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Abstract

We report that a dielectric polymer chain, constrained at both ends, sharply collapses when exposed to a high electric field. The chain
collapse is driven by nonlocal dipolar interactions and anisotropic polarization of monomers, a characteristic of real polymers that prior
theories were unable to incorporate. Once collapsed, a large number of chain monomers accumulate at the center location between the
chain ends, locally increasing the electric field and polarization by orders of magnitude. The chain collapse is sensitive to the orientation
of the applied electric field and chain stretch. Our findings not only offer new ways for rapid actuation and sensing but also provide a
pathway to discover the critical physics behind instabilities and electrical breakdown in dielectric polymers.
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Significance statement

real-world applications.

Dielectric polymers provide actuation, sensing, and energy harvesting capabilities in emerging soft matter-based technologies. We report for the first time
that a dielectric polymer chain collapses in a high electric field and that it can be controlled by the applied field orientation and mechanical stretching. Our
novel theoretical approach enables deeper insights into the complex effects of nonlocal interactions, which are challenging to account for. For experiments,
embedding collapse-prone dielectric polymers within material architectures creates opportunities for rapid actuation and sensing technologies using electrical
stimuli. Our findings provide a pathway to discover the physics behind instabilities and electrical breakdown in dielectric polymers that critically limit their

ntroduction

Polarization of dielectric polymers in an external electric field provides sensing,
actuation, and energy-harvesting functionalities in emerging technologies such
as soft robotics Shian et al. (2015); Rich et al. (2018); Ji et al. (2019); Gu
etal. (2017); Thuruthel et al. (2019); Chan et al. (2012), stretchable electronics
Rogers et al. (2010); Xu et al. (2013); Grasinger et al. (2021); Deng et al.
(2014); Zhao et al. (2021); Chen et al. (2021); Ahmadpoor and Sharma (2015);
Mathew and Kulkarni (2024); Zolfaghari et al. (2020); Gurnani et al. (2024),
and artificial muscles Mirvakili and Hunter (2018); Mirfakhrai et al. (2007);
Pelrine et al. (2002); Mu et al. (2019); Chen et al. (2024). This versatile

multi-functionality of dielectric elastomers stems from the fundamental electro-
mechanical response of a single dielectric polymer chain in an external electric
field. Here, we report for the first time that when a dielectric polymer chain
constrained at its two ends and having an anisotropic polarization response is
subjected to a high external electric field, it undergoes a sharp conformational
change: a very large fraction of the monomers accumulate at the center between
the constrained ends (Fig. 1E), which we refer to as chain collapse. We highlight
that chain collapse occurs only when the dielectric polymer chain has an
anisotropic electrical response, as is characteristic of many real polarizable
monomers. Existing polymer field theories for dielectric polymers (e.g., Martin
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Figure 1. Chain collapse phenomenon of a dielectric polymer chain with constrained chain ends in a high electric field. A) The dielectric polymer chain is in a non-collapsed state when the strength of

the applied electric field (\EO |) is less than a critical value for chain collapse (|E~( |). The applied electric field induces electric dipoles in the polymer segments, where each segment represents a set of

connected monomers along the chain contour in a coarse-grained setting. In addition to the interaction between the electric field and dipoles, the dipoles themselves interact with each other nonlocally.

B) Spatial average segment density g, C) electric field E, and D) polarization p for the non-collapsed chain (here E, = 620é,). E) When the strength of the applied electric field is higher than a

critical value (i.e., |E0| > |E~C |, the nonlocal dipole-dipole interactions lead to a chain collapse resulting in the accumulation of a large number of polymer segments near the center location between

the constrained chain ends. F) Spatial average segment density p, G) electric field E, and H) polarization p for the collapsed chain (here E, = 625é,). In the collapsed state, the electric field and

polarization have significantly altered spatial distribution, and they are orders of magnitude higher when compared to the non-collapsed state (as indicated by different color scales). The chain is under

30% stretch.

etal. (2016); Budkov et al. (2015); Budkov and Kolesnikov (2016)) are restricted
to isotropic or perturbative weak anisotropic polarization response, and cannot
capture this behavior. The anisotropic response introduces essential physics: it
couples mechanical deformation and the electric fields in a highly nonlinear
way. Anisotropic monomers pay an energetic price if they are not aligned along
the electric field, setting up a competition between entropic polymer elasticity
and energetic dielectric response; whereas for an isotropic monomer, there is
no electrostatic coupling to monomer orientation.

Large conformational changes in polymers with external stimuli, in general,
provide us with a promising way to not only exploit them in modern engineering
applications but also discover novel soft matter-based technologies. Phase
transitions in polymers leading to significant conformational changes have been
discovered and studied in the past Brilliantov et al. (1998); Tom et al. (2016);
Jia and Muthukumar (2022); Hsiao and Luijten (2006); Netz (2003); Kang et al.
(2015); Philip et al. (2002); Long et al. (1996); Jiao and Akcora (2014); Mathew
and Kulkarni (2025); Locatelli et al. (2021); Monari et al. (1999); Baiesi et al.
(2006); Zhou et al. (2006); He et al. (2012). For example, when a bad solvent (the
one that mediates attractive interactions among polymer monomers) replaces
a good solvent (the one that mediates repulsive interactions among polymer
monomers) surrounding the polymer chain, the chain collapses from a coil
configuration to a globule phase Swislow et al. (1980); Maki (2014); Dua
and Cherayil (1999); De Gennes (1975); Loh et al. (2008). A polyelectrolyte
polymer, such as DNA, whose polymer segments carry permanent dipoles,
collapses in the presence of a high external electric field Radhakrishnan and
Singh (2021); Zhou et al. (2011); Zhou and Riehn (2015); Tang et al. (2011).
This transition is driven by an increase in attractive dipole-dipole interactions
among DNA chain segments. A polyelectrolyte gel, a network of polyelectrolyte

polymer chains with a solvent, collapses in an external electric field through
discrete and reversible volume change Tanaka et al. (1982).

Dielectric polymer chains, on the other hand, possess induced electric
dipoles in the presence of an external electric field. Its physics is driven by the
precise nature of polarization response and both local as well as nonlocal
electrostatic interactions. The local interactions consist of the interactions
between the external electric field and induced dipoles, and the nonlocal
interactions are the interactions among induced dipoles (Fig. 1A), which are
challenging to account for. Theories developed in the past have investigated the
conformational changes in dielectric polymers. Flory-type phenomenological
theory predicted that an external electric field induces a globule-to-coil
transition for a dielectric polymer chain in a bad solvent Budkov and Kolesnikov
(2016). However, this model assumed an isotropic dielectric response, a
sufficiently large polymer volume, and the random phase approximation, while
accounting for many-body dipole-dipole interactions. The statistical theory
for dielectric polymer proposed in Martin et al. (2016) accounts for dipole-
dipole interactions, but it only applies to dielectric polymers having isotropic
polarization response. The limitations of these existing theories for dielectric
polymers to account for nonlocal dipolar interactions as well as anisotropic
polarization response have been overcome by a statistical field theory model
for dielectric polymers in Khandagale et al. (2024). This theory paved the way
to advance the applicability of dielectric polymers in real-world scientific and
engineering applications. We adopt this theory and solve it numerically to show
the chain collapse phenomenon for a dielectric polymer chain in a high electric
field. The theory adopted in Khandagale et al. (2024) is based on statistical
mechanics, which enables us to include polymer molecular details, a self-
consistent field theory that enables us to account for the nonlocal dipole-dipole
interactions, and electrostatics.



Figure 2. Description of polymer chain as a continuous curve.

In this report, we show that nonlocal dipole-dipole interactions, as well as
the anisotropic polarization response of monomers, are the necessary factors
for the chain collapse of the dielectric polymer in a high electric field. Chain
collapse occurs when the strength of the applied electric field is greater than
a critical value. A higher applied electric field would induce higher chain
polarization, which implies higher dipole-dipole attractive interactions. These
enhanced attractive interactions would force the mobilization of chain segments
to accumulate and collapse together, providing the physical rationale for the
observed chain collapse phenomenon. We show that the critical electric field
for chain collapse is sensitive to the orientation of the applied electric field as
well as the stretching of the chain.

The chain collapse phenomenon reported here provides insights into the
critical physics that arises at a polymer chain length scale due to the microscopic
nonlocal dipole-dipole interactions and molecular anisotropy in the polarization
response of chain monomers. It also opens up new avenues to exploit chain
collapse instability for novel applications of dielectric polymers under external
electric field stimuli, such as rapid actuation, sensing, and its control using
mechanical deformation and orientation of the applied electric field.

Theoretical formulation

We consider the polymer chain to be flexible, with N segments, where each
segment represents a set of connected monomers along the polymer chain
backbone in a coarse-grained setting. Each segment is considered inextensible,
which makes the whole chain inextensible. Each segment has a length a =
L./N, where L. is the total contour length of the chain.

Statistical field theory of a polymer chain

We use the statistical field theory formulation for dielectric polymer chains
in an external electric field, adopted from Khandagale et al. (2024). The
polymer chain is described using a worm-like chain (WLC) model Fredrickson
et al. (2006); Spakowitz and Wang (2004) with a small persistence length A,
where X\ denotes the distance along the polymer chain contour over which
the orientational correlation decays. Parameter A depends on the molecular
structure of the polymer chain. The flexibility of the polymer chain is determined
by the ratio A/ L., where A/ L. < 1 corresponds to a very flexible polymer
chain, whereas A/ L. > 1 models a rigid rod-like polymer chain.

A polymer chain is represented as a thermally fluctuating continuous 3-d
space curve 7(s) in a coarse-grained setting (Fig. 2). Here @ = r(s) denotes
the spatial position of a polymer segment at the chain contour coordinate s that
varies along the chain contour. The coordinate s variesas 0 < s < 1 and is

nondimensionalized with L.. The chain segment orientation at any s is given

1 dr(s)

by u = —
L. ds

the chain is inextensible. The WLC model has an energy cost for bending, and

the total bending energy is given by summing over the chain contour using the

. Here, we choose u to be a unit vector to ensure that
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harmonic form Fredrickson et al. (2006):

1
Ulu] = A’“BT/ ds M
0

du(s) |*
ds ’

2

where du(s)/ ds is the local curvature of the polymer at contour coordinate
s, and kT is the thermal energy scale.

When the chain is under the influence of a scalar potential w («, ) that can
influence both spatial position @ and orientation w of polymer segments, we
aim to obtain the equilibrium properties of the polymer chain. The equilibrium
thermodynamic average of any fluctuating quantity (-) that depends on the
fluctuating polymer chain conformation 7 (s) is obtained as:

[Dr(s) () exp (—ZEG1)

{en = [ Dr(s) exp (—L;&Z(;)])

()]

Here, E[r(s)] is the total energy of the polymer chain in chain conformation

7(s),and [ Dr(s) denotes the functional integration over all possible chain
conformations 7(s) that the chain can possess. The denominator in (2) is
the partition function, a fundamental quantity in statistical mechanics used
to account for the entropy and obtain equilibrium thermodynamic properties
of the system. For example, the Helmholtz free energy of the WLC in the
external potential w is obtained using its partition function denoted by Q[w] as
—kpT log Q[w]. The partition function is a moment generating function that
can be used to obtain various moments (the expected values) of the fluctuating
quantities of the system.

The analytical expression for the WLC partition function Q [w] is given by:

Qlw] = L / dm/ duqg(z,u, 20, u’, s)q" (z, —u, z' ul, 1—s).
4TV

(3)
Here, :EU, u” denote the position and orientation vectors, respectively, at the
chain end s = 0, and :121, w! denote the position and orientation vectors,
respectively, at the chainend s = 1. V = N a® is the total volume of the
polymer chain in 3-d spatial dimension (and one would use V.= N a® for
2-d). The integration in (3) is performed over the combined space composed
of the segment position & and the unit sphere space spanned by segment
orientation . The quantities g and g™ represent the propagation of correlations
in segment position @ and orientation u for WLC under an external potential
w. Specifically, g(x, u, :1:0, uo, s) represents the probability density that the
chain contour coordinate s has spatial position & and orientation w, where the
initial end of the chain fragment starts from s = 0 having spatial position z°
and chain orientation w°. The quantities g and g™ are also known as partial
partition functions, where g corresponds to the chain fragment starting from
chain contour coordinate s = 0to s, whereas ¢™ corresponds to the other chain
fragment starting from the opposite chain end with chain contour coordinate
s = 1to s (Fig. 2). These quantities are governed by the partial differential
equations (PDEs) below:

8(1 Lc

g = —w(w,U)q—LCU~qu+ avi% “4)
aq* * * Lc 2 %

9s = —w(x,u)q — Leu-Vaq + ﬁvuq . Q)

Here, the chain contour coordinate s = 1 — s varies in the opposite direction
as s (Fig. 2). The initial conditions for the above PDEs are:

q(%U,wO,uO,S)‘ =V bz — ), )
s=0
q*(w,—u,wlyul,S')‘ =Viz—ah). %)
s'=0
The initial conditions in (6) and (7) specify the physical constraint that the chain

ends are fixed at ° and &". We have not constrained u” and w”, the chain
segment orientations at the two chain ends.
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The linear PDEs in (4) and (5) for ¢ and g™ can be viewed as stochastic
differential equations (specifically, as Fokker-Planck equations) that govern the
propagation of correlations in segment position @ and orientation u for WLC
under an external potential w. These PDEs are derived using the stochastic
process analogy of a polymer chain and a recursive relation for the chain
partition function based on the Markov property of the polymer chain, while
accounting for the harmonic bending energy of WLC stated in (1) (Section 2.5 in
Fredrickson et al. (2006)). The left-hand side of the PDE for g in (4) represents
the evolution of g over the chain contour coordinate s. The first term on the
right-hand side of (4) accounts for the external potential w. The second term,
—L.u - Vg, can be viewed as a drift term that dictates the average direction

L
of the evolution of g. The third term, Q—;Viq captures the randomness in

the evolution of g; specifically, the rotational diffusion operator Vi generates

diffusive motion on the unit sphere, and the parameter & can be viewed as
a rotational diffusion coefficient. Consistent with physical understanding, the
diffusion term that is responsible for the randomness in the propagation of ¢
and ¢™ is dominant for a flexible polymer chain (A\/L. < 1) compared to a
stiff polymer chain (A/L. > 1).

The density operator p(x, w) of the WLC, that depends on the fluctuating
chain conformation 7(s), is defined as Fredrickson et al. (2006):

1

plz,uw) ::/ dsd(x —r(s))d (u —

0

1 dr(s)
L. ds

)6(|u\ “1).®

Here, the kinematic definitions of & and w are embedded using the Dirac
measures as constraints. The thermodynamically-averaged segment density
(p(, w)) is then obtained using the definition of statistical average in (2).
This thermodynamic averaging can be derived in terms of the partition function
to have the convenient form Fredrickson et al. (2006):

(P, u))

1
1 0o 0 * 1 1
=——/d U, T, U, U, ,u, 1 — ).
47rVQ[w]/ sq(z,u, 2z ,u,s)q (¢, —u,x ,u s)

0
C)

Spatial dipole distribution

To obtain the equilibrium chain polarization in a statistical field theory
framework, we define a polarization operator p(x, w) that depends on the
fluctuating chain conformation = (s) as:

p(x,u) =47V

/ (s u_idr(s)
O/d Paco (. w) 8 — ()

JECES

(10)

L. ds

where pseg (@, w) is the polarization response function of the chain segment.
We define (p(ax,u)) as the thermodynamically-averaged polarization. By
taking a statistical average on both sides of (10) and using (8)-(9), we obtain
(p(x, u)) as:

(B(@v)) =4V pseq (T, u) (p(m, u)) , an

By averaging (p(x,w)) over segment orientation space u, we obtain
polarization at the spatial location @, denoted by p(«) as:

1 A ~
p(@) = o [ dupew) =V [ dup., (@ w)pe w).
12)
Quantity p(a) will enter in the electrostatic equation (13) in the bound charge
density.

Electrostatic interactions

We obtain the electric field E(a) from polarization p(a) in (12) using the
electrostatic equation (see Supplementary Material Sec. 3 for derivation):
750Viq§(m) = —aVg-pon2, givenp(x) = —Ey- xond?,

(13)
where ¢ () is the electric potential throughout the spatial domain §2; —V 5 - p
is the bound charge density; and E is the applied average electric field on
the domain boundary 92. Note that we introduced a scalar parameter o €
[0, 1] in (13) to scale the dipole-dipole interactions that are being accounted
for. @« = 0 implies no dipole-dipole interactions, whereas o« = 1 implies
accounting for full dipole-dipole interactions. Since the charge distribution
described through p(x) does not involve singular dipole distributions, the
local electrostatic PDE in (13) is numerically tractable. This PDE also allows
us to apply realistic boundary conditions used in lab experiments without having
to compute the Green’s function for a given domain geometry, e.g, the specified
electric potential on the domain boundary corresponding to a given far-field
applied electric field. The electric field E(a) within the domain is dictated
by electrostatic interactions between the applied electric field and the induced
dipoles, as well as the nonlocal dipole-dipole interactions. The electrostatic
PDE in (13) accounts for all these interactions. The electric field E(x) and
electric potential ¢(x) are related by the classical relation:

E(z) = —Vazé(z). (14)

The external-like potential w (@, w) acting on the dielectric polymer chain
due to the electric field E () is obtained as Fredrickson et al. (2006):

4rV

w(x, u) = _TcBT

Pseg(x, u) - E(x). (15)

Polymer segment dipole response

We consider that the dielectric response of chain segments is linear in the
electric field!. However, to satisfy the rotation invariance of the monomers,
this response is necessarily nonlinear in the orientation w. The polarization
response of a polymer chain segment is defined as:

Pseg(®, u) := egB(u)E(x), (16)

where 3 is the molecular polarizability tensor of the chain segment that depends
on the segment orientation w. We assume the polarizability tensor 3 to be
transversely isotropic as Cohen and deBotton (2016); Cohen et al. (2016):

Bu)=Flu@u+pL(I—-u®u), a7

where 3| and B are segment polarizabilities along the segment orientation
and transverse to the segment orientation, respectively, and I is the identity
tensor. The anisotropy in polymer dielectric response scales with the difference
between 3 and 3 .

In summary of the theory, the electric potential ¢ provides the external
potential w(x, w) (see (14)-(15)) that connects to the partial partition functions
g and q” (see (4)-(5)). The quantities g and q" are used to obtain the partition
function Q[w] and average segment density (p(x,u)) (see (3), (9)). The
polarization p(x) relates to Q[w], (p(x, u)), and psecgy(x, u) (see (12)).
Finally, p(z) is used to obtain the electric potential ¢ through the electrostatic
equation (see (13)), closing the loop.

The theory presented here accounts for the entropic contributions via the
partition function Q[w]. Further, we account for the electrostatic energy of
the dielectric polymer chain in an externally applied electric field through the
external potential w. In general, by using the appropriate form of the functional

! One can easily replace the linear dielectric response we used in this work
with more general nonlinear responses.



dependence of w(x,u) on external field and segment orientation w, the
presented theory can be directly extended for polymer chains influenced by
a broad class of external (e.g., electric or magnetic) fields Fredrickson et al.
(2006). Specific examples include polymer chains with induced or permanent
electric or magnetic dipoles along the chain backbone, as well as liquid
crystalline polymers.

Results and discussion

We constrain the chain ends such that the chain orientation vector is along
€, direction (Fig. 1). We induce chain stretch by varying the length of the
chain orientation vector beyond its base value chosen as its root mean square
average of a [N /2 for a flexible polymer Fredrickson et al. (2006). We apply
an electric field (denoted by E, in a rescaled setting) on the domain boundary
inside which the polymer chain is placed, resembling a realistic boundary
condition. We numerically solve the model (details in Sec. Numerical method)
and compute the electric field E (), polarization p(x), and average segment
density (p(a, w)) inside the domain. The rescaled quantities, electric field E,
polarization p, and spatial average segment density p are defined as:

- E _ P _ R
B h= e = [ duli@w). a9
L3 L3

The rescaled critical value of the applied electric field for chain collapse is
denoted by |E.|. We consider the dielectric response of chain monomers to
be linear in electric field 2 but nonlinear in chain orientation w, as given
in (16)-(17). We account for the anisotropy in the dielectric response of the
polymer chain by choosing B = 1 and 8, = 0.5 in (17), ie., higher
electrical polarizability along the polymer chain backbone orientation compared
to the transverse direction. Such anisotropy is typical for real polymers having
conjugated bond segments along the backbone Schindler et al. (2006); Blythe
and Bloor (2005); Jackson et al. (2015), liquid crystal elastomers (LCEs)
Spillmann et al. (2007); Fowler et al. (2021); Anglaret et al. (2005); Ware
et al. (2015), and biopolymers such as silk fibroin Shi et al. (2014); Wu et al.
(2022); Chorsi et al. (2019); Nepal et al. (2023); Notbohm et al. (2015); Song
et al. (2024); Kim et al. (2010).

First, we demonstrate chain collapse in high electric fields at different
orientations of the applied electric field. Then, the effect of scaling of the
dipole-dipole interactions on the equilibrium electric field and polarization is
discussed. Finally, we present the variation of the critical electric field for chain
collapse with the chain stretch and the orientation of the applied electric field.

Chain collapse in a high electric field

The chain collapse phenomenon is indicated by the sudden changes in the
equilibrium properties of the constrained polymer chain observed using the
model when the strength of the applied electric field increases beyond a critical
value. Fig. 1 shows the equilibrium properties of the chain in non-collapsed
and collapsed states when the applied electric field E is aligned with the
chain orientation. When the strength of the applied electric field is less than
the critical value for chain collapse (| Eq| < |E.|), the chain monomers are
mainly distributed along the chain orientation (Fig. 1B). The corresponding
electric field (Fig. 1C) and polarization (Fig. 1D) of the non-collapsed chain
are observed to be largely concentrated near the chain ends. When the applied
electric field is higher than the critical value (|Eo| > |E.|), the chain
suddenly collapses. For the collapsed chain, the average segment density is
observed to be significantly higher near the center location along the chain
orientation vector where the chain collapses (Fig. 1F). This implies that a large
number of polymer segments have accumulated near the chain collapse location.
We observe that both the electric field (Fig. 1G) and polarization (Fig. 1H) of
the collapsed chain are not only concentrated near the chain collapse location
but are also orders of magnitude higher than in the non-collapsed state.

We also notice the chain collapse phenomenon when we change the
orientation of the applied electric field from being aligned to orthogonal to the
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chain orientation (see Supplementary Material Sec. 1 for details). The sharp
changes in density, electric field, and polarization signify that chain collapse is
an instability.

Effect of nonlocal dipole-dipole interactions

Importantly, we observe chain collapse only when nonlocal dipolar interactions
are accounted for and when the polarization response of the monomer segments
is anisotropic. To investigate the effect of nonlocal dipole-dipole interactions
on the equilibrium properties of the dielectric polymer chain, we provided a
way to vary the amount of dipole-dipole interactions being accounted for in
the statistical field theory in Khandagale et al. (2024). We achieved this by
introducing a scalar parameter « € [0, 1] into the electrostatic equation that
connects the electric potential and the polarization for a dielectric material (see
(13)). « = 0 and o = 1 represent the two extreme cases of no dipole-dipole
interactions and accounting for full dipole-dipole interactions, respectively.
Consider a case where an applied electric field is aligned with the chain
orientation (EO = 1é2). As we gradually increase the value of «, effectively
increasing the dipole-dipole interactions being accounted for, we observe that
the electric field becomes primarily concentrated near the constrained chain
ends and forms a distribution pattern as shown in Fig. 3A. Vector arrows
of the electric field in Fig. 3A imply that polarization-induced electric charge
separation is more dominant near the constrained chain ends, where the average
segment density of the chain is higher (Fig. 1B). The higher segment density
near the chain ends results in a higher dipole-dipole interaction effect, making
the electric field largely concentrated near the constrained chain ends (Fig. 3A).
Similar to the electric field, the polarization (Fig. 3B) also becomes largely
concentrated near the constrained chain ends as we increase the dipole-dipole
interactions being accounted for. The polarization in the domain (Fig. 3B)
aligns with the local electric field (Fig. 3A). These observations are consistent
with the linear polarization response of polymer segments in the electric field
considered in this work. In the context of dielectric polymer networks, the
constrained chain end locations would represent the polymer chain cross-link
points where we suspect the effect of dipole-dipole interactions to be dominant.

Effect of chain stretch on chain collapse

The effect of mechanical deformation (chain stretching) on chain collapse is
shown in Fig. 4. We stretch the chain by increasing the distance between the
constrained chain ends. We observe that, for a given orientation of the applied
electric field, the critical electric field value for chain collapse increases with
the chain stretch. For a given chain stretch, the critical electric field for chain
collapse is higher and more sensitive to the chain stretch when the applied field
is aligned, as compared to orthogonal to the chain orientation. When the applied
electric field is orthogonal to the chain orientation, the chain monomers would
rearrange and rotate to align with the applied electric field orientation. We
suspect that this rearrangement and mobilization of monomers induce chain
collapse instability at a lower applied electric field when the applied field
is orthogonal to the chain orientation. The stretch-dependent features of chain
collapse offer new pathways to exploit chain collapse instability for deformation-
sensitive rapid actuation and sensing using dielectric polymer-based soft matter.

Concluding remarks

Our findings reveal that the collapse of a dielectric polymer chain constrained
at both ends in a high electric field is driven by the nonlocal dipole-dipole
interactions and anisotropy in the polarization response of chain monomers, a
characteristic of many real polymers. The chain collapse occurs sharply and
leads to significant changes in the average segment density, electric field, and
polarization of the polymer chain. The electric field and polarization of the
collapsed chain are orders of magnitude higher and primarily concentrated
near the center location along the chain orientation vector, where the chain
collapses. We have provided a novel approach to scale the nonlocal dipole-
dipole interactions accounted for in the statistical field theory model for
dielectric polymers. This approach enables us to gain deeper insights into
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Figure 4. Critical electric field values (| E, |) for the occurrence of chain collapse for different

chain stretches. Chain stretch is defined as the ratio of the length of the chain orientation vector

1/2

and its root mean square average of a N/ for the undeformed flexible polymer chain.

the complex effects of nonlocal dipole-dipole interactions that are challenging
to account for. The increase in the critical electric field for chain collapse
with chain stretching, as reported here, is consistent with the experimentally
observed trend for electrical breakdown strength with the stretching of dielectric
elastomer Trols etal. (2013); Huang et al. (2012). However, further investigation
is needed to ensure that the chain collapse of a single dielectric polymer chain
drives the electrical breakdown of the dielectric elastomers. A typical value
of the rescaled critical electric field |EC\ = 625 corresponds (using (18)) to
1.79kV/m, feasible to implement in experiments at room temperature (298K)
for the collapse of a dielectric polymer chain having contour length of 0.1 pm.

The sharp collapse of the dielectric polymer chain presents new
opportunities for rapid actuation and sensing of dielectric polymers using
electrical stimuli. It provides a way to fabricate smart material structures
having spatially varying multi-functional responses in an external electric

field by embedding collapse-prone dielectric polymer chains in the material
architecture. Accounting for the nonlinear polarization response of the
segments with respect to the electric field, repulsive inter-segment interactions
Khandagale et al. (2023), and electrostatic effects of a medium surrounding
the polymer chain, which could influence the chain collapse phenomenon, are
important future research directions. This work offers a way to explore the role
of nonlocal dipole-dipole interactions in the dielectric polymer instabilities
Zurlo et al. (2017); Wang et al. (2011); Zhang et al. (2011); Huang et al.
(2012); Keplinger et al. (2010); Niemeyer et al. (1984); Suo (2010). Extending
the single-chain model to polymer networks Khandagale et al. (2023); Purohit
et al. (2011) provides an exciting opportunity to discover and study novel
functional responses of dielectric elastomers to electric field stimuli. This will
also help us to investigate whether chain collapse plays a role in experimentally
observed instabilities and electrical breakdown of dielectric elastomers, which
are major obstacles to their real-world applications.

Numerical method

The configuration space (&, w) is 5-d, composed of segment spatial position @
in 3-d and segment orientation vector w represented in 2-d (polar and azimuthal
angles) spanning a unit sphere. We numerically solve the model by reducing
this 5-d configuration space to 3-d: we choose two spatial dimensions (i.e.,
x = (z1,72) € 2 C R*)and u = (cos ¢, sin ¢), where ¢ € [0, 27).
This enables us to develop a finite-element implementation that does not require
periodicity, which would introduce spurious numerical artifacts.

For numerical implementation, the length scale in the problem is non-
dimensionalized by L.. The computational domain is chosen to be —0.1 <
F1<0.1,-02 < &3 < 0.2, where & = (&1, &) = % 2—2) is
the nondimensional spatial coordinate. In this work, we use persistgnce lcength
A = L./1000 to model a flexible polymer chain, and chain segment length
a = L./100 (i.e., number of polymer segments in the chain to be N = 100)



Algorithm 1 Computing equilibrium properties of dielectric polymer chain
using self-consistent iterative procedure

1: while AQ > ¢ =102 do
2: Compute p(x) = V/ du pseg (2, w)(p(x, u)) >

pscg(m7 u) = eoﬁ(u)E(w)

3: Solve for ¢(x): Vid)(m) = 3vm -p(x), given ¢p(x) =
€
—Ey - xondf? 0
Compute E(x) = —Vgo(x)
4V
Compute w(x, u) = —21:? [eoﬁ(u)E(m)] - E(x)

Compute ¢ and ¢™, by solving (4) and (5), respectively

Compute Q[w] and (p(=, w)), using (3) and (9), respectively

: end while

: Outputs: Equilibrium quantities E“?(x), Q“?, (p(x, u))“?, p°I(x)

R P AR

for numerical computation. Since each polymer segment is formed by a set of
consecutively connected monomers along the polymer backbone in a coarse-
grained setting, and since monomers would be freely jointed along the chain
backbone for a flexible polymer chain, one can expect the distance A at which
orientational correlations decay to be less than the chain segment length a. This
is consistent with our chosen parameter values for A and a having relation as
A =a/10.

The numerical iterative procedure to obtain the equilibrium properties of a
dielectric polymer chain is shown in Algorithm 1. At the initial iteration step,
we simply use ¢p(x) = —Ey - @ to obtain the electric field, and use it to
compute p by following the procedure that we perform at every iteration, as
summarized below. We use the electrostatic equation to continue the numerical
iteration from step n to step m + 1; specifically, we use p” (), the polarization
at any iteration step n, to obtain the electric potential at the next iteration step,
™ (x) using:

V2" (@) = ;Vm -p™(x), given¢" ! (x) = —Eq-xondn.

0 (19)
The quantity ¢™ 1 (a) is used to obtain w™ 1" (a, u) using (14) and (15).
Using w"+l(a:, w), we again solve PDEs in (4) and (5) to obtain g and
¢" and use them to compute Q[w" 1] and (H(x, w))"t" using (3) and
(9), respectively. Next, we compute pn+1(:c) using (11) and (12), which
is used in (19) to continue the iteration. We continue the self-consistent
iteration procedure until the energy term —k g T log @ has converged, which
we verify by checking the change in @ across successive iterations. The
converged quantities E(x), Q[w], (p(x, u)), p(x) are the thermodynamic
equilibrium quantities for the polymer chain. We note that, although we
introduced w as an external-like potential acting on the polymer chain, the
equilibrium potential w at the end of self-consistent iterations accounts for
the combined effects of internally generated interactions among the induced
dipoles on the polymer segments as well as the local electric field.

We use the finite element method (see Supplementary Material Sec 2 for
details) to solve the PDEs in (4), (5), and (13) as used in Ackerman et al.
(2017). FEniCS, an open-source finite element method framework, is used for
the numerical implementation Logg et al. (2012).
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Fig. S1. Chain collapse when the applied electric field is orthogonal to the chain orientation. A) Spatial average segment density g, B) electric field E, and C) polarization p for
the non-collapsed chain (here Ey = 135&;). D) Spatial average segment density 5, E) electric field E, and F) polarization g for the collapsed chain when the strength of the
applied electric field (here \E‘o| = 140é;) is higher than a critical value (i.e., |E0\ > E.). Inthe collapsed state, the electric field and polarization have significantly altered
spatial distribution, and they are orders of magnitude higher when compared to the non-collapsed state.

Supporting Information Text
1. Chain collapse when applied electric field is orthogonal to chain orientation

The equilibrium properties of the chain in non-collapsed and collapsed states when the applied electric field Ey is orthogonal to the chain
orientation are shown in Fig. S1. When the strength of the applied electric field is less than the critical value for chain collapse (| Eo| < |E.|),
the chain monomers are mainly distributed along the chain orientation (Fig. S1A). The electric field (Fig. SI1B) and polarization (Fig. S1C) of
the non-collapsed chain are observed to be distributed along the chain orientation. When the strength of the applied electric field is higher
than the critical value (| Eo| > | E.|), the chain collapses suddenly. For the collapsed chain, the average segment density is observed to be
significantly higher near the center location along the chain orientation vector where the chain collapses (Fig. S1D). This implies that a large
number of polymer segments have accumulated near the collapse location. We observe that both the electric field (Fig. S1E) and polarization
(Fig. S1F) of the collapsed chain are not only concentrated near the chain collapse location but are also orders of magnitude higher than in the
case of the non-collapsed chain.

2. Finite element formulation

We work in 2 spatial dimensions (i.e., = (z1,22) € 2 C RQ) and restrict the unit orientation vector to the unit circle (i.e., it is represented
as u = (cos ¢, sin ¢), where ¢ € [0, 2x]). The configuration space in (x, u) is 3-dimensional, enabling us to use standard finite element
method (FEM) meshing and shape functions. In terms of g(z1, z2, ¢, s), we rewrite the partial differential equation (PDE) for ¢ as:

9 _ 99 g ﬂ) Le (9%
95 = wq LC(COS¢8x1+Sm¢8x2 +2)\ 997 |- [1]

The contour coordinate s is treated as a time-like variable. Derivatives concerning parameter s along the chain contour in PDEs for ¢ and ¢*
are approximated using a Crank-Nicolson finite difference method with 100 steps for parameter s along the chain contour. In terms of the
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Fig. S2. Finite element mesh convergence. A converged mesh size with 20x40x30 number of finite elements (in x1, x2, ¢ dimension, respectively) is used for numerical

computation.

discretization of s, we write:

¢t — g _ pr g i
As 2 ’

‘ . , [2]
) i i 7 ) 7 Lc 2 1
with f* = —wq' — L. (cos¢gzl +sm¢>252) + I\ <8 q ) ,

0p?

where the superscripts ¢ and ¢ + 1 represent the discretized quantities along s.

The domain in configuration space is discretized using 1-st order Lagrange family finite elements. We use a mesh with 20 x 40 finite
elements to discretize in & and 30 finite elements to discretize in w, which is sufficiently refined that the quantities of interest are independent
of the mesh. The spatial mesh is finer around the chain ends, and the Dirac delta functions in initial conditions for PDEs for ¢ and ¢" are
approximated as peaked Gaussians. The mesh is uniform in the w discretization.

Following the usual FEM procedure, we, first, multiply Eq. (2) by a test function v(z1, z2, ¢); second, integrate over x and w; third, use
2

integration-by-parts and the divergence theorem to convert the second derivatives fé to a product of first derivatives; and, fourth, eliminate
the boundary terms using the assumed homogeneous Neumann boundary condition in (x1, x2, ¢) to get the FEM weak form:

; As As dgitt As | 9q'T! L.As 8¢it ov
i+1 e i+1 =9 . =9 C vy
/ (q v+ 5 wq" v+ > cos ¢ o7 v+ 5 sin ¢ o7 v+ 0 90

z,¢

= iy~ A%y —ﬁcosqéaqi —ésimf’aqi _LCAsﬁqi@
- R Rt ) 97,0 2 972 4x 06 99 |

(3]

z,¢

A. Finite element mesh convergence. Fig. S2 shows a plot of the partition function of a worm-like chain for Eo = 0.1é1, a = 1, and

length of chain orientation vector L = 1.3a/N 1/2 for different mesh sizes. For numerical computation, we use a mesh size with 20 x 40 x 30
number of finite elements at which the partition function is converged.

3. Scaling the electrical interactions between dipoles

A. Variational Structure. The variational structure of our problem is to minimize a free energy F[p], subject to the constraint of electrostatics

(D:

Fol= [ wipae+ 2 [ e e
x€2

xEe2
+ [ o) (caVeota) +pla) s, n
x€dN2
subjectto — eoVag(x) = —V - p(a) for z € £2,
and ¢(x) = ¢o(x) prescribed on & € 2. [5]
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We use subscripts to indicate the variable with respect to which differentiation and integration are performed. The potential ¢ is a prescribed
function ¢ on the boundary 0f2.

There are 3 contributions to the energy: the first integral accounts for the energy required to change atomic and electronic configurations in
the process of forming dipoles; the second integral accounts for the energy stored in the electric field; and the last integral accounts for the
energy due to boundary charges that are required to maintain the fixed boundary potential. Note that with ¢ prescribed on the entire boundary,
the electric field in free space outside (2 is constant and can be ignored.

Setting to zero the variation (i.e., functional derivative) of I’ with respect to p, while accounting for the constraint, gives the Euler-Lagrange
equation (2, 3):

ow

5 T Vaed = 0. [6]

1 _ . . . . L
Notice, e.g., that if we use W(p) = 2—1) - B 1p, we recover the response for a linear dielectric p = ¢o8E, where B is the polarizability
€0
tensor.

B. Electrostatic solution in the fixed far-field applied field ensemble. The fixed far-field applied field ensemble corresponds simply to
setting ¢o(x) = — Eo - . We decompose the electrostatic problem into two sub-problems: the first accounts for ¢g on 92, and the second
accounts for the dipole distribution in {2:

Vigo(x) =0o0n 2, ¢o(z)=—Eo-xonds, [71
c«Vad(x) =V -p(x)on 2, ¢(x) =0ondeN. [8]
The first problem Eq. (7) is trivial to solve: we have ¢o(x) = —Ey - @ over the entire domain {2. The second problem Eq. (8) can be solved

formally in terms of the Green’s function G for the domain. Using ¢ = ¢o + q~5, we can write:

o@) = gola) + - / G, y)Vy - ply) A2y,

yeN
1

€0

= ¢o(x) — / VyG(z,y) - p(y) di2y, [9]
yen

— Veolw)= Fo - - / K (2, 9)p(y) d2y.
yen

Here we have used that G(x,y) = 0fory € 942 from the symmetry of the Dirichlet Green’s function (4). We denote by K (x,y) :=
V2VyG(x,y) the symmetric matrix-valued dipole kernel operator; physically, this gives the electric field at « due to a dipole at y. This
expression shows that E () is a superposition of the far-field applied electric field and the field created by the dipoles, represented by the
nonlocal integral expression.

C. Approximations. Eliminating the electrostatic constraint by using Eq. (9) in the Euler-Lagrange equation Eq. (6), we have:

ow 1
e Ey — — K(x,y)p(y) df2, = 0. [10]
P € Jyen

From the perspective of Eq. (10), (5, 6) and others completely neglect the nonlocal dipole-dipole term and solve:

In (7), they discuss improving this by keeping the nonlocal term, but truncating it after near-neighbor interactions:
ow 1 -
5~ Eo— | — K(z,y)p(y) df2y | =0, [12]
8p €0 yen

where K is the truncated operator. Importantly, K does not correspond to the kernel of a standard PDE, and hence it cannot be reformulated as
a local PDE constraint.

D. Scaling Dipole-Dipole Interactions v. Applied Field-Dipole Interactions. In this paper, we consider the situation wherein the
dipole-dipole term is scaled by a factor a:

ow 1
o Ey—a (60 /yEQ K(z,y)p(y) d.Qy) =0. [13]

We show below that this corresponds to using a linear combination of the far-field applied field and the fully-interacting electrostatic field as in
Eq. (18). First, we can see that Eq. (13) is the Euler-Lagrange equation of Eq. (4) with the electrostatic constraint Eq. (5) scaled as below:

€«0Vida = Vg -pon 2, ¢o =—FEy- xondf. [14]
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Next, consider the case a = 1, corresponding to the dipoles fully interacting; denote the corresponding potential by ¢1:
6()Vi¢1 =Vz-ponf2, ¢1=—FEs-xondfl. [15]
Define the quantities q~51 = ¢1 + Eo - « and an = ¢ + Eo - . These satisfy:

e0Vagr = Vg -pon 2, ¢ =0onds, [16]
€0Vaiga = Vg -pon 2, ¢o = 0ond2. [17]

Since these are linear problems with homogeneous BCs, we have that ¢, = «é. This implies:

pa =01+ (1 —a)(—Eg-x) = Eo:=—Vapa =aFE1 + (1 —a)Ey, [18]
where B = —Vg¢1(x) is the electric field in the fully-interacting setting. Therefore, we have from Eq. (18) that to study the scaled interaction
case Eq. (13), we simply use a linear combination of the no-interaction potential ¢g = —FEy - « and the full-interaction potential ¢1.
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