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Thin films Polyconvex functionals Sticky particles

Starting point: a family of 4th order equations in Rd

We look for non-negative solutions to the nonlinear 4th order evolution PDEs

∂tu + div
“

u D
`
uα−1∆uα´”

= 0 in (0, +∞)× Rd, α ∈ [1/2,1],

with the initial condition

0 ≤ u(0, ·) = u0 ∈ L1
(Rd

),

Z

Rd
|x|2u0 dx < +∞.

α = 1: thin film ∂tu + div
“

u D
`
∆u

´”
= 0

α = 1/2: quantum-drift diffusion ∂tu + div
“
uD

∆
√

u
√

u

”
= 0

Here we focus on the thin film case α = 1 with mobility/diffusion
coefficient u. The more general equation

∂tu + div(m(u)D(∆u)) = 0, where, e.g. m(u) = um

has been studied (mainly in dimension d = 1, 2, 3) by many authors:

[Bernis-Friedman ’90, Bertsch-Dal Passo-Garcke-Grün ’98–’04; review: Becker-Grün

’05.; asymptotic behaviour: Carrillo-Toscani ’02, Carlen-Ulusoy ’07] The quantum
drift-diffusion equation has been introduced by

Derrida-Lebowitz-Speer-Spohn ’91 [and studied by Bleher-Lebowitz-Speer ’94,

Jüngel with Pinnau ’00 and Matthes ’08]
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Thin films Polyconvex functionals Sticky particles

Structure of the equation

In the thin film case
∂tu + div

“
uD

`
∆u

´”
= 0

Continuity equation + nonlinear condition

∂tu + div
`
uv

´
= 0, v = −D

“ δΦ

δu

”

where
δΦ

δu
= −∆u

The generating functional is

Φ(u) :=
1

2

Z

Rd
|Du|

2 dx
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Thin films Polyconvex functionals Sticky particles

The “Wasserstein gradient” of the Dirichlet functional

Standard technique: choose a vector field ξ ∈ C
∞
c (Rd

; Rd
) and the flow X

d

dt
Xt(x) = ξ(Xt(x)), X0(x) = x; Mε := (Xε)#M; �

☛
✡

✟
✠d

dε
Φ(Mε)

|ε=0
.

Wasserstein gradient g = −v :

Z

Rd
�g, ξ� dM =

d

dε
Φ(Mε)

|ε=0
.

As usual M ↔ u, Mε ↔ uε . In view of the continuity equation, we choose

directly ξ = ∇ζ:

d

dε
Φ(Mε)

˛̨
˛
ε=0+

=
1

2

Z

Rd
∆

2ζ u2
− 2D

2ζD u ·Du−∆ζ |Du|2 dx

Equation for the velocity: v = −g,

Z

Rd
div

`
uv

´
ζ dx = −

Z

Rd
�v,∇ζ�udx =

1

2

Z

Rd
∆

2ζ u2
−2D

2ζD u·Du−∆ζ |Du|2 dx

It corresponds to the weak formulation of the thin film equation

∂tu +
1

2
∆

2
(u2

)− ∂2
xi xj

(∂xiu∂xj u)−
1

2
∆|Du|2 = 0 ⇔ ∂tu + div

`
uD∆u

´
= 0

Discrete equation: Mn
τ ↔ Un

τ

Z

Rd
ζ

`
Un

τ −Un−1
τ

´
dx+

τ

2

Z

Rd
∆

2ζ (Un
τ )

2
−2D

2ζ DUn
τ ·DUn

τ −∆ζ |DUn
τ |

2
dx = o(τ)

6
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Thin films Polyconvex functionals Sticky particles

Main problem

Discrete equation:

Z

Rd
ζ

`
Un

τ −Un−1
τ

´
dx+

τ

2

Z

Rd
∆

2ζ (Un
τ )

2
−2D

2ζ DUn
τ ·DUn

τ −∆ζ |DUn
τ |

2
dx = o(τ)

Strong compactness in W 1,2 in order to pass to the limit in the
quadratic term Z

Rd
2D

2ζ DUn
τ ·DUn

τ dx
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Thin films Polyconvex functionals Sticky particles

First variation along auxiliary flows

MAIN IDEA: take the first variation of the minimum problem

Un
τ ∈ argmin

V

W 2
(V , Un−1

τ )

2τ
+ Φ(V )

along the (Wasserstein) gradient flow SΨ
generated by other “good” auxiliary

functionals Ψ.

HEURISTICS: in an euclidean space SΦ, SΨ
corresponds to

ut := SΦ
t (u0) solves

d
dt u = −∇Φ(u), wt := SΨ

t (w0) solves
d
dt w = −∇Ψ(w)

If u0 = w0 then we have the “commutation” identity

d

dε
Φ(wε)

˛̨
˛
ε=0+

=
d

dε
Ψ(uε)

˛̨
˛
ε=0+

“
= −

˙
∇Φ(w0), ∇Ψ(u0)

¸”

RECIPE: if the derivative of the (main) functional Φ along the (auxiliary)
flow SΨ

is negative (up to lower order terms)

then Ψ is a Lyapunov functional for the main flow SΦ
(up to lower order

terms).

Look for good flows SΨ
having Φ as Lyapunov functional

8
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A Lyapunov-type estimate at the discrete level in the

Wasserstein space

Suppose that Ψ generates a good flow wt = SΨ
t (w) satisfying the EVI:

d

dt

1

2
W 2

(SΨ
t (w), z) ≤ Ψ(z)−Ψ(SΨ

t (w))−
κ

2
W2(wt, z) (EVI)

We call D the dissipation of Φ along SΨ

D(w) := −
d

dε
Φ(SΨ

ε (w))

˛̨
˛
ε=0+

= lim sup

ε↓0

Φ(w)−Φ(SΨ
ε (w))

ε

Theorem (Discrete flow-interchange estimate)

If Un
τ is a minimizer of V �→

W 2
(V, Un−1

τ )

2τ
+ Φ(V ) then

Ψ(Un
τ ) + τ D(Un

τ ) ≤ Ψ(Un−1
τ )−

κ

2
W2(Un

τ , Un−1
τ ).

PROOF:

0 ≤
d

dε

W 2
(SΨ

ε (Un
τ ), Un−1

τ )

2τ
+ Φ(SΨ

ε (Un
τ ))

˛̨
˛
ε=0+

(by the minimality of Un
τ )

≤
Ψ(Un−1

τ )−Ψ(Un
τ )

τ
−D(Un

τ ) ( by the EVI, with z = Un−1
τ , w = Un

τ )
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Auxiliary flows for the thin film equation (II)

Φ(u) =
1

2

Z

Rd
|Du|

2 dx decays on the heat flow

∂tw − ∆w = 0 ⇔ ∂tw − div
`
wD log w

´
= 0

with

D(w) = −
d

dε
Φ(SΨ

(w))

˛̨
˛
ε=0

=

Z

Rd
|∆w|

2 dx =

Z

Rd
|D2w|

2 dx

The heat equation is the Wasserstein gradient flow of the relative entropy

functional H(w) :=

Z

Rd
w log wdx.

The discrete flow-interchange estimates shows that H is a Lyapunov functional
and satisfies

H(Un
τ ) + τ

Z

Rd
|D2Un

τ |
2 dx ≤ H(Un−1

τ ).

In term of Uτ it corresponds to

Z T

0

Z

Rd

˛̨
D

2Uτ
˛̨2

dx dt ≤ C.
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Main result

Assume that the non-negative initial condition u0 ∈ L1
(Rd

) satisfies

Z

Rd
|x|2u0(x) dx < +∞, H(u0) =

Z

Rd
u0 log u0 dx < +∞.

Theorem

There exists an infinitesimal subsequence of time steps τk ↓ 0 such that

Uτk → u pointwise in L1
(Rd

) and in L2
(0, T ; W 1,2

(Rd
)) as k ↑ ∞

u ∈ C0
([0, +∞); L1

(Rd
)) ∩ L2

loc([0, +∞); W 2,2
(Rd

)) is a non-negative global

solution of the weak formulation of thin film equation

∂tu +
1

2
∆

2
(u2

)− ∂2
xi xj

(∂xiu∂xj u)−
1

2
∆|Du|2 = 0

11
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Outline

1 Thin film equation as the gradient flow of the Dirichlet functional
in collaboration with U.Gianazza, G.Toscani, D. Matthes, R. McCann

2 The L2-gradient flow of the simplest polyconvex functional
in collaboration with L. Ambrosio, S. Lisini

3 The sticky particle system
in collaboration with L. Natile
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Polyconvex functionals

F (u) =

Z

Ω
F (Du) dx

where

F (A) = Φ(A, M2(A), · · · , Md−1(A), det A), and Φ is convex;

M2(A), · · ·Md−1(A), Md(A) = det A are the minors of A.

If Φ is superlinear then the functional F is lower semicontinuous in L2(Ω; Rd) [J.
Ball].

Well posedness of the variational problems

min
U

1

2τ

Z

Ω
|U − Un−1

τ |2 dx + F (U)

Nevertheless, no general results are known for gradient flows of polyconvex
functionals and for their variational approximation

5
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The “simplest” polyconvex functional

F (A) := Φ(det A), F (u) :=

Z

Ω
Φ(det Du(x)) dx

under the additional constraint that

u is a diffeomorphism between Ω and u(Ω), det Du(x) > 0,
u(Ω) is contained in a target open set U .

Difficulties (besides polyconvexity):

lack of coercivity (F controls only det Du)
lack of lower semicontinuity in L2(Ω; U ).

6
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The form of the PDE

F (A) = Φ(det A), DF (A) =
`

cof A
´T

Φ′(det A),

since

∂ det A

∂Ai
α

= (cof A)i
α where

X

α

Ai
α(cof A)j

α = det Aδij ∀i, j.

δF (u, ξ) =

Z

Ω
Φ′(det Du) cof Du · Dξdx

Gradient flow

∂tu− div

“

Φ′(det Du) cof Du
´

= 0

7
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A differential approach [Evans, Gangbo, Savin]

Make the transformation

y = ut(x), ρt(y) :=
1

det Dut(x)
=

1

det Dut
◦ u−1

t (y) = u#(L d
|Ω

)

Ω

x
y

U

u

ρ solves the nonlinear diffusion PDE
(

∂tρ − div(ρDφ′(ρ)) = 0 in U × (0, +∞),

ρ(x, 0) = ρ0(x) in U ; ∂nρ = 0 on ∂U × (0, +∞)

where φ(ρ) := ρΦ(1/ρ)

8



Thin films Polyconvex functionals Sticky particles

A differential approach [Evans, Gangbo, Savin]
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Thin films Polyconvex functionals Sticky particles

Recovering u

Step 1: put φ(ρ) := ρΦ(1/ρ)

Step 2: solve the PDE

(

∂tρ − div(ρ∇φ′(ρ)) = 0 in U ,

ρ(·, 0) = ρ0, ∂nρ = 0 on ∂U

Step 3:
build the vector field

V (t, y) = −∇φ′(ρt(y))

Step 4: Compute the flow

(

Ẏ (t, y) = V (t, Y (t, y))

Y (0, y) = y

Step 5 u(t, x) = Y (t, u0(x))

Main problem:

Prove that the L2-Minimizing Movement scheme converges to this solution
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Ẏ (t, y) = V (t, Y (t, y))

Y (0, y) = y

Step 5 u(t, x) = Y (t, u0(x))

y

ut(x)

u0(x)
x

V

Y (t, y)

Ω

U

Main problem:

Prove that the L2-Minimizing Movement scheme converges to this solution

9



Thin films Polyconvex functionals Sticky particles

Recovering u

Step 1: put φ(ρ) := ρΦ(1/ρ)

Step 2: solve the PDE

(

∂tρ − div(ρ∇φ′(ρ)) = 0 in U ,

ρ(·, 0) = ρ0, ∂nρ = 0 on ∂U

Step 3:
build the vector field

V (t, y) = −∇φ′(ρt(y))

Step 4: Compute the flow

(
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Transporting the functional F

F (u) =

Z

Ω
Φ(det Du(x)) dx =

Z

U

Φ(det Du(u−1(y)))ρ(y) dy

=

Z

U

Φ
“ 1

ρ(y)

”

ρ(y) dy =

Z

U

φ(ρ(y)) dy = G (ρ)
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Transporting the functional F

F (u) =

Z

Ω
Φ(det Du(x)) dx =

Z

U

Φ(det Du(u−1(y)))ρ(y) dy

=

Z

U

Φ
“ 1

ρ(y)

”

ρ(y) dy =

Z

U

φ(ρ(y)) dy = G (ρ)

                                            

Φ(s) = 1/s φ(ρ) = ρ2

∂tρ − ∆ρ2 = 0 Porous media equation
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Transporting the functional F

F (u) =

Z

Ω
Φ(det Du(x)) dx =

Z

U

Φ(det Du(u−1(y)))ρ(y) dy

=

Z

U

Φ
“ 1

ρ(y)

”

ρ(y) dy =

Z

U

φ(ρ(y)) dy = G (ρ)

                                                                  

φ(ρ) = ρ log ρΦ(s) = − log s

∂ρ − ∆ρ = 0 Heat equation
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Transporting the functional F

F (u) =

Z

Ω
Φ(det Du(x)) dx =

Z

U

Φ(det Du(u−1(y)))ρ(y) dy

=

Z

U

Φ
“ 1

ρ(y)

”

ρ(y) dy =

Z

U

φ(ρ(y)) dy = G (ρ)

                                                                  

Φ(s) = 1/s + s2 φ(ρ) = 1/ρ + ρ2
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Transporting the variational problem

U ! R =
1

det DU
◦ U−1,

8

>

>

<

>

>

:

F (U) =

Z

Ω
Φ(det DU) dx =

G (R) =

Z

Ω
φ(R) dy

Given Un−1
τ ! Rn−1

τ find Un ∈ Diff(Ω; U ) solution of

min
U

F (U) +
1

2τ

‚

‚U − Un−1
τ

‚

‚

2
L2(Ω;Rd)

min
R

“

min
U!R

F (U) +
1

2τ

‚

‚U − Un−1
τ

‚

‚

2
L2(Ω;Rd)

”

min
R

“

G (R) + min
U!R

1

2τ

‚

‚U − Un−1
τ

‚

‚

2
L2(Ω;Rd)

”

Problem: given a density R in U and Un−1
τ ! Rn−1

τ solve

min
U!R

‚

‚U − Un−1
τ

‚

‚

2
L2(Ω;Rd)
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Optimal transportation

Minimize

Z

Ω
|U − Un−1

τ

˛

˛

2
dx under the constraint U ! R.

Write U = T ◦ Un−1
τ , T : U → U , T#(Rn−1

τ ) = R

Z

Ω

˛

˛U − Un−1
τ

˛

˛

2
dx =

Z

Ω

˛

˛T (Un−1
τ ) − Un−1

τ

˛

˛

2
dx

=

Z

U

˛

˛T (y) − y
˛

˛

2
Rn−1

τ (y) dy

12
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A Wasserstein gradient flow

The piecewise constant intepolant Rτ of the discrete solution of the variational
algorithm

min
U

F (U) +
1

2τ

‚

‚U − Un−1
τ

‚

‚

2
L2(Ω;Rd)

= min
R

G (R) +
1

2τ
W 2(R, Rn−1

τ )

converge to the solution of the nonlinear PDE

8

>

<

>

:

∂tρ + div(ρv) =0 in U × (0, +∞) (continuity equation)

v = −∇φ′(ρ) (Nonlinear condition)

ρ(y, 0) =ρ0(y), ∂nρ = 0 on ∂U × (0, +∞).

Optimal error estimate:

sup
t

W 2(Rτ (t), ρ(t)) ≤ τ G (ρ0)

13
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Iterated optimal transport maps

....

UUUU

U
n = Y

n
◦ U

0U
0

T
1

T
n

Ω

R0 R1 Rn−1 Rn

Y
n−1

Y
n

T
2,3,...,n−1

min
R

Z

U

φ(R) dy +
1

2τ
W 2(R, Rn−1

τ ) ! Rn
τ

Rn
τ , Y n

τ solve the PDE.

Y n
τ − Y n−1

τ

τ
= V n

τ (Y n
τ ), V n

τ = −∇φ′(Rn
τ )

14
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1
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W 2(R, Rn−1
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τ

Rn
τ , Y n

τ solve the PDE. How to pass to the limit?

Y n
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τ

τ
= V n

τ (Y n
τ ), V n

τ = −∇φ′(Rn
τ )
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Thin films Polyconvex functionals Sticky particles

Convergence of the iterated maps

Main problem:

d

dt
Y τ (t, y)= V τ (t, Y τ (t, y)), V τ (t, y) = −∇φ′(Rτ (t, y))

as τ → 0 ↓ ↓ ↓ ↓ ?

d

dt
Y (t, y)= V (t, Y (t, y)), V (t, y) = −∇φ′(ρ(t, y))

Difficulties:

! No regularity estimate for V τ

! No lower density bound for Rτ .

! Only weak convergence of V τRτ to V ρ (DiPerna-Lions, Ambrosio-theory
cannot be applied)

! convergence of the energy:

lim
τ↓0

Z T

0

Z

U

˛

˛V τ (t, y)
˛

˛

2
Rτ (t, y) dy dt =

Z T

0

Z

U

˛

˛V (t, y)
˛

˛

2
ρ(t, y) dy dt

15
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Difficulties:

! No regularity estimate for V τ

! No lower density bound for Rτ .

! Only weak convergence of V τRτ to V ρ (DiPerna-Lions, Ambrosio-theory
cannot be applied)

! convergence of the energy:

lim
τ↓0

Z T

0

Z

U

˛

˛V τ (t, y)
˛

˛

2
Rτ (t, y) dy dt =

Z T

0

Z

U

˛

˛V (t, y)
˛

˛

2
ρ(t, y) dy dt
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A first result: convergence of flows

Suppose that V τ , Y τ , µτ = ρτ L d are given with

d

dt
Y τ (t, y)= V τ (t, Y τ (t, y)), µτ,t = (Y τ (t, ·))#µτ,0

! µτ,t ⇀ µt narrowly,

! V τ µτ ⇀ V µ in the distribution sense

!

lim
τ↓0

Z T

0

Z

U

˛

˛V τ (t, y)
˛

˛

2
dµτ,t(y) dt =

Z T

0

Z

U

˛

˛V (t, y)
˛

˛

2
dµt(y) dt

! V is a “tangent vector field”, i.e. V ∈
˘

∇ψ : ψ ∈ C∞
c (U )

¯

! The limit ODE admits a unique solution for µ0-a.e. y ∈ U .

Then there exists a unique flow Y solving

Ẏ (t, y)= V (t, Y (t, y)), Y (0, y) = y

lim
τ↓0

Z T

0
max

t

˛

˛

˛
Y τ (t, y) − Y (t, y)

˛

˛

˛

2
dµ0(y) = 0.
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Reconstruction of the gradient flow of F

Suppose that ρ0 ∈ Cα(U ), G (ρ0) =

Z

U

φ(ρ0) dy < +∞.

! The discrete transports Y τ converge to Y in the sense of L2(U ;L∞(0, T ))

lim
τ↓0

Z T

0
max

t

˛

˛

˛
Y τ (t, y) − Y (t, y)

˛

˛

˛

2
ρ0(y) dy = 0.

and the discrete solutions Uτ (t, x) = Y τ (t, u0(x)) converge to
u(t, x) = Y (t, u0(x)).

! The limit flow Y solves the ODE
(

Ẏ (t, y) = V (t, Y (t, y))

Y (0, y) = y
where V (t, y) = −∇φ′(ρt(y))

! ρ is the unique solution of the nonlinear diffusion equation

(

∂tρ − div(ρDφ′(ρ)) = 0 in U ,

ρ(y, 0) = ρ0(y), ∂nρ = 0 on ∂U

17
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Outline

1 Thin film equation as the gradient flow of the Dirichlet functional
in collaboration with U.Gianazza, G.Toscani, D. Matthes, R. McCann

2 The L2-gradient flow of the simplest polyconvex functional
in collaboration with L. Ambrosio, S. Lisini

3 The sticky particle system
in collaboration with L. Natile

13



Thin films Polyconvex functionals Sticky particles

Starting point: motion of a finite number of particles.

Discrete particle model

N particles Pi := (mi, xi, vi), i = 1, . . . , N ,

with positive mass mi satisfying
PN

i=1 mi = 1

ordered positions x1 < x2 < . . . < xN−1 < xN ,

and velocities vi.

P1 P2 P3 P4

v1 v2 v3 v4
P1 P2 P3 P4P1 P2 P3 P4P1 P2 P3 P4P1 P2 P3 P4P1 P2 P3 P4P1 P2 P3P1 P2 P3P1 P2P1 P2P1 P2

At the initial time t = 0 the particles are disjoint and start to move freely with

constant velocity:

xi(t) := xi(0) + vi(0)t, vi(t) := vi.

The first collision time t = t1 correspond to

xj(t
1
) = xj+1(t1) = . . . = xk(t1) for some indices j < k.

The particles Pj , Pj+1, . . . , Pk collapse and stick in a new particle P
with mass m := mj + . . . + mk and

“barycentric” velocity v :=
mjvj(t1) + mj+1vj+1(t1) + . . . + mkvk(t1)

m

14
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Measure-theoretic description

We thus have:

a (finite) sequence of collision times 0 < t1 < t2 < . . .
in each interval [th, th+1

) a finite number Nh
of (suitably relabelled)

particles P1(t), · · · , PNh (t), Pi(t) := (mi, xi(t), vi(t)).

We can introduce the measures

ρt :=

NhX

i=1

miδxi(t) ∈ P(R) (ρ v)t :=

NhX

i=1

mi vi δxi(t) ∈M(R) if t ∈ [th, th+1
).

They satisfy the 1-dimensional pressureless Euler system in the sense of

distributions

(
∂tρ + ∂x(ρ v) = 0,

∂t(ρ v) + ∂x(ρ v2
) = 0,

in R× (0, +∞); ρ
|t=0

= ρ0, v
|t=0

= v0,

and the Oleinik entropy condition

vt(x2)− vt(x1) ≤
1

t
(x2 − x1) for ρt-a.e. x1, x2 ∈ R, x1 ≤ x2.
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Main problem: continuous limit

Consider a sequence of discrete initial data µn
0 := (ρn

0 , ρn
0 vn

0 ) converging to

µ0 = (ρ0, ρ0v0) in a suitable measure-theoretic sense and let µn
t = (ρn

t , ρn
t vn

t ) be

the (discrete) solution of SPS.

Problem

� Prove that the limit µt = (ρt, ρtvt) of the SPS µn
t = (ρn

t , ρn
t vn

t ) as n ↑ +∞

exists.

� Find a suitable characterization of µt

� Show that (ρt, ρtvt) solves the pressureless Euler system

(
∂tρ + ∂x(ρ v) = 0,

∂t(ρ v) + ∂x(ρ v2
) = 0,

in R× (0, +∞); ρ
|t=0

= ρ0, v
|t=0

= v0,

and satisfy Oleinik entropy condition.
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Main contributions

• Existence and convergence:

� Grenier ’95, E-Rykov-Sinai ’96: first existence and convergence result.
� Brenier-Grenier ’96: Characterization of the limit in terms of a suitable

scalar conservation law, uniqueness.
� Huang-Wang ’01, Nguyen-Tudorascu ’08, Moutsinga ’08: further refinements.

Basic assumptions:
ρn
0 → ρ0 in the L2

-Wasserstein distance,

vn
0 = v0 is given by a continuous function with (at most) linear growth.

In particular the result cover the case when ρn
0 , ρ0 have a common compact

support and ρn
0 → ρ0 weakly in the sense of distribution (or, equivalently, in

the duality with continuous functions).

• Pioneering ideas which lies (more or less explicitly) at the core of the papers

by E-Rykov-Sinai and Brenier-Grenier have been introduced by

� Shnirelman ’86 and further clarified by
� Andrievwsky-Gurbatov-Soboelvskĭı ’07 in a formal way.

• Different approaches and models:

� Bouchut-James ’95, Poupaud-Rascle ’97
� Sobolevskĭı ’97, Boudin ’00: viscous regularization.
� Wolansky ’07: particles with finite size.
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The Brenier-Grenier formulation

For every probability measure ρ ∈ P(R) we introduce the cumulative
distribution function

Mρ(x) := ρ
`
(−∞, x]

´
, x ∈ R, so that ρ = ∂xMρ in D �

(R).

Main idea: study the evolution of Mt := Mρt , where ρt is the solution of the

SPS.

Theorem (Brenier-Grenier ’96)

M is the unique entropy solution of the scalar conservation law

∂tM + ∂xA(M) = 0 in R× (0, +∞)

where A : [0, 1] → R is a continuous flux function depending only on the initial

data ρ0 and v0. It is characterized by

A�(M0(x)) = v0(x).

18
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Monotone rearrangement

Point of view of 1-dimensional optimal transport: instead of using the

cumulative distribution function Mρ(x) = ρ
`
(−∞, x]

´
, we

represent each probability measure ρ by its monotone rearrangement

Xρ : (0, 1) → R

Xρ(w) := inf

n
x ∈ R : Mρ(x) > w

o
w ∈ (0, 1)

which is the so-called pseudo-inverse of Mρ.

The map Xρ is nondecreasing and right-continuous and it pushes the

Lebesgue measure λ := L 1
|(0,1)

on (0, 1) onto ρ.

19
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Wasserstein distance and the L2
isometry

The map ρ �→ Xρ is a one-to-one correspondence between

the space P2(R) of probability measures with finite quadratic moment

m2(ρ) =
R

R |x|
2
dρ(x) < +∞

and

the closed convex cone K of all the nondecreasing function in L2
(0, 1) (among

which we can always choose the right-continuous representative).

L2-Wasserstein distance

W2(ρ1, ρ2
) between ρ1, ρ2 ∈ P2(R):

W 2
2 (ρ1, ρ2

) :=

Z 1

0

˛̨
Xρ1 (w)−Xρ2 (w)

˛̨2
dw =

‚‚Xρ1 −Xρ2
‚‚2

L2(0,1)

In this way ρ ↔ Xρ is an isometry between (P2(R), W2) and (K, � · �L2(0,1)).
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A metric space for the measure-momentum couples (ρ, ρv)
We consider the space of couples (ρ, ρv), with ρ ∈ P2(R) and v ∈ L2

ρ(R):

V2(R) :=

n
µ = (ρ, ρv) ⊂ P2(R)×M(R) : v ∈ L2

ρ(R)

o
.

thus ρ is a probability measure and η = ρv is a finite signed measure in M(R)

with
R

R |v(x)|2 dρ(x) < +∞.

We can introduce a semi-distance U2 in V2(R):

U2
2 (µ1, µ2

) :=

Z

R

˛̨
v1

(Xρ1 (w))− v2
(Xρ2 (w))

˛̨2
dw =

‚‚v1
◦Xρ1 − v2

◦Xρ2
‚‚2

L2(0,1)

and a distance D2

D2
2(µ1, µ2

) :=W 2
2 (ρ1, ρ2

) + U2
2 (µ1, µ2

).

Theorem (Ambrosio-Gigli-S. ’05)

(V2(R), D2) is a metric space whose topology is stronger than the one induced by

the weak convergence of measures.

The collection Vdiscr(R) of all the discrete measures

µ =
` PN

i=1 miδxi ,
PN

i=1 miviδxi

´
is a dense subset of V2(R).

µn = (ρn, ρnvn) converges to µ = (ρ, ρv) in V2(R) if and only if

W2(ρn, ρ) → 0, ρnvn � ρv weakly in M(R),

Z

R
|vn|

2 dρn →

Z

R
|v|2 dρ.
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(Xρ2 (w))
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dw =

‚‚v1
◦Xρ1 − v2

◦Xρ2
‚‚2

L2(0,1)

and a distance D2

D2
2(µ1, µ2

) :=W 2
2 (ρ1, ρ2

) + U2
2 (µ1, µ2
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Theorem (Ambrosio-Gigli-S. ’05)
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µ =
` PN
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PN
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R
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The fundamental estimate

Let Vdiscr(R) the collection of all the discrete measures in V2(R) and let us denote

by St : Vdiscr(R) → Vdiscr(R) the map associating to any discrete initial datum

(ρ0, ρ0v0) ∈ Vdiscr the solution (ρt, ρtvt) of the (discrete) sticky-particle system.

St is a semigroup in Vdiscr(R).
For µ ∈ V2(R) we set

[µ]
2
2 :=

Z

R

“
|x|2 + |v(x)|

2
”

dρ(x) = D2
2(µ, (δ0, 0)).

Theorem (Stability with respect to the initial data)

Let µ�
t = (ρ�

t , ρ
�
tv

�
t ) = St[µ�

0], � = 1, 2, be the solutions of the (discrete)

sticky-particle system with initial data µ�
0 ∈ Vdiscr(R).

W2(ρ1
t , ρ2

t ) ≤ W2(ρ1
0, ρ2

0) + tU2(µ1
0, µ2

0),
Z t

0
U2

2 (µ1
r, µ2

r) dr ≤ C(1 + t)
“
[µ1

]2 + [µ2
]2

”“
W2(ρ1

0, ρ2
0) + U2(µ1

0, µ2
0)

”
,

for a suitable “universal” constant C independent of t and the data.
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Evolution semigroup

Theorem (The evolution semigroup in V2(R))

� The semigroup St can be uniquely extended by density to a right-continuous

semigroup (still denoted St) of strongly-weakly continuous transformations in

V2(R), thus satisfying

Ss+t[µ] = Ss[St[µ]] ∀ s, t ≥ 0, lim
t↓0

D2(St[µ], µ) = 0. (2)

St complies with the same discrete stability estimates of the previous

Theorem.

� (ρt, ρtvt) = St[µ], µ ∈ V2(R), is a distributional solution of Euler system

satisfying Oleinik entropy condition.
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A gradient flow formulation in P2(R)

The semigroup St can also be characterized by the (metric) gradient flow Gτ

of the (−1)-geodesically convex functional

Φ(ρ) := −
1

2
W 2

2 (ρ, ρ0)

in P2(R).

Theorem (The gradient flow of the opposite Wasserstein distance)

If µt = (ρt, ρtvt) = St(ρ0, ρ0v0) is a solution of SPS then the rescaling τ = log t,
µ̂τ = µt, ρ̂τ = ρt satisfy

ρ̂τ+δ = Gδ(ρ̂τ ) or, equivalently ρt eδ = Gδ(ρt).

The (rescaled) semigroup G provides a displacement extrapolation, i.e. a

canonical way to extend Wasserstein geodesics after collisions.
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A simple example

ρ0 ρ0 ρ0 ρ0

ρε ρε

vε vε
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Non-local effects in the multi-dimensional case
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v2
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v2

v2

Non-local interaction can be avoided only in
the 1-dimensional case.
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Extensions

Extensions:

� (in collaboration with W. Gangbo and M. Westdickenberg) Adding a

force induced by a potential V
8
<

:

∂tρ + ∂x(ρ v) = 0,

∂t(ρ v) + ∂x(ρ v2
) = −ρ ∂xV .

� Adding a force induced by a smooth interaction potential

8
<

:

∂tρ + ∂x(ρ v) = 0,

∂t(ρ v) + ∂x(ρ v2
) = −ρ

`
ρ ∗ ∂xW

´

� Adding a force induced by a non-smooth interaction potential, e.g. the

Euler-Poisson system when W (x) = ±|x|.

Open problems:

� The SPS in the multidimensional case.

� The displacement-extrapolation problem.
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