CMU Campus
Center for                           Nonlinear Analysis
CNA Home People Seminars Publications Workshops and Conferences CNA Working Groups CNA Comments Form Summer Schools Summer Undergraduate Institute PIRE Cooperation Graduate Topics Courses SIAM Chapter Seminar Positions Contact
Publication 20-CNA-017

Architected Elastomer Networks for Optimal Electromechanical Response

Matthew Grasinger
Department of Civil and Environmental Engineering
Carnegie Mellon University
Pittsburgh, PA
mgrasing@alumni.cmu.edu

Kaushik Dayal
Center for Nonlinear Analysis
Department of Civil and Environmental Engineering
Department of Materials Science and Engineering
Carnegie Mellon University
Pittsburgh, PA 15213
Kaushik.Dayal@cmu.edu

Abstract: Dielectric elastomers (DEs) that couple deformation and electrostatics have the potential for use in soft sensors and actuators with applications ranging from robotic, biomedical, energy, aerospace and automotive technologies. However, currently available DEs are limited by weak electromechanical coupling and require large electric fields for significant actuation. In this work, a statistical mechanics-based model of DE chains is applied to elucidate the role of a polymer network architecture in the performance of the bulk material. Given a polymer network composed of chains that are cross-linked, the paper examines the role of cross-link density, orientational density of chains, and other network parameters in determining the material properties of interest including elastic modulus, electrical susceptibility, and the electromechanical coupling. From this analysis, a practical strategy is presented to increase the deformation and usable work derived from (anisotropic) dielectric elastomer actuators by as much as 75 - 100%.

Get the paper in its entirety as  20-CNA-017.pdf


«   Back to CNA Publications