)
∫
B

G�dV = 0; the transpose of this relation is (8.12).
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The microhard condition for single- and double-slip

In the case of single-slip the microhard condition Ḣp(n×) = 0 takes the form

γ̇s⊗ (m× n) = 0 (8.13)

and requires that either the slip plane is parallel to the boundary or γ̇ = 0.
Consider next double-slip and let {β, κ} label the slip systems, so that

Ḣp = γ̇β sβ⊗mβ + γ̇κ sκ⊗mκ.

The microhard condition is then equivalent to the requirement that

γ̇β sβ⊗ (n×mβ) + γ̇κ sκ⊗ (n×mκ) = 0. (8.14)

As a consequences of (8.14),

(i) if both slip planes are parallel to the boundary, then the microhard condition is satisfied auto-
matically;

(ii) if just one slip plane, say κ, is parallel to the boundary, then the microhard condition requires
that γ̇β = 0;

(iii) if neither slip plane is parallel to the boundary, then either

(a) sβ �= sκ and γ̇β = γ̇κ = 0, or

(b) sβ = sκ and γ̇βmβ + γ̇κmκ is parallel to n.

Conversely, each of the conditions (i)-(iii) implies (8.14).

Plane strain with planar slip systems

In this case Ḣpe = 0 and, for any vector t orthogonal to e, Ḣp(n × t) = 0. Thus Ḣp(n×) = 0 is
equivalent to Ḣp(n×)e = 0 and hence, by (2.20), to

0 = Ḣp(e×)n =
∑
α

(
γ̇αsα⊗ (mα× e)︸ ︷︷ ︸

sα

)
n.

Thus the microhard boundary condition is equivalent to the requirement that∑
α

γ̇α(sα · n)sα = 0. (8.15)

9 Uniqueness theorem

We now establish uniqueness for the boundary-value problem associated with:

(P1) the field equations (7.1)-(7.3) for a prescribed body force f ;

(P2) constitutive assumptions requiring that:

(i) the elasticity tensor C be symmetric and the elastic energy positive-definite,

w(Ee) def= 1
2E

e :C[Ee] > 0 for Ee �= 0; (9.1)

(ii) the defect energy Ψ(G) be quadratic and positive-definite;

(iii) the hardening moduli kαβ vanish, so that, for all α, σα = 1 and

πα = f(γ̇α); (9.2)
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(iv) f be strictly increasing;

(P3) the (standard) macroscopic boundary conditions

u = û on Sdis and Tn = t̂ on Strac, (9.3)

with Sdis and Strac complementary subsets of ∂B and û and t̂ prescribed functions;

(P4) the microhard and microfree boundary conditions (8.7) and (8.9);

(P5) initial conditions prescribing u and γ1, γ2, . . . , γN at t = 0.

We consider two solutions of this boundary-value problem and denote the underlying fields by u1,
γα1 , T1, ξα1 , etc. and u2, γα2 , T2, ξα2 , etc. Further, we denote the corresponding difference fields by
u = u1 − u2, γα = γα1 − γα2 , T = T1 −T2, ξα = ξα2 − ξα1 , and so forth. Then, by (P1) and (P2),

divT = 0, div ξα + τα = f(γ̇α1 )− f(γ̇α2 ) (for all α). (9.4)

By (9.4)1 and the divergence theorem,∫
∂B

Tn · u̇ dA =
∫
B

T :∇u̇ dV.

The boundary conditions for the difference fields u and T are (9.3) with û = 0 and t̂ = 0, so that
Tn · u̇ = 0; thus, since ∇u̇ = Ḣe + Ḣp and T is symmetric,∫

B

T : Ėe dV = −
∫
B

T : Ḣp dV. (9.5)

Next, multiplying (9.4)2 by γ̇α, summing over α, and integrating over B, we find that

∑
α

∫
B

(
γ̇αdiv ξα + ταγ̇α

)
dV =

∑
α

∫
B

(
f(γ̇α1 )− f(γ̇α2 )

)(
γ̇α1 − γ̇α2

)
dV. (9.6)

On the other hand, by (1.4), (3.5)1, (3.14), and (3.19),∑
α

ξα · ∇γ̇α = T : Ġ,
∑
α

ταγ̇α = T : Ḣp,
∑
α

(ξα · n)γ̇α = T�(n×) : Ḣp,

and therefore

∑
α

∫
B

(
γ̇αdiv ξα + ταγ̇α

)
dV =

∑
α

∫
∂B

(ξα · n)γ̇α dA +
∑
α

∫
B

(
ταγ̇α − ξα · ∇γ̇α

)
dV

=
∫
∂B

T
�(n×) : Ḣp dA +

∫
B

(
T : Ḣp − T : Ġ

)
dV. (9.7)

The results (9.6) and (9.7) imply that∫
∂B

(
T
�(n×) : Ḣp

)
dA +

∫
B

(
− T : Ġ + T : Ḣp

)
dV =

∑
α

∫
B

(
f(γ̇α1 )− f(γ̇α2 )

)(
γ̇α1 − γ̇α2

)
dV. (9.8)

By (P4), the remark (�) on page 14, and (8.2), the integral in (9.8) over ∂B vanishes, so that, by (9.5),

−
∫
B

(
T : Ġ + T : Ėe

)
dV =

∑
α

∫
B

(
f(γ̇α1 )− f(γ̇α2 )

)(
γ̇α1 − γ̇α2

)
dV. (9.9)
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Moreover, because the elastic energy w(Ee) and the defect energy Ψ(G) are quadradic, the difference
fields satisfy

T : Ġ + T : Ėe = ˙
w(Ee) + Ψ(G).

We therefore have the following basic identity for the difference fields

−
˙∫

B

(
w(Ee) + Ψ(G)

)
dV =

∫
B

(
f(γ̇α1 )− f(γ̇α2 )

)(
γ̇α1 − γ̇α2

)
dV. (9.10)

By hypothesis, f is strictly increasing; thus the right side of (9.10) is ≥ 0 and the total difference energy∫
B

(
w(Ee) + Ψ(G)

)
dV must decrease in time. But the initial conditions (P5) imply that Ee and G

vanish initially. Thus since, by (P2), the elastic and defect energies are positive definite, Ee and G
must vanish identically. Therefore∫

B

(
f(γ̇α1 )− f(γ̇α2 )

)(
γ̇α1 − γ̇α2

)
dV = 0, (9.11)

which — because f is strictly increasing — is possible only if the slip-rate differences γ̇α = γ̇α1 − γ̇α2
vanish identically. Since these differences vanish initially, they must vanish identically, as must Hp.
Thus, as Ee = 0, ∇u is skew and the displacements of the two solutions differ by a rigid displacement.
We therefore have the

Uniqueness Theorem The boundary-value problem defined by (P1)-(P4) has at most one
solution up to a rigid displacement of the entire body.8

10 Variational formulation of the microforce balance and mi-
crofree boundary conditions

Our goal is a variational formulation of the microforce balance (3.17) — and hence the flow rule,
granted constitutive equations — that encapsulates the microfree boundary condition (8.9). We work
within the framework of the microhard and microfree boundary conditions and therefore begin with the
microscopic virtual-power relation (3.15) applied to R = B. Because the boundary conditions render
the power expenditure M(n) null on ∂B, we consider (3.15) with the boundary term omitted:

∑
α

∫
B

(
(πα − τα)γ̃α + ξα · ∇γ̃α

)
dV = 0. (10.1)

In view of the microhard boundary condition (8.7), we restrict attention to kinematically admissible
slip-rates; that is, slip-rates γ̃ = (γ̃1, γ̃2, . . . , γ̃N ) that satisfy

H̃p(n×) = 0 on Shard, (10.2)

where
H̃p def=

∑
α

γ̃αSα. (10.3)

Integrating the term ξα · ∇γ̃α in (10.1) by parts, we are led to the relation

∑
α

∫
∂B

(ξα ·n)γ̃α dA =
∑
α

∫
B

(
div ξα + τα − πα

)
γ̃α dV.

8The extension of this result to include the hardening equations (5.9) is technical and beyond the scope of the present
study.
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By (8.3)-(8.5) (which hold with the rate terms replaced by variations)

∑
α

∫
∂B

(ξα ·n)γ̃α dA =
∑
α

∫
Sfree

(
T
�(n×)

)
: Ḣp dA −

∫
Shard

T
�:

(
H̃p(n×) dA

︸ ︷︷ ︸
=0 by (10.2)

,

Thus, by (10.3), ∑
α

∫
Sfree

γ̃αSα:
(
T
�(n×)

)
dA =

∑
α

∫
B

(
div ξα + τα − πα

)
γ̃α dV (10.4)

for all kinematically admissible slip-rates γ̃. Thus, restricting attention, for the moment, to γ̃ that
vanish on the boundary, the fundamental lemma of the calculus of variations yields the microforce
balance (3.17) and reduces (10.4) to

∑
α

∫
Sfree

γ̃αSα:
(
T
�(n×)

)
dA = 0. (10.5)

Since the virtual fields γ̃α are unconstrained on Sfree, the microfree conditions Sα:
(
T
�(n×)

)
= 0 (for

all α) must be satisfied on Sfree. We have therefore established the

Variational Formulation. Assume that (10.1) is satisfied for all kinematically admissible slip-
rates γ̃. Then the microforce balance (3.17) is satisfied, as is the microfree boundary condition
(8.9).

11 Grain boundaries

11.1 Kinematics

Consider a grain boundary G separating grains G1 and G2, and let n denote the unit normal field on G
directed outward from grain 1. We assume that the fields under consideration are smooth in each grain
and continuous up to G from either grain. Given such a field Φ, we write Φ1 and Φ2 for the (one-sided)
limits of Φ at G from G1 and G2, [[Φ]] for the jump in Φ across G, and 〈〈Φ〉〉 for the average value of Φ
at G:

[[Φ]] = Φ2 − Φ1, 〈〈Φ〉〉 = 1
2 (Φ2 + Φ1).

We then have the identity
[[ΦΛ]] = 〈〈Φ〉〉[[Λ]] + 〈〈Λ〉〉[[Φ]]. (11.1)

We let Q denote the orthogonal tensor that represents the misorientation of the grains, so that, for
S
α
1 and Sα2 the Schmid tensors of G1 and G2,

S
α
2 = QSα1 Q�; (11.2)

i.e.,
sα2 = Qsα1 , mα

2 = Qmα
1 . (11.3)

We assume that the displacement u is continuous across G,

[[u]] = 0; (11.4)

we therefore do not account for the relative slip between grains.
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Burgers-vector flows at the grain-boundary. Permeability to Burgers-vector flows

Choose an arbitrary point x on the grain boundary and an arbitrary line element dx at that point
tangent to G. Consider the “infinitesimal loop” dΓ consisting of dx in Grain 1 followed by −dx in
Grain 2, and note that −n×dx represents a unit normal to the “surface element” bounded by dΓ. (The
minus sign renders the normal −n×dx “righthanded” with respect to the orientation of dΓ and hence
consistent with the convention tacit in §5. Then the Burgers vector corresponding to the “loop” dΓ is
given by

Hp
1dx−Hp

2dx = (Hp
1 −Hp

2)dx = −[[Hp]]dx = −[[Hp]]P(n)dx =
(
[[Hp]](n×)

)
(n×dx), (11.5)

where the insertion of the projection P(n) is valid because dx is tangent to G, and where we have used
the identity (2.7) in the last step in (11.5). Since the point x and the line element dx at x tangent to
G were arbitrarily chosen, (11.5) allows us to identify

−[[Hp]](n×)

as the Burgers-vector density of the grain boundary, measured per unit length. We refer to the grain
boundary as defect-free if [[Hp]](n×) = 0.

Next, in view of the discussion in the sentence containing (2.16),

−[[Ḣp]](n×) = Ḣp
2((−n)×) + Ḣp

1

(
n×

)
(11.6)

gives the Burgers-vector flow into G from the grains and hence represents the Burgers-vector production
within the grain boundary. Thus, trivially, the Burgers-vector flow into G is balanced by the rate at
which the Burgers-vector density of G is increasing. Further, the condition

[[Ḣp]](n×) = 0
(
[[Ḣp

ij ]]εjrlnr = 0
)

(11.7)

represents a balanced Burgers-vector flow in which the flow out of, say, Grain 1 is equal to the flow
into Grain 2. When (11.7) is satisfied we say that G is permeable to Burgers-vector flow ; we note that
if G is permeable, then G is defect-free if it ever once was.

Finally, the fact that permeable grain boundaries allow for the unimpeded flow of the Burgers vector
leads us to make the following:

(∗) Conjecture. For a given problem involving a grain boundary G— and away from any influence
of the outer boundaries — solutions within our theory for G permeable would be qualitatively
similar to solutions within more clsssical theories that do not account constitutively for the Burgers
vector.

Transition conditions for double-slip at a permeable grain-boundary

Let {ϕ, κ} and {ϕ̄, κ̄} label the slip systems, so that [[Ḣp]](n×) = 0 becomes

γ̇ϕ sϕ⊗ (n×mϕ) + γ̇κ sκ⊗ (n×mκ) = γ̇ϕ̄ sϕ̄⊗ (n×mϕ̄) + γ̇κ̄ sκ̄⊗ (n×mκ̄); (11.8)

here
(
a⊗ (b× c)

)
ij

= aiεjrqbrcq. The general conditions resulting from (11.8) are complicated and not
at all transparent; for that reason we consider only the non-degenerate case in which {n,mϕ,mκ} is
linearly independent, so that

(n×mκ) ·mϕ �= 0. (11.9)

Since (n×mϕ) ·mϕ = 0, acting with (11.9) on mϕ yields(
(n×mκ) ·mϕ

)
γ̇κsκ =

(
(n×mϕ̄) ·mϕ γ̇ϕ̄

)
sϕ̄ +

(
(n×mκ̄) ·mϕ

)
γ̇κ̄sκ̄, (11.10)

which, upon dividing by (n×mκ) ·mϕ takes the form

γ̇κsκ =
(n×mϕ̄) ·mϕ

(n×mκ) ·mϕ
γ̇ϕ̄sϕ̄ +

(n×mκ̄) ·mϕ

(n×mκ) ·mϕ
γ̇κ̄sκ̄, (11.11)
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Finally, taking the inner product of this relation with sκ yields an equation for the slip γ̇κ, and inter-
changing the roles of ϕ and κ, we find that a relation for the slip γ̇ϕ; the results,

γ̇κ =
(n×mϕ̄) ·mϕ

(n×mκ) ·mϕ
(sκ · sϕ̄) γ̇ϕ̄ +

(n×mκ̄) ·mϕ

(n×mκ) ·mϕ
(sκ · sκ̄) γ̇κ̄,

γ̇ϕ =
(n×mϕ̄) ·mκ

(n×mϕ) ·mκ
(sϕ · sϕ̄) γ̇ϕ̄ +

(n×mκ̄) ·mκ

(n×mϕ) ·mκ
(sϕ · sκ̄) γ̇κ̄,


 (11.12)

represent a pair of equations for the slips γ̇κ and γ̇ϕ in terms of the slips of the other grain. The
existence of such transmission conditions would seem to lend credence to Conjecture (∗).

11.2 Virtual power at the grain boundary. Force balances

Consider a part R (subregion of the bicrystal) that intersects the grain boundary. Then the external
power expenditure for R has the form (3.8)2, but the internal expenditure (3.8)1 must be modified to
account for power expenditures within the grain boundary. Basic to our theory is the presumption
that dissipation at the grain boundary arises as a consequence of an imbalance in the Burgers-vector
flow across it. Specifically, we allow for an internal force K distributed over G, and we assume that
K is power-conjugate to [[Ḣp]](n×). Thus, bearing in mind (3.8) and (3.16), we write the internal and
external power expenditures for R in the form

Wint(R) =
∫
R

T : Ḣe dV +
∑
α

∫
R

(παγ̇α + ξα · ∇γ̇α) dV +
∫
G∩R

K : [[Ḣp(n×)]] dA,

Wext(R) =
∫
∂R

Tn · u̇ dA +
∫
R

f · u̇ dV +
∑
α

∫
∂R

(ξα · n) γ̇α dA.




(11.13)

We isolate the grain boundary by formally passing to the limit as R tends to an arbitrary subsurface
A of G. In such a limit the volume integrals vanish, while∫

∂R

Tn · u̇ dA→
∫
A

(T2n + T1(−n)) · u̇ dA =
∫
A

[[Tn]] · u̇ dA (11.14)

and ∫
∂R

(ξα · n) γ̇α dA→
∫
A

[[(ξα · n) γ̇α]] dA.

Thus the internal and external power expenditures for an arbitrary subsurface A of G have the form

Wint(A) =
∫
A

K : [[Ḣp(n×)]] dA,

Wext(A) =
∫
A

[[Tn]] · u̇ dA +
∑
α

∫
A

[[(ξα · n) γ̇α]] dA.




(11.15)

The internal and external virtual powers associated with (11.15) are obtained by replacing u̇ and
γ̇α (for each α) by their virtual counterparts ũ and γ̃α, so that, for i = 1, 2, Ḣp

i is replaced by

H̃p
i =

∑
α

γ̃αi S
α
i . (11.16)

The principle of virtual power for the grain boundary is the requirement that these virtual powers be
equal for any subsurface A of G and all choices of the virtual fields. Taking the virtual slip-rates equal
to zero yields the macroscopic traction condition

[[T]]n = 0. (11.17)



March 2, 2004 21

Next, by (2.8) and (11.16), for i = 1, 2,

K :
(
H̃p
i (n×)

)
=

∑
α

K :
(
γ̃αi S

α
i (n×)

)
= −

∑
α

γ̃αi
(
K(n×)

)
: Sαi ;

(11.17) therefore renders the virtual-power principle of the form∫
A

[[(ξα · n) γ̇α]] dA =
∑
α

∫
A

{
γ̃α1

(
K(n×)

)
: Sα1 − γ̃α2

(
K(n×)

)
: Sα2

}
dA.

Thus, since the subsurface A and the virtual slips are arbitrary, we are led to the microscopic force
balances for the grain boundary :

ξα1 · n = −Sα1 :
(
K(n×)

)
, ξα2 · n = −Sα2 :

(
K(n×)

)
, (11.18)

or, equivalently,

(ξαi )1mi = −(Sαij)1Kriεrkjmk, (ξαi )2mi = −(Sαij)2Kriεrkjmk,

for each slip system α. Here, by (3.6),

ξα1 = mα
1× T1sα1 , ξα2 = mα

2× T2sα2 . (11.19)

Note that, by (3.19), we can write the microforce balances in the form

S
α
1 :

(
T
�
1(n×) + K(n×)

)
= 0, S

α
2 :

(
T
�
2(n×) + K(n×)

)
= 0, (11.20)

for each α. When the Schmid tensors span the space of deviatoric tensors, as is the case for FCC and
BCC crystals (footnote 3), then, by (2.13), can rewrite the microforce balances in the form

T
�
1(n×) = −K(n×), T

�
2(n×) = −K(n×), (11.21)

or, equivalently,
[[T�]](n×) = 0, 〈〈T�〉〉(n×) = −K(n×). (11.22)

The balances (11.22), in components, have the form

[[Trs]]εrkjmk = 0 〈〈Trs〉〉εrkjmk = −Krsεrkjmk.

11.3 Dissipation. Constitutive equation for the grain boundary

Dissipation inequality

We neglect the free energy of the grain boundary. The energy imbalance for the grain boundary, which
is easily derived by applying, to (4.1), a limiting process similar to that leading to (11.15), has the
simple form ∫

A

K : [[Ḣp(n×)]] dA ≥ 0,

which localizes to
D def= K : [[Ḣp(n×)]] ≥ 0; (11.23)

D represents the grain-boundary dissipation, per unit area. Noting that the internal force K enters the
balances (11.18), (11.20), and (11.22) through the term K : (n×), we use (2.9) to rewrite the dissipation
in the form

D = −
(
K(n×)

)
:
(
[[Ḣp]]P(n)

)
. (11.24)
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Constitutive equation for the grain boundary

We assume that the processes under consideration begin from a virgin state, so that, in particular,

Hp(x, 0) ≡ 0. (11.25)

Then
Ḣ

def=
∣∣∣∣[[Ḣp]](n×)

∣∣∣∣ =
∣∣∣∣[[Ḣp]]P(n)

∣∣∣∣ (11.26)

(cf. (2.11)) is a measure of:

(i) the impermeability of G to Burgers-vector flow:

(ii) the Burgers-vector production within G.

Further, H itself, which, by (11.25), is well defined, may be viewed as a measure of the accumulated
defectiveness of G. Guided by the dissipation inequality (11.24) and the foregoing discussion, we posit
a viscoplastic constitutive relation for the grain boundary of the form

K(n×) = −g(H, Ḣ)
[[Ḣp]]P(n)∣∣∣∣[[Ḣp]]P(n)

∣∣∣∣ , (11.27)

where g is a scalar modulus assumed consistent with g(H, Ḣ) > 0, Ḣ �= 0.9 This constitutive choice is
consistent with the dissipation inequality (11.24); in fact,

D = g(H, Ḣ)
∣∣∣∣[[Ḣp]]P(n)

∣∣∣∣,
so that, by (2.12), K and (hence) the dissipation vanish whenever G is permeable to Burgers-vector
flow.

11.4 Flow rule for the grain boundary

Combining the balances (11.18) with the constitutive equation (11.27), we arrive at a flow rule requiring
that, for each slip system α,

ξα1 · n = g(H, Ḣ)Sα1 :
[[Ḣp]]P(n)∣∣∣∣[[Ḣp]]P(n)

∣∣∣∣ , ξα2 · n = g(H, Ḣ)Sα2 :
[[Ḣp]]P(n)∣∣∣∣[[Ḣp]]P(n)

∣∣∣∣ . (11.28)

When g has the power-law form
g(H, Ḣ) = k0(H)Ḣδ, (11.29)

then (11.28) become

ξα1 · n = k0(H)Ḣδ
S
α
1 :

[[Ḣp]]P(n)∣∣∣∣[[Ḣp]]P(n)
∣∣∣∣ , ξα2 · n = k0(H)Ḣδ

S
α
2 :

[[Ḣp]]P(n)∣∣∣∣[[Ḣp]]P(n)
∣∣∣∣ . (11.30)

For δ small the flow rule (11.30) exhibit small rate-dependences.
For the remainder of this section we assume that

• the Schmid tensors span the space of deviatoric tensors.

The flow rule then consists of the balance (11.22)2 supplemented by the constitutive equation (11.27),

〈〈T�〉〉(n×) = g(H, Ḣ)
[[Ḣp]]P(n)∣∣∣∣[[Ḣp]]P(n)

∣∣∣∣ ; (11.31)

9One might also allow for dependences on the fields Ai defined by Ȧi =
∣∣∣∣Ḣp

i (n×)
∣∣∣∣, which measure the accumulated

Burgers vector in the individual grains at the grain boundary.
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when g is given by the power law (11.29) this flow rule has the form

〈〈T�〉〉(n×) = k0(H)Ḣδ [[Ḣp]]P(n)∣∣∣∣[[Ḣp]]P(n)
∣∣∣∣ . (11.32)

Since, by (2.11), ∣∣∣∣〈〈T�〉〉(n×)
∣∣∣∣ =

∣∣∣∣〈〈T�〉〉P(n)
∣∣∣∣ =

∣∣∣∣P(n)〈〈T〉〉
∣∣∣∣,

and since ∣∣∣∣∣
∣∣∣∣∣ [[Ḣp]]P(n)∣∣∣∣[[Ḣp]]P(n)

∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ = 1,

(11.32) has the interesting consequence∣∣∣∣P(n)〈〈T〉〉
∣∣∣∣ = k0(H)Ḣδ. (11.33)

When the behavior described by the flow rule (11.32) is rate independent as characterized by the
limit δ → 0, then the condition [[Ḣp]](n×) = 0 renders (11.32) meaningless, because then [[Ḣp]]P(n) = 0
and

[[Ḣp]]P(n)∣∣∣∣[[Ḣp]]P(n)
∣∣∣∣ (11.34)

is undefined. For that reason and because K is then absent from the dissipation inequality (11.23),
we consider the internal microforce K as indeterminate and, hence, do not require that 〈〈T�〉〉(n×) be
subject to a flow rule. On the other hand, when [[Ḣp]]P(n) �= 0, the flow rule

〈〈T�〉〉(n×) = k0(H)
[[Ḣp]]P(n)∣∣∣∣[[Ḣp]]P(n)

∣∣∣∣ (11.35)

is to be satisfied, so that, as vectors in the space of deviatoric tensors, 〈〈T�〉〉(n×) must be parallel to
and point in the same direction as (11.34). Moreover, by (11.33), for [[Ḣp]]P(n) �= 0,∣∣∣∣P(n)〈〈T〉〉

∣∣∣∣ = k0(H), (11.36)

so that k0(H) represents the grain-boundary flow stress, and (11.34) must be normal to the grain-
boundary yield surface represented by the sphere of radius k0(H) in the space of all tensors AP(n) with
A deviatoric.

Recall our assumption that the processes under consideration begin from a virgin state. Then,
assuming that T = 0 when G = 0, there is an initial time interval during which∣∣∣∣P(n)〈〈T〉〉

∣∣∣∣ < k0(0). (11.37)

During this time interval [[Ḣp]]P(n) vanishes, so that G is permeable and, in view of the paragraph
containing (11.7), G is defect-free. (Thus the set interior to the sphere of radius k0(H) bears comparison
to the elastic range in the classical theory of plasticity, as both are defect free before initial yield.)

11.5 Qualitative behavior. Comparison with experiments

To discuss the qualitative behavior predicted by the theory, we allow for rate-dependent behavior, but
with

δ ≈ 0,

and we restrict attention to monotone loading. We consider the simple defect energy Ψ(G) = 1
2c

∣∣∣∣G∣∣∣∣2,
c > 0, so that, by (5.6), T = cG and the flow rule takes the form

∣∣∣∣P(n)〈〈G〉〉
∣∣∣∣ = k1(H)Ḣδ, k1(H) =

k0(H)
c

> 0. (11.38)
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(a) Consider the initial stage of the loading. As there is a stress concentration at the grain boundary
due to the mismatch in crystal orientations, large slip gradients should develop near the grain boundary,
and this, in turn, should result in an increase in

∣∣∣∣G∣∣∣∣ near G, but not away from G, where one would
expect

∣∣∣∣G∣∣∣∣ to be of lesser magnitude. Thus we would expect
∣∣∣∣G∣∣∣∣ to exhibit a sharp peak in each grain

at G. Moreover, since δ ≈ 0, the rate-independent theory should aproximate the rate-dependent theory
and we may conclude from the paragraph containing (11.37) that there should be a nontrivial initial
interval during which Ḣ is small and (hence) during which the grain boundary is approximately both
permeable and defect free.

(b) By (11.38), as
∣∣∣∣G∣∣∣∣ increases at the grain boundary, so also should Ḣ. But, because the relation

(11.38) is exponential with exponent δ ≈ 0, Ḣ may attain large values with only minor changes in∣∣∣∣P(n)〈〈G〉〉
∣∣∣∣. With increasing loading this relatively constant behavior of

∣∣∣∣P(n)〈〈G〉〉
∣∣∣∣ would tend to

(at least in part) hold
∣∣∣∣P(n)G±

∣∣∣∣ nearly constant; in fact, if the hardening function k0(H) ultimately
decreases with H, then

∣∣∣∣P(n)G±
∣∣∣∣ should ultimately decrease. Moreover, experience with more classical

plasticity theories based on a power law with small exponent would seem to imply that the transition
from the behavior specified in (a) should be sharp.

(c) Summarizing, for a bicrystal under monotone loading from a virgin state, there should be an initial
loading interval during which a sharp peak

∣∣∣∣G∣∣∣∣ develops on the two sides of the grain boundary and
during which the grain boundary is approximately both permeable and defect free. Then, following a
sharp transition,

∣∣∣∣P(n)G±
∣∣∣∣ should not vary appreciably.

The behavior summarized in (c), which is a consequence of the grain-boundary flow rule (11.32),
seems consistent with experiments of Sun et al. (1998, 2000), who determine the Burgers tensor
in an Al bicrystal through measurements of lattice rotations. These experiments show an ultimate
strain softening at the grain boundary, behavior easily accomodated within our theory by allowing
k0(H) to ultimately decrease with H. Finite element calculations based on conventional single-crystal
plasticity reported in Sun et al. (2000) predict that the sharp peak

∣∣∣∣G∣∣∣∣ on the two sides of the grain
boundary persists at large strains, in disagreement with the experiments. What seems to be missing
from conventional theory is that the increased Burgers-vector magnitude in the boundary layer can
promote nucleation of slip, so that, effectively, the grain boundary softens. The framework here allows
for such softening. Finally, the calculations agree fairly well with the experiments at 10% strain, which
would seem consistent with the ultimate assertion in (a), granted our conjecture stated on page 19 is
correct.
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