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ERROR ESTIMATES FOR THE DISCONTINUOUS GALERKIN
METHODS FOR IMPLICIT PARABOLIC EQUATIONS

K. CHRYSAFINOS! AND NOEL. J. WALKINGTON'

Abstract. We analyze the classical discontinuous Galerkin method for “implicit” parabolic equa-
tions. Symmetric error estimates for schemes of arbitrary order are presented. The ideas we develop
allow us to relax many assumptions frequently required in previous work. For example, we allow differ-
ent, discrete spaces to be used at each time step and do not require the spatial operator to be self adjoint
or. independent of time. Our error estimates are posed in terms of projections of the exact solution
onto the discrete spaces and are valid under the minimal regularity guaranteed by the natural energy
estimate. These projections are local and enjoy optimal approximation properties when the solution is
sufficiently regular. ;

1. Introduction. We consider implicit parabolic partial differential equations of
the form,
(M (t)u): + Alt)ue = F(1), u(0) = up. (1.1)

The operators act on Hilbert spaces related through the standard pivot construction,
U< H ~ H' — U’, where each embedding is continuous and dense. Then, A(.) : U —
U’ is a linear map and F{.) € U’. We assume that M(.) : H — H is a self adjoint
positive definite operator.

Conservation laws for systems undergoing diffusion may take the form of (1.1) when the
capacity changes with time; for example, in a porous medium How the porosity could
change as the medium collapses due to oil being extracted from the reservoir. Classical
parabolic equations (i.e. equations with M the identity) also take the form of (1.1) under
a time dependent change of coordinates; common examples being diffusion on surfaces
(more generally manifolds) which are in motion, and the Lagrange (or characteristic)
Galerkin formulation of the convection diffucsion equation {9, 18].

Here we analyze the classical discontinuous Galerkin (DG) scheme for approximating
solutions of (1.1) and derive fully-discrete error estimates under minimal regularity
assumptions. The class of DG schemes we consider are classical in the sense that the
discrete solutions may be discontinuous in time but are conforining in space, i.e. are
in (a subspace of} U at each time. QOur analysis extends the ideas introduced in [5]
and addresses the following issues which have not yet been adequately considered in
the literature.

e A systematic treatment of DG approximations of implicit parabolic eqations of
the form (1.1) have not been considered in the past.
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Example: Diffusion on Manifolds As an illustrative example, consider diffusion on
a cell membrane, S(t) C R3, which is being transported in an ambient fluid with velocity
V = V(¢,z). Since the membrane is diffeomorphic to a sphere, a numerical scheme may
triangulate the sphere 2, and at each time ¢ construct a mapping z(¢,.) : 2 — S C R3.
If the sphere is locally parameterized by coordinates X € U C R? the diffusion equation
takes the form

ug — (1/V T divx (\/j(FTF)_Iqu) = f,

where F is the 3 x 2 matiix with components Fi, = 8z; /80X, and J = det(FTF)
is the determinant of the first fundamental form. The determinant J satisfies J; =
2J (I-n®n)-(V;V) = 2J 3 .:(di; — nin;)(0Vi/8z;), where n = n(t, X) is the normal
to 8(.). It follows that the diffusion equation is of the form (1.1) with M{()u = v Ju

nd
)y Al)u=—(I—n®n)- (V.VuvJ — divy (\/j(FTF)‘lvxu) .

As 8(.) evolves the matrix FT F will become ill conditioned and the sphere 2 will need
to be retriangulated so different discrete subspaces will be required on different intervals
(t"1,¢7] of [0,T).

1.1. Related Results. The discontinuous Galerkin method was first introduced
to model and simulate neutron transport by Lasaint and Raviart in [16]. There is an
abundant literature concerning applications of the DG scheme in hyperbolic problems,
see e.g. [4, 15, 26] and references within. The DG method for ordinary differential
equations was considered by Delfour, Hager and Trochu in [6]. They showed that the
DG scheme was super convergent at the partition points (order 2k + 2 for polynomials
of degree k).

In the context of parabolic equations DG schemes were first analyzed for linear parabolic
problems by Jamet in [14] where O(7*) results were proved and then by Eriksson,
Johnson and Thomée [12] where O(7%~1) estimates are established at the partition
points for smooth smooth solutions. An excellent exposition of their results and, more
generally, the DG method for parabolic equations, can be found in Thomée’s book [25].
In [25} nodal and interior estimates are presented in various norms. One may also consult
[19] for the analysis of a related formulation based on the backward Euler scheme. The
relation between the DG scheme and adaptive techniques was studied in [10] and [11].
Finally, some results concerning the analysis of parabolic integro-differential equations
by discontinuous Galerkin method are presented in [17] (see also references therein).

In [9] DuPont and Liu introduce the concept of “symmetric error estimates” for parabolic
problems. They-define such an error estimate to be one of the form

~ || <C inf |lu—
llee —ualll < € inf, fflu~wnlll,

where u and u, are the exact and approximate solutions respectively, |||.||| is an ap-
propriate norm; and U4, is the discrete subspace in which approximation solutions are
sought. While estimates of this form are standard for elliptic problems, this is not the
case for evolution problems. For example, error estimates for evolution problems ap-
proximated by the implicit Euler scheme frequently involve terms of the form [fuz|| L2(q)-
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‘error estimates which take the form of the sum of (i) the “local truncation error”, (ii)
projection errors between different subspaces, and (iii) errors in the initial data.

One technical distinction between the error estimate developed for the classical parabolic
problem in [5, Theorem 3.1] and Theorem 5.1 of Section 5 is that the latter assumes
the existence of an inverse hypothesis of the form [|ux|ly() < Cinv(h)||urllz) for ua in
the discrete subspaces of U. In Theorem 5.1 the product 7Cjny(h) enters into the error
estimate where 7 is the time step size. For classical second order parabolic problems
this term will be of order O(1) if 7 ~ h and quasi-uniform finite element meshes with
no small angles are used.

1.3. Notation. We deal with spaces H(t) = (H, || a() and U(2) = (U, ] llvw)
whose norms depend upon time. The pivot spaces H(t) have inner product (u,v) () =
(M (t)u, v}y, and we often denote the norms on the these spaces by |.|ge) = |- laq:
Motivated by various examples, we assume that ||u||;‘}(t) = |u|§,(t) + |u|§{(t) where |y
is a semi norm on U(t) (the principle part). In particular U(t) — H(t) with embed-
ding constant independent of time. Each norm and inner product will be explicitly
subscripted; while this is rather cumbersome it helps to minimize confusion due the
plethora of spaces and projections. Notation of the form L2[0,T;U(.)}, H'[0, T, U'(.)]
etc. is used to indicate the temporal regularity of functions with values in U(.}, U'(.)
etc.

Approximations of {1.1) will be constructed on a partition 0 =t <! <... <tV =T
of [0,T]. On each interval of the form (£"*,"] a subspace U of U is specified, and
the approximate solutions will lie in the space

Up ={up € L2{0, T U()} | uh|(tn-1,tn] € ’Pk(tn_l,tn; Umy.

Here Pr(t*1,i"; UL) is the space of polynomials of degree k or less having values in
Uj. Notice that, by convention, we have chosen functions in Uy to be left continuous
with right limits. We will write u™ for ug(t") = up(t®), and let v denote u(t}). This
notation will is also used with functions like the error e = u — u,. We always assume
the exact solution, u, is in C[0,T; H(.)] so that the jump in the error at ¢, denoted by
[e™], is equal to [u™] = u} —u™.

2. Implicit Parabolic Equations. In this section we introduce structural as-
sumptions required for our analysis of the implicit parabolic problem

(M(t)u): + Alt)u = F(t), 1(0) = ug. (2.1)

To characterize the time dependence of A{.) we introduce equivalent norms on U of
the form ||u||2U(t) = luﬁ,(t) + Iul?J(t) where |.|y() is a seminorm on U and |.|g,) is the
norm on H with Riesz map (the symmetric positive operator) M {t). We denote by
a{.;u,v) the natural bilinear forms associated with A(.} and will assume that the time
dependent spaces U(t), H(t) satisfy U(t) — H(t) — U'(t), where each embedding is
dense and continuous.



2.2. Properties of H(t). The smoothness assumption 2.1 guarantees that the
norms on the pivot spaces H{t) vary continuously with ¢. This following lemma quan-
tifies this and will be used ubiquitously below.

LEMMA 2.2. Letw, 2 € H and s < t, then ¢Cels-8) < fzﬁf(t)/lz[?q(s) < eCult=3) gnd

[(w, 2) gy — (W, 2] < (= )CUECNwlgee |2l €, &2 € [s,8]

Proof. The differentiability of (.,.)z () implies

t t
(w,2)gy — (w0, 2) () = —d—('w,z)H(s) = | p{§,w,z2).
) L] d£ 3

Putting w = z gives

4 i 1
ety = el + 6,2 2) ¢ < el + [ el e
3

Gronwall’s inequality then shows |2|%,, < |z|§{(3)ecﬂ(t*"). Since this argument is sym-
metric in s and ¢ the first inequality follows.

The second inequality now follows from the intermediate value theorem:
t
[(w, 2}y — (W, 2} < C"f [l 2lage & = Cult — s)wlg g2l g
. g

for some fe [s,#]. Upon introducing a factor of eCutt=9) we may replace each instance
of £ on the right by any £ € [s,£]. O

3. Discrete Spaces. Discrete subspaces U}, of L2[0, T; U(.)] are constructed from
a partition 0 = t° < ¢! <... <tV =T and a sequence of subspaces {UP}Y_; of U as

Uy, = {un € L2[0,T; Ui | uhl(tn—lltn] € 'Pk(tnﬁ'l,t"'; Uuhl.

Projections of H onto the subspaces U}* with respect to the norms H(t) appear in our
analysis; the following notation is used to denote these.

NOTATION 1. P,(t} is the projection Py(t) : H(t) — UL characterized by Pp(t)u € ug,
(Pn(t)u, va)H() = (4 V) H() for all vy, € U

3.1. Discrete Characteristic Functions. Estimates for the solution u(t) of an
evolution equation are frequently obtained by multiplying the equation by X[o,2)%. This
choice of test functions is not available in the discrete context unless the terminal time
is one of the partition points. To estimate the solution at times ¢ € [t*~1,t") we first
recall the discrete discrete characteristic functions introduced in [5, Section 2.3].

The discrete characteristic functions is invariant under translation so it is convenient to
work on the interval [0, 7) with 7 = " — "1, We begin by considering polynomials p €
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The proof is essentially the same as in [5, Lemma 2.10]; the only difference concerns the
scaling argument required to show that Cj, can be chosen to be independent of time.
To do this Lemma 2.2 is used to estimate ||u — @l z2j0,7,5(y) bY % — @l 20,7, H(r/2)) tO
remove the implicit time dependence through H(z).

To bound @ in L2[0,7;U(.)] we will compare it with the algebraic projection @ and
invoke an inverse hypothesis.

LeMMA 3.3. Let u € Pr(0,7,U}}) and @ be the projections defined in (3.2). If @ is the
algebraic projection characterized by (8.1), then

& — @ll Lajo,marcy < Ok, p)Tllull 2o, 7m0y

where C(p, k) is a constant depending on k and p through C,, and Ck, the constant in
Lemma 8.2.

Proof. In this proof C(k, ) denotes a constant depending only on Cy and C, which
may change from step to step. Recall that & € Pi(0, 7; Uy) satisfies #(0) = u(0) = @(0),

T t
fn ('EL, ’lU)H(Q) = A (u, w)H(O)! we Pk_l(o, T3 Uh),

and "ﬁ”Lz{O,‘T,H(O)] < Ck Hul!Lzlo,f;H(g)]. Ifwe Pk_l[O,T; Uh] then

j:(ﬁ—ﬁ,w)ﬁ(.) = [Ot(u,w)H(_) - _/Or(ﬂ’w)ﬂ(-)’
= fo ((u,w)H(.)—(u,w)H(g)) _ fof ((ﬁ,w)ﬂ(,)—(ﬂ,w)H(o))_

Since (& —@)}(0) = 0 it follows that (& —@)(s) = sa(s) where & € Pr_1(0,7;Uy). Putting
w = @ and using Lemma 2.2 to estimate the right hand side gives

T T
[} sty ds < [ Otk ) (o) + 160w o) o
An application of the Cauchy Schwarz inequality then shows
T 2 i 2 2 T2
[ stats)yds < Otk [ s(lutedb + 160 rey) ds < ki [ fulhy
Using Lemma 2.2 to compare |.|z(,) with the fixed norm |.|g ) we obtain
’ T 9 T 2 T 9
| sty ds < O [ iy < O [ uligy

Using the equivalence of norms on Pi_1(0,7) and Lemma 2.2 once again to compare
||z oy with |.|a() we obtain

T T T
fo o~ a3y, = fo $lul%yy ds < Clk, w)7° fo fulfry-
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Proof. Galerkin orthogonality shows that the error e = u — u, satisfies
tn . : :
(Bn, U“)H(gn) - ln—l (eh, ‘Uhf,)H(t) — (e”_ ,UZ~ )H(t"_l) =10. (43)
Using the definition of € = % — up we have

tn
(én, ’Un)H(tn) - s (eh, 'Uht)H(t) - (én_l, ’ui_l )H(tn—l)

= (P~ Paae )

Setting vp(t) = " to be independent of time gives

2 _ ran—1 5 -1 -1 1y 5
Ie"iH(tn) = (en :en)H(tﬂ—l) + (Pn(tn )(I - B —'l(tn ))u(tn )’en)H(tn—l),

so that
1€ remy < (1% M) + IPaE )T = Paca ()l izn-sy ) |6 sren-ry
Lemma 2.2 shows that [€*|pn-1) < €™ |&"| y4ny where 1, = £® — 771, which gives

16" areny < €97 (16" iggneny + 1Palt™ )T = Pt ()™ ) en-y )

The statement of the theorem now follows from the discrete Gronwall inequality. O
The next definition characterizes the local truncation error in the present context.
DEFINITION 4.2. (1} The projection IP%¢ : C[t"~1, ™ H(.)] — Pu(t™ 1, % UR) satisfies
(Piocu)® = P, (t")u(t™), end
tﬂ
(u—ll”l,fcu,vh)g(_) =0, Yo, € Pk_l(tn—l,tn;U#).

tﬂ-—-l

Here we have used the convention (P!o°u)" = (PL%u)(t").
(2) The projection ¢ : C[0, T; H(.)] — Uy, satisfies

. IF’l,fcu € uh and (Plifcu)l(tn-—l’tn] = Pifc(ulltn—l,tn]).

(3) P, : {u € C0,T;H(.)] | (Mu) € H,T;U'()]} — Uy is the discontinuous
Galerkin solution of (4.1) with f = u,. '

REMARK 1. Notice that Pi%u is the solution of the DG approzimation of (M(.)u) = f
on ("1, 1"] with u(t™) specified as the initial date. It follows that supm—i<scqn |1 —
Pieu) gy (or related norms) measure the local truncation error of the scheme.

The following theorem compares the (global) solution, Pru, of the DG scheme with the
local solutions, Piy.
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5.1. DG Scheme. To approximate the solution of the weak formulation (2.2) we
introduce a partition 0 = t0 < t! < ... <t = T of [0, 7] and on each partition construct
a closed subspace U C U. The discontinuous Galerkin approximates the solution of
(2.2) on (t"~1,t"] by up € Pr(t"1,t% UR) satisfying

(W™ V") meny + f

A

tn
) ( = (uh, vne) gy +al ’Uh,'vh)) (5.1)

tn
— @0 ey = tn—g(F,’Uh) Vo € Pp(t™, 8% UR).

The stability and error estimates are established using very similar arguments; for this
reason we will just focus on the error estimate. The Galerkin orthogonality condition
shows that the error e = u — uy, satisfies

5 in
(€™ v mgny + ];
for all vy, € Pr{t" 1, ™ UP). We decompose the error as e = ep+ep, = (u—Pru)+(Pru—

up), where P, : {u € C[0,T; H(.)] | M(.)u € HY[0,T;U'(.)]} — Uy is the projection
introduced in Definition 4.2. The orthogonality condition (5.2) becomes

(ehs V™) m(eny + [

-1

( — (e, vn)m@) + ol e ’vh)) (e Lo Dgen-1y =0,  (5.2)

tﬂ-

( ~ (en vne) ey + el eha‘Uh)) — (L v Vaen-ny
tn

= —(e;‘, ’l)n)H(tn) + .[tn_l (ep, ’Uht)H(.) + (e;,"‘l, ’U’_,l_'l)H(tnA)

tn
- f ol ey ).
tn—l

By construction, Phu is the discontinuous Galerkin approximation of the (4.1}, so e,
satisfies the orthogonality condition (4.3). It follows that the first three terms of right
hand side vanish so that

A tn

(ehs V™) gemyt A I(_(eh’vht)H(.)"‘a(-;eh:Uh))‘(ezalavi_l)f!(t"—f) = —f  oliepyvn)-
n— n—

(5.3)

A preliminary estimate satisfied by the error at the partition points is obtained by
setting v = ep, and using the coercivity of a(.; ., .)
1 ni2 & 2 1 n—1 n—12
Elehlfi(t") + Ca - EehiU(.) + §'eh+ — €, iH(tn—l) (5.4)
tﬂ

1 .
< sl Hagnny + ftn_l (1(s ensen) — alsep,en) + Calenldyy)

Using Assumptions 2 on the continuity of a(.;.,.) and g{.;.,.) we obtain

.. tﬂ
leRlren) + Ca /t o lealfry + len ™" ~ ept -1y < lep ™ a1y (5.5)
i, \ , .
+£n-1 ((}- + €a/ca) (Ca|eP!U(,) + CalepEH(_)) + (2C, + 2C, + Ca)|ehiH(_)) .
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Recalling that (ent, ep)pr() = (1/2)(d/dt)|eh|§1,(_) — (1/2)4(.; en, ep) we obtain
1 1. . - 1 .
§[eh(t)ﬁf(t) + glex f— e ey — Slen arn-ny
i 1 "
= / 5#(1 €h, eh) - f (a('; €py éh) + a‘('; Ehs éh) + ru’(a €p, éh))
. gn—1 tn—1
Estimating the right hand using Lemma 3.2 and Corollary 3.4, as in the derivation of

equation (5.5), we obtain

len(®)areny + len " — ey Ern1y < lep rgm-1y
tn
0w [ (0 cofealcalesy + Calesliy)  (56)

n—1
+ ¢aC(Cus cus cala) lealfy + CC-lenly )-

Here C(...) is a constant depending upon C{Cq,Ca, Cy, \/c_aTC’,;m(h),ca/ca)). The re-
mainder of the proof parallels the the proof of [5, Theorem 3.1]. Specifically we construct
the convex combination of (1 — A) equation (5.5) and X of equation (5.6) and choose
the coefficient, A, so that the term involving ]eh(t)lg,(') on the right hand side of (5.6)

is dominated by the corresponding term on the left of (5.5). Setting
_ 1
1+ 2C(C’u,cu, ca/co,) )

AC(Cy, u, Cafes) = (1/2)(1 - X), or A

leads to an estimate of the form:
tﬂ
, c ~ ~
(1= NleRlrry + Nenlhey + 1= NG [ leallry +1e8™ = e rrsf)

tn
< leh i n-1y + C(---))\j;ﬂ_l (ca“epll%'(.) + Calepliygy + Iehl,%;(.))
Bound the first and last terms on the right by

5 ey < (1= NI gy +2_sup  len(@ligy
tn—2<sStn—1

and

tﬂ
f ‘ehﬁi() < ™ sup Eeh(s)lz(s)’ ="~ tn—l,
» Jim—1 tn-legtn

respectively, and select the time ¢ on the left so that len(2)[r(s) = SUPgm-1c5<en l€n(8)|r(s)
to get

(1= N)lerlbiemy + A1 =C(.)7™)  sup  |en(t3iy
. t""1<35t"

tﬂ
C yp— -
=N [ lealley + 1™ = e sy

<(1- A)ieg‘llﬁf(tn_lﬁz\tn sup lea(s) o)

~28<t
tn

+OCIA [ (ealleplifry + Calepliry)-
-1
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