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Heat equation

U(t, X) - temperature at time t at point X

K%Axu(t,x)=ut(t,X), X< g(t), t>0,

g(t)
§fut,xdx=1 t>0, (1)

JEO X) = Uy (X).

(LA Ut X)=u,(t,x), x<g(t), t>0,
u,(t,x) =—-g"(tu(t,x), x=g(t), (2)
u(0, x) =uy(x).
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Heat equation solutions — existence and uniqueness

Theorem. If g(t) is C*> then solutions to (1) and (2) exist,
are unique and equal to each other.

SAU(,X) =u,(t,x), x<g(t), t>0,

g(t)
ju(t,x)dx:l, t>0, (1)

—00

\u(O, X) = U, (X).
SAU(X) =u, (LX), x<g(t), t>0,

u, (t,x) =—g"(tu(t,x), x=g(t), (2)
u(0,x) =ug, ().

Lewis and Murray (1995), Hofmann and Lewis (1996)
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Skorohod Lemma

g(t), B, - continuous functions

Lemma. There exists a unigue continuous non-decreasing
function L, suchthat X, =B, —L, < g(t)
for every t and L, does notincrease when X, <d(t),i.e.,

[T g (X)L, =0,
0

L g(t)




Heat equation solution via reflected
Brownian motion

g(t) - continuous function
B, - Brownian motion

Xt:Bt_Lt

Theorem. The function U(t, X)dx =P (X, € dx) solves (1).
2A Ut X) =u,(t,X), x<g(t), t>0,

fut,xdx=1, t=0, (1)
(—o0,9(t)]
u(0, x) =uy(x).
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Heat atoms

ju(s, X)dx <1
(—,y)

P(X,=Yy)>0

Theorem. Heat atoms exist for some 9(t) .



Upper functions for Brownian motion

P(inf{t >0:B, =g(t)}=0)=0

B, - Brownian motion



Heat atoms — probabilistic approach

g(t)

A A\
s VN \

Theorem. 9(S) is a heat atom if an only if
f(t)=g(s—t)—g(s) is an upper function.

Kolmogorov's criterion: T (t) is upper class if and only if

j-t‘?”z f (t)exp(=f*(t)/(2t)) dt < oo

Example (LIL): f(t) = (1+¢)/2tlog|logt|
f (t) is upper class if and only if £ >0



Singularities

limsupu(s, x) =
xTy



Heat atoms and singularities

Theorem: There exist J;,0,, J3, J, such that

Singularity |Heat atom

0. No No
J, Yes No
U, Yes Yes

J, No Yes




Heat atoms and singularities - examples

g(t)

g(Ll—t) =1++/t |logt |’

pe(-0-1)=g,
pel-10]= g,
77?7 =0,
pell2,x)=g,

-1
9,

Conjecture: f€(0,1/2]= g,




Probabillistic representations of
heat equation solutions

u(s, x)dx=P(X, e dx)

AT
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u(s, x)=E"* exp[—ng'(t)de ju(O,YS)
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Probabillistic representations of
heat equation solutions (ctnd)

ut,g(t)+x)=E eprg'(t—s)st —%j'(g'(t—s))zds—Zjg'(t—s)dLS]

B, - standard Brownian motion

L, - local time at O of reflected Brownian motion

Yt = X+ Bt — Lt on (—OO,O].



The set of heat atoms

g(t)

A(g) ={t:g(t) isaheatatom}

Theorem:
() Vg dimA(g)<1/2
(3g dimA(g)=1/2

Corollary: Lebesgue(A(g)) =0



Brownian motion reflected on Brownian motion

g(t)- “fixed Brownian motion”

X, - “reflected Brownian motion”

Soucaliuc, Toth and Werner (2000)

Theorem: There are no heat atoms on Brownian path.



Stable boundary

——w

g(t) - inverse of a stable subordinator

dim A(g) =1/2



Set of singularities

g(t)- “fixed Brownian motion”

X, - “reflected Brownian motion”

Theorem: Singularities are dense on a Brownian path.



Monotonicity of heat equation
solutions

g(t)

Theorem: If t — g(t) is decreasing and X — u(0, X)
is increasing then for any t > 0 , the function X — U(t, X)
IS Increasing.



Monotonicity of heat equation
solutions (ctnd)

g(t)

u(0,x)=1

Theorem: If t — g(t) is decreasing and concave and
u(0,x) =1 thenforany X ,the function t — u(t, X)
IS Increasing.



Monotonicity- probabilistic proof

u(s,x)=E"* exp[—ng'(t)de ]u(O,YS)

A AN
~
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u(0,x)=1
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