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Energies for incoherent films:
an analytical approach

Paolo Cermelli*  Morton E. Gurtin { Giovanni Leoni ¥

Abstract

This work discusses the role of interfacial energy for problems involving an epitaxial
layer on a rigid substrate. Using the calculus of variations resulting microstructures
are determined for a large class of interfacial energies; the qualitative features of these
microstructures demonstrate a strong dependence on the smoothness and convexity of
the energy. This work is meant to provide insight in deciding appropriate energies for
a large class of incoherent interfaces.

1 Introduction

At an interface between crystalline solids two opposing mechanisms compete to de-
termine the resulting structure (cf. e.g. the review article by Matthews [1]). The
minimum energy configuration of the bulk material occurs at the stress-free state for
each solid. But when the lattice parameters of the two materials differ, complete relax-
ation to bulk equilibrium would result in a crystalline structure that is discontinuous at
the interface. On the other hand, the interface reaches its minimum energy configura-
tion when there is an exact matching of the atoms of the two solids across the interface.
This state of perfect coherency is tenable provided the stresses due to the deviation
from equilibrium of the bulk material are not too strong. But there is a threshold at
which these stresses are too severe to support a coherent interface, and the structure
of the interface undergoes dramatic changes: dislocations appear that relax the bulk
stresses and an extreme situation may be reached in which all regularity of the atomic
bonding at the interface is lost.

A proper choice of interfacial energy is crucial in describing the competition dis-
cussed above, but a chief difficulty in deciding on such an energy is the extreme range
of behaviors it must embody, as it must characterize: (i) perfect matching of the atoms
at the interface; (ii) dislocations distributed in a somewhat regular manner; and (iii)
situations in which the abutting lattices are completely mismatched.

Specific interfacial energies have been proposed, some based on microscopic calcu-
lations (van der Merwe [2, 3, 4], du Plessis & van der Merwe [5], Fletcher & Adamson
[6], Fletcher [7]}, others on phenomenological considerations (Leo & Hu [8]), and it
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four classes of energy functions: (i) smooth and convex; (ii) nonsmooth but convex;
(iii) nonsmooth and nonconvex; (iv) nonsmooth and concave.

The central effects - namely fine or smooth incoherency and the existence of a
threshold for incoherency - depend on whether or not the energy is convex and whether
or not the energy is smooth. Nonconvex energies yield finely incoherent interfaces;
energies whose convex envelope is nonsmooth exhibit a threshold effect.

Our specific results may be described as follows. Consider first a smooth and convex
energy f{v) (Figure 1), for instance quadratic in 4. Then our analysis shows that the
interface is always smoothly incoherent, and there is no threshold for incoherency.
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Figure 1. Smooth convex energy f.

For convex energies that are not smooth at v = 0 (Figure 2) the interface remains
coherent for small thicknesses, but the equilibrium state is one of smooth incoherency
when the threshold thickness is exceeded. Such energies might be appropriate to sys-
tems with large misfit.
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Figure 2. Nonsmooth convex energy f.

A more interesting type of behavior, for an interfacial energy that is not smooth at
-+ = 0 (Figure 3), occurs when the energy is concave for small values of v but ultimately
convex for large values. Such an energy was proposed by Leo & Hu [8] and results in an
interface that, although coherent for small thicknesses, becomes finely incoherent above
a threshold, with the infimum of the energy realized by sequences corresponding to fine
mixtures of coherent and incoherent patches. A drawback of this choice of energy is
its special form: it is necessary to assign in advance, as a constitutive parameter, the
incoherency strain that determines the mixture.



The mathematical techniques we use in this paper are based on classical results of
the calculus of variations, and the general approach follows closely ideas developed by
Leo & Hu in [8] for the interfacial er 2rgy function displayed in Figure 4. We essentially
compute the minima of the total energy functional (bulk and interfacial energies), and
then analyze corresponding minimizing sequences.

We are currently working to extend the results to non-quadratic bulk energies and
curved interfaces. .

2 Statement of the problem

Our model] describes the equilibrium of an epitaxial layer on a rigid substrate. Assum-
ing that the layer has height h, but is infinite in the other directions, we study a model
problem for a plane section of the film, within the context of plane elasticity.

We assume that the layer occupies the infinite strip R x [0, 2] C R% We let (z,y)
denote cartesian coordinates in R? with z € R and y € [0, i), and we write i = (1,0)
and j = (0,1). We limit our discussion to plane displacements u(z, y} of the layer and
to situations in which u(z,y) is periodic in . With this in mind, we divide the strip
into cells of unit length, write = [0, 1] x [0, 2] for a typical cell, and restrict attention
to behavior in . Periodicity then requires that u(l,y) — u(0,y) be constant. We
assume that the layer cannot separate from the substrate; thus, since y = 0 defines the
interface between the layer and the substrate,

u(z,0)-j=0 =z €[0,1], (1)
and the periodicity condition takes the stronger form
u(l,y) =u(0,y) + (const.)i  y € [0,A]. (2}
Let
u(z,y) = u(z,y) - §
we define the incoherency strain y(z) by
7(2) = uz(2,0),
and refer to the interface as coherent if
y(@)=0 2€(0,1],

and incoherent otherwise.
We work within the theory of small deformations, so that

E=1(Vu4+VuT)

represents the strain in the layer. Note that ¥ = i E{z,0)i. The displacement is
measured from a configuration of the layer in which the lattices of the film and the
layer are perfectly matched; this configuration, in which E = 0, will not correspond
to a minimum energy state of the film, which we assume to occur at a strain Eg. We
assume that this mismatch strain has the specific form

Eo = €0i® i,
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Moreover, for ¢ > 1,
W1+1/q’q(Q,R2) C CD’I_I‘/q(ﬁ,R2),

while for ¢ = 1, and since Q is a rectangle (see [13], Lemma £.8),}
w2(Q,RY) c C°(%, RY).

By the trace theorem for polygons (see e.g [14], Theorems 1.5.2.1 and 1.5.2.8) and
Sobolev’s embeddings, we can define the trace ru of any u € W'+/99(Q R?) as a
continuous function on 92 such that

Tulrje Wi, R?%), j=1,...,4,

where I'; are the sides of 2. In what follows, when the meaning is clear, we will denote
7u simply by u.
Letting W denote the space

W = {u e Wt99(Q, R?) : usatisfies (1) and (2)},

we consider the

Minimization problem (M). Find a displacement field u € W such that

J(u) < J(0) for all aew

If u € W is a solution of (M), then so is u+ ci, for any scalar constant ¢c. We may
“therefore assume, without loss of generality, that u(0, 0) = 0 for all u € W. Thus, for
each fixed o € R, consider the spaces

Wo={ueW : u(1,0) = a, u(0,0) = 0},
We = {u e WH([0,1]) : u(l) = a, »(0) = 0}.

Then W, and W, are convex, and each u € W, satisfies

u(l,y) =u(0,y)+ei, ye€[0,h],

u(z,0)-j=0, z €[0,1]. (6)

Thus, since each cell has unit length, the subscript o represents the average value of
the incoherency strain v = u, corresponding to any u € W,,.

Our first step in attacking problem {M) is to determine the infimum of the functional
J. We accomplish this by first computing

5,70

and then minimizing over all o € R. To facilitate this, we introduce the convez envelope

f** of f defined by
[ =sup{g<f:g convex}.

IFor arbitrary Lipschitz domain we only have the weaker inclusion W21 (Q,R%) C C°'(Q,RH)NL>(Q,R?).



Granted incoherency, if f**(oumin) = f(@min), then the problem (M) has a solution
u and th-re is a well-defined incoherency strain 7 defined over the interface; in this
case we wiu refer to the interface as being smoothly incoherent. On the other hand, for
h > ke and f**(omin) < f(omin) (so that o, is not a point of interfacial stability),
(M) has no solution; that is, there is no function u € W that minimizes J. In this case
we will refer to the interface as finely incoherent. For such situations, even though (M)
has no solution, one can derive physically meaningful results by studying the properties
of minimizing sequences; that is, sequences {u,} with the property that u, € W and

J(un) = inf J(u),
or equivalently
' J(uyn) = g{omin).

For any such sequence, let y,(z) = _E%:,_,ol, so that

1
O’n=/ To(z) dz
o

is the average incoherency strain associated with u,,.
We may prove the following

Theorem on Minimizing Sequences. Let {u,} be a minimizing sequence for the
problem (M) with o, the average incoherency strain associated with u,. Then

Qp = Opin,
: _ 2o Rl (13)
w, — Qe in W*(,R*),
as n — 00, where
Umin (2, ) := Omin i+ v(€0 — Cimin) (14)
, (1-v)

Thus the minimizing sequences always converge in bulk to a smooth deformation.

At the interface, although minimizing sequences may not have a classical limit when
(M) has no solution, the generalized limit”, however it be visualized, corresponds to a
well defined average incoherency strain, namely a,,;,, the incoherency strain associated
with the infimum of J.

4 Proofs
Proof of the Theorem on the Infimum of J. Fix u € W and let « := u(1,0). Then

J(u) = F(u) 4+ I{u(z,0)) > inf F(v)+ inf I(v).
vEWa veEW,

Consider the auxiliary problem:

(M,): minimize F(u) on W,.



and in turn

s )
ulg‘ J(u) > glamin).

Next, we prove the reverse inequality. By Corollary 2.2.9 of Dacorogna [16],

™ (@min) = inf{Af(ya) + (1= A)f(m) : A€[0,1], Ya, s €R

18)
A'J’a + (l - A)'Yb = amin}; (
thus, for any fixed k¥ € N, we can find A € [0,1] and v, ., 75,k € R, with
Otmin = Mk Yok + (1 — Ap) 75,00 (19)
such that
* K 1
" amin) € Aef(Yak) + (1 = A) f(e.6) € F(0min) + % (20)

Let I, C [0,1] be any measurable set with |[, x| = Ax and define I 5 := [0, 1]\/, 4-
Then |Ib,k| = (1— Ag). Let

Yo,k T € Ia,ky
T) =
9x(2) { Yok T € Ik,

and let .
up(z) = j gr(t) dt — amin z € [0,1].
0

Since ug{1) = ux(0) = 0, we can extend u; by periodicity to all of R. For n € N, let

1
Un k(T) = Qmin® + p ur{nez).

Then, for a.e. z € [0, 1],

I
iy = {Ter B9 €Tk
Yo,k neT € i,

and, as n — 00, we may use Theorem 2.1.5 of Dacorogna [16] to conclude that
U,k = Xminl in Wl,oo([o’ 1];R) (21)

Fix € > 0 and let Pe € C([0, 2}; R) be a cut—off function, with 0 < %¥.(y) < 1,
such that ¥.(y) =1 on [2¢, A}, ¥-(y) = 0 on [0,¢], and

[9:()l < Cle  forall y € [0,h).
Let

v(0min — €o)

-7 vi- (22)

Wy e,k (33, y) = (¢e(y) Opmin? + (1 - ¢e(y))un,k($))i -
Then
[Un,e (2, ) — 0z, Y)| = (1= Pe()|Un k() — @min2| < |[unk — Cmintl[Loo(o)R)

11



{y = 0} of Q is by construction u(z,0) = &minz, which must, in turn, minimize the
interfacial energy functional I(u). Thus

1
£ (amin) = T(u) = [0 F(Gmin) d = F(ctmin).

Conversely, if this relation holds, the minimum exists and is given by .

Proof of the Theorem on Minimizing Sequences. Notice first that, by (7) and (8),
gbl‘k(a’n) < F(un) and gt’nt(a’n) < I(un)-
Thus, g{a,) < J(u,). But J(u,) = g(amin) < g(an) and g is strictly convex. Thus

Qn = Qmin and we have (13);.
Let E be the strain associated to Wi,,in; then, by (17), we have

F(u,) — Fimin) = fnfw(En - E) dz dy + /S;’i‘ (E, - E) dz dy,

and applying the divergence theorem and the periodicity boundary conditions, the last
integral may be written as

h ~
fO {i * T(ly y)i}(an - a’mt'n) dy:

which vanishes as n — oo by (13);. Thus, by the positive-definiteness of the quadratic
form w(E), it follows that E, — E in L2(Q, RZ*2)), and Korn’s inequality (cf. the

appendix) yields the desired result.
O

5 On the structure of minimizing sequences

5.1 Oscillating sequences

The minimizing sequence (22} constructed in the proof of the Theorem on the Infimum
of J becomes particularly simple if we assume that there exist A € [0, 1], and 7,, 7 € R
such that

f**(amin) = ’\f('ra) + (1 - A)f(’rb)r Cmin = A'Ya + (1 — /\)'ﬂ; (23)

Indeed, we may then replace gi, ux and u, . respectively by

] % zel, . _ — 1
g{z) = { v z€l, with [I,| = A and || = (1 - }),
® 1
u(a:) = / g(t) dt — opin T, un(:n) = Opin® + E u(m:), (24)
0

13



Let {u,} be a minimizing sequence for the problem (M) with «, the average inco-
herency strain associated with u,. We have already proved that

1
Gpn — Qmin, [ f('?’n) dz — f**(a’min),
4]

Wy = Bmin in WH(Q,RY),

(27)

where Qg is defined in (14). By the growth condition (26) and (27)2, we have, in
particular, that

/01 [valdz < M

for all n € N. In turn .
Jun(2)] < ] braldz < M.
0

Hence, again by (26), (27)2, and Dunford—Pettis criterion, there exists a subsequence
Un, which converges weakly to some function v in the space W11([0,1],R). On the
other hand, since by the continuity of the trace operator u, converges to aminz in
L%([0,1],R), then, necessarily, v(2) = ami» and thus the entire sequence u, converges
weakly to amin® in WH1([0,1],R). There are now two cases.

If f**(otmin) = f(Qmin) then @y, is a classical solution of the problem (M). Thus
we may focus on the complementary situation

f** (amin) < f(amin)- (28)

Let
Apin = {7 eR: f**(7) = f**(a’min) + (f**)ii-(amin)('f - amin)}-

The set A, is clearly closed, convex and non empty, since omin € Amin. Moreover it
is also bounded, since by (26)

lim ———f ) = 0o
Yoo 7

Thus Amin = [Ya, 7s), Where 0 < ¥, < ttmin < 7. If ¥4 < 78, then

Sy =) and  flw) = f"(n). (29)

Indeed, suppose, for example, that f(v;) > f**(v). By continuity we can find p > 0
and 0 < g9 < 75 — ¥, such that

F@)> () +p  forall y €[y, — 0,7 + €0l

Consider the function

fi) =1 =)+ LD (),

where we have chosen 0 < £ < g s0 small that

) < Al < f(»y) - %p for all y € (v — &, + €).

15



In conclusion we have shown that for n sufficiently large

[{z €[0,1]: dist(yn, {72} U{m}) 2 e}l <¢,

that is (31). ,

Since v, converges weakly to ami, in L'([0,1], R}, we can apply the Fundamental
Theorem on Young measure (see e.g. [20]) to obtain the existence of a weak* measurable
map v : [0, 1] = M{R) such that the following hold

(1) ve > 0, ||l pam) = fg dve = 1 for ae. z €[0,1];

(ii) supp vy C {va} U {¥s} for a.e. z €[0,1].
Thus for a.e. z € [0,1]

ve = Az)é,, + (1 — A(z))d,,, where 0< A(z) < 1.
On the other hand, since

Ginin = (v id) = [ ydely) = Mo+ (1= X))
it follows that A(x) = A. Hence

Ve = AJ% + (1~ A)&n

and the proof is complete.

5.3 Concentrating sequences

Condition (23) may not be satisfied in the important case in which f is strictly concave.
We have
f)

**(y) = m, ithm= lim -,
() =my withm=_lim =

This may be proved using the inequalities f**(Ay) < Af**(v)} < Af(y) £ f(Av): taking
A =9/v < 1 we obtain that

@ 0 15
Y Y it
and taking the limit as v+ — 400 we have the above representation for the convex

envelope of f.
In this case oiuin can be computed explicitly. Indeed

_ m(l - v?)
amm—max{o,eo— o },
so that (23) fails when _
m(1—v?)
A>T )
> Eeo !

because @i, > 0.

17



where Yy is the characteristic functions of the set [0, %], and

h h 1 h h+1
Tpk € {——— — + } C [— —+—] .

’ T )
ng Mg kng nE Tk

The claim is thus proved. o

It is clear that one can also take (z,v) = 8(z)¢(y), where 8 € Co([0, 1];R) and ¢
is positively homogeneous of degree one. Thus we can use the varifold to express the
infimum of the interfacial energy in a suggestive form. Let 8 € Cy([0,1];R): then

[ o ds = [ e —mn) da + [ o(a)mne e

The first integral on the right hand side goes to zero as k — o0, since

[ ota) s ) de| < e (L0228 1) o,

7 mink
Now, choosing ¢(z,v) = (z) my we obtain

! 1
/ () f (1) dz — mam;n/ fdz = / 97" dA.
0 o [0,1]x$

6 Results for specific forms of the interfacial en-
ergy

We now turn to the analysis of various forms of the interfacial energy density f. We
will focus on the problem of the dependence of @y, on i, where, we recall, ayy,;p is the
average incoherency strain corresponding to the infimum of J, which is defined in (9).
As we have shown in the Existence Theorem, the non-smoothness of f** at zero implies
the existence of a critical value for & below which the interface is coherent. Analogously,
non-smoothness at other points implies that there are intervals of A within which the
interface remains smoothly incoherent with a fixed incoherency strain. Finally, when
f** is smooth at oyin, the interface is either finely or smoothly incoherent according
to the convexity at .

6.1 f convex and smooth (Figure 1)

Since in this case f(v) = f**(7), the solution exists in W and is given by Gip:y in (14).
The trace of @i, on the lower boundary of Q is u{z) = aminz, With @, the solution
of (9).

Thus the interface is always smoothly incoherent, since the film is uniformly strained
with respect to the substrate, and no fine structure appears.

The average strain at the interface ouyiy, which measures incoherency, is related to
the variation of the thickness of the layer by the relation

1-v2 f’(a'mt'n)
E €0 — Omin

h=

(34)

which shows that when A — 0, then oy,;» — 0, and when h — 400, then apin — €.
Note that, by (12), the critical thickness h. vanishes, and the interface can never be
coherent.
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In other words, when the mismatch strain is large, the interface loses coherency at
the first critical thickness by nucleating finer and finer incoherent patches, but when
the second critical thickness is reached, then this fine structure is lost and the larer
becomes uniformly strained with respect to the substrate.

6.4 f nonconvex and nonsmooth (Figure 4)

Here there are values 0 < 71 < 2 < ... of the incoherency strain such that f**(y) =
f(v) at and only at v = £v;. f**(v) is therefore piecewise linear with slope changes
when v = £7;:
' mi|y] Iyl <,
() = { malyl +const. v < |y| < 7o,

with my < mg. To fix ideas, assume that the mismatch strain is such that eg € (1, 72):
then (12) shows that when the thickness is below the first critical value given by

1—-1)2 mg

h<h.:= o
0

the interface remains coherent.
To proceed further, define two more critical values for & by

2

1—-v my 2

1—-v ma

h! = ,
E e-m

¢ E e-7'

",
Bl =

which have the following properties; for A such that
he <h < K,

the interface is finely incoherent: (23) holds, and the energy is minimized by sequences

as in {24), oscillating between v, = 0 and v, = 1 (with total volume fraction oymin/71),

and which represent mixtures of coherent and incoherent patches. The fine structure

of the interface is summarized by a Young measure, as in the preceding section.
When the thickness reaches the second critical value, i.e., for

h, < h < R,

the interface structure changes drastically and it becomes smoothly incoherent. Indeed,
for all values of the thickness satisfying the above inequality, the relative incoherency
strain remains constant and fixed at the value v = ;.

The layer remains ‘glued’ to the substrate with fixed incoherency strain until the
third critical threshold is reached. Beyond this, i.e., for a thickness such that

h> R,

oscillations appear again, and the interface becomes finely incoherent. In particular,
since {23) holds, the minimizing sequences correspond to fine mixtures of different
incoherent patches, corresponding to incoherency strains 4, = 4; and 4, = 9, and the
fine structure of the interface is again determined by a Young measure.
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The interface is always finely incoherent, since the critical thickness vanishes, and
relaxes completely to the bulk equilibrium strain, so that the average incoherency
strain coincides with the mismatcn strain.

If f is concave, the infimum of the energy is not attained, and the structure of
the minimizing sequences is as above, with incoherency strain concentrating on sets of
measure zero. The fine properties of the interface are described again by a varifold as
in Section 6.5.

To construct the minimizing sequences (22) in the proof of the Theorem on the
Infimum of J, let £, ” co be such that

ftx)

lim ——= =0.
koo I

Then we may choose, for example,

ety € [0, ;1;]
gr(z) =
0 T € [%,1]
so that
eolk nEx € {0, %J )
! r
up(z) = 4y, p(2) =

0 nLT € [i, 1] .

Appendix. Korn’s inequality

We state and prove here a modified version of Korn’s inequality. The proof follows
Dautray & Lions [23]. Recall that functions in W are such that u(0,0) = 0.

Theorem 1. If Q is a bounded set with regular boundary, then there exists a positive
constant C' such that

IElZ2 @ pexay 2 Cllulifpzore
for any v € W, and with E the strain associated to u.

Proof. The first step is to prove that I|E||%2(Q.R(2 x2)y *= Jo E-E dz dy defines a norm on
W, ie., [[Ell 2 rex2) = 0 = u = 0. To see this, note first that if IEll 20 rizx21y = 0
then E = 0 a.e., and this in turn implies that u(z,y) = a + b(yi — zj), with a and
b constant. But since u € W, (1) holds and b = 0, while a = 0 is a consequence of
u(0,0) = 0.
The second step, which shows that the norm [|E|| 2 rex2) is equivalent to the
W2(Q, R?) norm on W, is as in Dautray & Lions [23].
U
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