CMU Campus
Center for                           Nonlinear Analysis
CNA Home People Seminars Publications Workshops and Conferences CNA Working Groups CNA Comments Form Summer Schools Summer Undergraduate Institute PIRE Cooperation Graduate Topics Courses SIAM Chapter Seminar Positions Contact
Publication 21-CNA-015

Statistical mechanics of a dielectric polymer chain in the force ensemble

Matthew Grasinger
Materials and Manufacturing Directorate, Air Force Research Laboratory
UES, Inc.
matthew.grasinger.ctr@afresearchlab.com

Kaushik Dayal
Center for Nonlinear Analysis
Department of Civil and Environmental Engineering
Department of Materials Science and Engineering
Carnegie Mellon University
Pittsburgh, PA 15213
Kaushik.Dayal@cmu.edu

Gal deBotton
Department of Mechanical Engineering
Department of Biomedical Engineering
Ben-Gurion University

Prashant K. Purohit
Department of Mechanical Engineering and Applied Mechanics
University of Pennsylvania
purohit@seas.upenn.edu

Abstract: Constitutive modeling of dielectric elastomers has been of long standing interest in mechanics. Over the last two decades rigorous constitutive models have been developed that couple the electrical response of these polymers with large deformations characteristic of soft solids. A drawback of these models is that unlike classic models of rubber elasticity they do not consider the coupled electromechanical response of single polymer chains which must be treated using statistical mechanics. The objective of this paper is to compute the stretch and polarization of single polymer chains subject to a fixed force and fixed electric field using statistical mechanics. We assume that the dipoles induced by the applied electric field at each link do not interact with each other and compute the partition function using standard techniques. We then calculate the stretch and polarization by taking appropriate derivatives of the partition function and obtain analytical results in various limits. We also perform Markov chain Monte Carlo simulations using the Metropolis and umbrella sampling methods, as well as develop a new sampling method which improves convergence by exploiting a symmetry inherent in dielectric polymer chains. The analytical expressions are shown to agree with the Monte Carlo results over a range of forces and electric fields. Our results complement recent work on the statistical mechanics of electro-responsive chains which obtains analytical expressions in a different ensemble.

Get the paper in its entirety as  21-CNA-015.pdf


«   Back to CNA Publications