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Convexity Slope Generation Convergence

Displacement interpolation

If µ0, µ1 ∈ P2(Rd) and µ ∈ Γo(µ0, µ1) is an optimal coupling, we can consider the
displacement interpolating curve µθ, θ ∈ [0, 1],

µθ =
`
(1− θ)π1 + θπ2´

#
µ, π1(x1, x2) = x1, π2(x1, x2) = x2

Equivalent probabilistic notation: let X0, X1 be an optimal couple of random
variables, (Xi)#P = µi, (X0, X1)#P = µ. µθ =

`
(1− θ)X0 + θX1

´
#

P is just the

law of the interpolated random variable Xθ := (1− θ)X0 + θX1

µθ is a minimal, constant speed geodesic connecting µ0 and µ1, since

W2(µs, µt) = |t− s|W2(µ0, µ1), |µ̇θ| ≡ W2(µ0, µ1) = L[µ].

When µ0 � L d is absolutely continuous, then Brenier theorem shows that µ is
unique and it is concentrated on the graph of an optimal map t,

µ = (i× t)#µ0, µθ =
`
(1− θ)i + θt

´
#

µ0.

The map t is (cyclically monotone), the interpolated maps
tθ(x) := (1− θ)x + θt(x), θ ∈ [0, 1) are also strongly monotone, since

�t(x)− t(y), x− y� ≥ 0, �tθ(x)− tθ(y), x− y� ≥ (1− θ)|x− y|2,

µ1

µ0

µt
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Convexity Slope Generation Convergence

Displacement convexity

Definition (McCann ’97)

A functional Φ : P2(Rd) → (−∞, +∞] is λ-displacement convex if for every
couple of measures µ0, µ1 ∈ D(Φ) there exists a geodesic µθ, θ ∈ [0, 1]
connecting them (equivalently, an optimal coupling µ ∈ Γo(µ0, µ1)) such that

Φ(µθ) ≤ (1− θ)Φ(µ0) + θΦ(µ1)−
λ

2
θ(1− θ)W 2

2 (µ0, µ1). (DC)

A few comments:

� (DC) is modelled on the analogous inequality for λ-convex functions in Rm:

φ((1− θ)x0 + θx1) ≤ (1− θ)x0 + θx1 −
λ

2
θ(1− θ) |x0 − x1|

2.

Just replace segments with geodesics and the euclidean distance with the
Wasserstein one.

� Since geodesics are not unique, the present definition only requires that
convexity inequality holds at least along one geodesic. This is sufficient
for the applications and enjoys nice stability properties with respect to
perturbation of the functional (e.g. under Γ-convergence).
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Convexity Slope Generation Convergence

Displacement convexity for potential energy

Let V : Rd → (−∞, +∞] be a lower semicontinuous potential with the associated
potential energy

V(µ) :=

Z

Rd
V (x) dµ(x).

Notice that the functional V is linear (thus convex) with respect to the usual
linear structure in the space of measures.

Theorem

V is displacement λ-convex iff V is λ-convex.

Proof. Let (X0, X1) be an optimal couple of random variables with law µ0, µ1.
µθ = (Xθ)#P where Xθ = (1− θ)X0 + θX1 and

V(µθ) =

Z

Rd
V (x) dµθ = E

h
V

`
Xθ)

i
≤ E

h
(1− θ)V (X0) + θV (X1)−

λ

2
θ(1− θ)|X0 −X1|

2
i

= (1− θ)E
h
V (X0)

i
+ θE

h
V (X1)

i
−

λ

2
θ(1− θ)E

h
|X0 −X1|

2
i

= (1− θ)V(µ0) + θV(µ1)−
λ

2
θ(1− θ)W 2

2 (µ0, µ1).

In the last identity we used the optimality of X0, X1, i.e.

E
h
|X0 −X1|

2
i

= W 2
2 (µ0, µ1).
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Convexity Slope Generation Convergence

Displacement convexity for the interaction energy

Let W : Rd → (−∞, +∞] be a lower semicontinuous, even interaction potential
with the associated interaction energy

W(µ) :=
1

2

ZZ

Rd×Rd
W (x− y) dµ(x) dµ(y).

Theorem

Suppose λ≤ 0: W is displacement λ-convex iff W is λ-convex.

Comments.

� The functional W is quadratic but it is generally not convex with respect to
the usual linear structure in the space of measures. Consider e.g.
W (x) := 1

2 |x|
2:

W(µ) =
1

2

ZZ
|x− y|2 dµ(x) dµ(y) =

Z

Rd
|x|2 dµ(x)−

˛̨
˛

Z

Rd
x dµ(x)

˛̨
˛
2

so that W((1− θ)δ0 + θδx) = (θ − θ2)|x|2

� When W is λ-covex with λ > 0 we can only deduce that W is displacement
convex: the functional is in fact invariant by translation.
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Convexity Slope Generation Convergence

Displacement convexity for internal energy functionals

Let F : [0, +∞) → R be a continuous convex function with F (0) = 0 and let

F(µ) :=

Z

Rd
F (u(x)) dx, µ = uL d, u =

dµ

dL d
.

Theorem (McCann ’97)

F is displacement convex iff r �→ r−dF (rd) is convex and non increasing in
(0, +∞).

Comments:

� When d = 1 McCann condition is equivalent to the convexity of F . When
d > 1 it is stronger.

� The logarithmic entropy H corresponding to F (r) = r log r is always
displacement convex.

� The power energy F (r) =
1

β − 1
rβ is displacement convex iff β ≥ 1− 1/d.
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Convexity Slope Generation Convergence

Application: a simple proof of Talagrand inequality

Let us consider a reference probability measure γ = e−V where V satisfies the
Bakry-Emery condition D2V ≥ λI, i.e. it is λ-convex with λ > 0.

The typical example is the Gaussian measure γ := (2π)−d/2e−|x|2/2 L d,
V (x) := 1

2 |x|
2 + d

2 log(2π).
The relative entropy functional w.r.t. γ

H(µ|γ) :=

Z

Rd

dµ

dγ
log

“dµ

dγ

”
dγ = H(µ) + V(µ) is displacement λ-convex.

Jensen inequality yields

H(µ|γ) ≥ µ(Rd) log(µ(Rd)) = 0 = H(γ|γ).

so that γ is the (unique) minimizer of H(·|γ) in P2(Rd).

Theorem (Talagrand inequality (Otto-Villani ’00))

λ

2
W 2

2 (µ, γ) ≤ H(µ|γ) for every µ ∈ P2(Rd).

Proof. Take a geodesic µθ conecting γ to µ and apply the convexity inequality

0 ≤ H(µθ|γ) ≤ (1− θ)H(γ|γ) + θH(µ|γ)−
λ

2
θ(1− θ)W 2

2 (µ, γ)

= θH(µ|γ)−
λ

2
θ(1− θ)W 2

2 (µ, γ).

Dividing by θ and letting θ ↓ 0 we conclude.
9



Convexity Slope Generation Convergence

Displacement convexity of the logarithmic entropy

Let µi = uiL d be probability measures with finite entropy, let t the Brenier map
pushing µ0 to µ1, and let µθ = uθL d = (tθ)#µ0 with tθ = (1− θ)i + θt.
We have already shown that

H(µθ) = H(µ0)−

Z

Rd
log

“
det Dtθ(x)

”
u0(x) dx

Thus it is sufficient to show that

the map θ �→ log
“

det Dtθ(x)
”

is concave for µ0-a.e. x ∈ Rd.

Notice that Dtθ(x) = (1− θ)I + θD(x) where I is the identity matrix and
D(x) = Dt(x) is a symmetric and positive definite matrix for µ0-a.e. x
(Brenier theorem). Denoting by λi(x) its positive eigenvalues, we have

log
“

det Dtθ(x)
”

= log
“
Πd

i=1

`
1− θ + θλi(x)

´”
=

dX

i=1

log
“`

1− θ + θλi(x)
´”

which is clearly concave w.r.t. θ.
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Convexity Slope Generation Convergence

Metric slope

Let us recall that the metric slope of a functional Φ : P2(Rd) → (−∞, +∞] is
defined as

|∂Φ|(µ) := lim sup
σ→µ

`
Φ(µ)− Φ(σ)

´
+

W2(σ, µ)
.

The slope provides a simple upper bound of the norm of the (weak) Wasserstein
gradient of Φ:

�∂Φ(µ)�L2(µ;Rd) ≤ |∂Φ|(µ).

In fact, if g = ∂Φ(µ), ξ ∈ C∞c (Rd; Rd), Ẋ = ξ(X), and µε := (Xε)#µ, we have by
definition

Z

Rd
�g, ξ� dµ = lim

ε↓0
ε−1

“
Φ(µ)− Φ((Xε)#µ)

”

≤ lim sup
ε↓0

`
Φ(µ)− Φ((Xε)#µ)

´
+

W2(µε, µ)

W2(µε, µ)

ε

≤ |∂Φ|(µ) lim sup
ε↓0

W2(µε, µ)

ε
≤ |∂Φ|(µ)�ξ�L2(µ;Rd)

since

ε−2W 2
2 (µε, µ) ≤ ε−2

Z

Rd
|Xε(x)− x|2 dµ

ε↓0
→

Z

Rd
|ξ|2 dµ.
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Convexity Slope Generation Convergence

Extremal properties of the slope

Theorem

If Φ is displacement convex then |∂Φ|(µ) := sup
σ �=µ

`
Φ(µ)− Φ(σ)

´
+

W2(σ, µ)
.

In particular, if Φ is lower semicontinuous, the map µ �→ |∂Φ|(µ) is also lower
semicontinuous in P2(Rd).

Proof. If σθ is a geodesic connecting µ with σ, displacement convexity yields

θ �→
Φ(σθ)− Φ(µ)

W2(µ, σθ)
is nondecreasing, so that

`
Φ(µ)− Φ(σ)

´
+

W2(σ, µ)
≤

`
Φ(µ)− Φ(σθ)

´
+

W2(σθ, µ)
≤ lim sup

θ↓0

`
Φ(µ)− Φ(σθ)

´
+

W2(σθ, µ)
≤ |∂Φ|(µ).

The “sup” formula for the slope can be equivalently stated as

−|∂Φ|(σ)W2(µ, σ) ≤ Φ(µ)− Φ(σ) ≤ |∂Φ|(µ)W2(µ, σ).

When Φ is λ convex we have more generally

−|∂Φ|(σ)W2(µ, σ)+ λ
2 W 2

2 (µ, σ) ≤ Φ(µ)−Φ(σ) ≤ |∂Φ|(µ)W2(µ, σ)+ λ
2 W 2

2 (µ, σ)

If λ > 0 and choosing σ := µmin the minimizer of Φ, we have |∂Φ|(µmin) = 0 and

λ

2
W 2

2 (µ, µmin) ≤ Φ(µ)− Φ(µmin) ≤
1

2λ
|∂Φ|2(µ).
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Convexity Slope Generation Convergence

Strong Wasserstein gradients

Let us suppose that Φ is displacement convex.

Theorem (Strong Wasserstein subgradient)

If |∂Φ|(µ) < +∞ then there exists a vector field g = ∂◦Φ(µ) ∈ L2(µ; Rd) such that

�g�L2(µ;Rd) = |∂Φ|(µ), Φ(t#µ)− Φ(µ) ≥

Z

Rd
�g, t− i� dµ(x) + R(t),

where R(t) = o(�t− i�L2(µ;Rd)) and R(t) = 0 if t is an optimal map.

� If Φ is differentiable along smooth vector fields, then a strong gradient is also
a weak one.

� Conversely, in all the previous examples concerning potential, interaction, and
internal energies (under further suitable conditions...), weak Wasserstein
gradients are also strong. They can then be used to obtain quantitative

estimates on Φ, e.g. in the case of displacement λ-convex functionals, thus
satisfying the metric inequality

λ

2
W 2

2 (µ, µmin) ≤ Φ(µ)− Φ(µmin) ≤
1

2λ
|∂Φ|2(µ).
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Convexity Slope Generation Convergence

A general result

Let Φ(µ) = V(µ) +W(µ) + F(µ) where

� V(µ) =
R

Rd V (x) dµ(x) for a lower semicontinuous and convex potential

V : Rd → (−∞, +∞] with Ω ⊂ D(V ) ⊂ Ω, Ω open in Rd.

� W(µ) :=
R

Rd W (x− y) dµ(x) dµ(y) for a λ-convex and differentiable potential

W : Rd → R satisfying a doubling condition.

� F(µ) :=
R

Rd F (u) dx for a convex and superlinear function F : [0, +∞) → R,
F (0) = 0, satisfying McCann condition.

Theorem (Ambrosio-Gigli-S.)

The weak Wasserstein differential of Φ is characterized by

g = ∂Φ(µ) ∈ L2(µ; Rd) ⇔

(
µ = uL d, L(u) ∈ W 1,1

loc (Ω),

ug = ∇L(u) + u(∇V +∇W ∗ u)

and it is also a strong differential; in particular its L2(µ; Rd) coincides with the
metric slope |∂Φ|(µ) of Φ.
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Convexity Slope Generation Convergence

Application: Logarithmic Sobolev inequalities

Let γ = e−V be a reference probability measure where V satisfies the
Bakry-Emery condition D2V ≥ λI, i.e. it is λ-convex with λ > 0.
We choose Φ(µ) := H(µ|γ) = H(µ) + V(µ); the Wasserstein gradient of Φ is, at
least formally,

∂Φ(µ) = ∂H(µ)+∂V(µ) =
∇u

u
+∇V = ∇

`
log u+V

´
= ∇ log

`
u/e−V ´

= ∇ log
“dµ

dγ

”
.

The relative Fisher information is the L2-norm of the Wasserstein gradient

I(µ|γ) :=

Z

Rd

˛̨
˛∇ log

“dµ

dγ

”˛̨
˛
2
dµ =

Z

Rd

|∇u + u∇V |2

u
dγ.

Theorem (Logarithmic Sobolev inequality (Gross, · · · , Otto-Villani))

The relative Fisher information is the (squared) slope of the relative entropy and

H(µ|γ) ≤
1

2λ
I(µ|γ). (LS)

The proof of (LS) follows from the general inequality for λ-convex functionals

Φ(µ)− Φ(umin) ≤
1

2λ
|∂Φ|2(µ)

once we know that I(µ, γ) = |∂H(·|γ)|2(µ).
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Convexity Slope Generation Convergence

Application: optimal constant in Sobolev inequality

Let d ≥ 3 and p := 2∗ such that 1
p = 1

2 −
1
d . Then

min
n Z

Rd
|∇w|2 dx :

Z

Rd
wp dx = 1

o
=

Z

Rd
|∇wb|

2 dx, wb :=
“
a+

1

2(d− 1)
|x|2

”−d/p
.

Proof. Let wp =: u, wp
b =: ub and take F (u) := −d u1−1/d, L(u) := u1−1/d,

Φ(µ) := F(µ) +
1

2

Z

Rd
|x|2 dµ, ∂Φ(µ) =

∇L(u)

u
+ x, Φ(µ) ≥ Φ(µb).

|∂Φ|2(µ) =

Z

Rd

˛̨
˛
∇L(u)

u
+ x

˛̨
˛
2
u dx =

Z

Rd

|∇L(u)|2

u
dx +

Z

Rd
|x|2 dµ + 2

Z

Rd
�∇L(u), x� dx

=

Z

Rd

|∇L(u)|2

u
dx +

Z

Rd
|x|2 dµ− 2d

Z

Rd
L(u) = 2cd

Z

Rd

˛̨
˛∇u1/p

˛̨
˛
2
dx + 2Φ(µ),

where cd := 2
“

d−1
d−2

”2
. Since |∂Φ|(µb) = 0 we get

cd

Z

Rd

˛̨
˛∇u1/p

b

˛̨
˛
2
dx = −Φ(µb)

Φ(µ)− Φ(µb) ≤
1

2
|∂Φ|2(µ) = cd

Z

Rd

˛̨
˛∇u1/p

˛̨
˛
2
dx + Φ(µ),

so that Z

Rd

˛̨
˛∇u1/p

˛̨
˛
2
≥

Z

Rd

˛̨
˛∇u1/p

b

˛̨
˛
2
.
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Convexity Slope Generation Convergence

Equivalent definitions

Theorem (Ambrosio-Gigli-S.)

Let Φ : P2(Rd) → (−∞, +∞] be a proper, lower semicontinuous, and
displacement λ-convex functional and let µ : (0, +∞) → P2(Rd) be a locally
Lipschitz curve. The following properties are equivalent:

� µ satisfies the continuity equation

∂tµ + div(µv) = 0

Z t1

t0

Z

Rd
|vt|

2 dµt dt < +∞ for every 0 < t0 < t1 < +∞

and v is a strong Wasserstein subgradient vt = −∂◦Φ(µt) for a.e. t.

� µ satisfies the Evolution Variational inequality for a.e. t > 0

d

dt
W 2

2 (µt, σ) ≤ Φ(σ)− Φ(µt)−
λ

2
W 2

2 (µt, σ) for every σ ∈ D(Φ) (EVI)

� µ satisfies the Energy identity

−
d

dt
Φ(µt) =

1

2
|µ̇t|

2 +
1

2
|∂Φ|2(µt) a.e. in (0, +∞),

also in the weaker integrated–inequality form (when µ0 ∈ D(Φ))

Φ(µt) +
1

2

Z t

0

“
|µ̇r|

2 + |∂Φ|2(µr)
”

dr ≤ Φ(µ0).
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Convexity Slope Generation Convergence

A key ingredient: the chain rule

Theorem (Chain rule)

Let Φ : P2(Rd) → (−∞, +∞] be a proper, lower semicontinuous and λ-convex
functional, and let µ : [a, b] → Rd be a Lipschitz curve.
If t �→ |∂Φ|(µt) is integrable in (a, b) then the map t �→ Φ(µt) is absolutely
continuous and

d

dt
Φ(µt) =

Z

Rd
�vt, ∂

◦Φ(µt)� dµt ≥ −|µ̇t| |∂Φ|(µt) a.e. in (a, b),

where vt is the Wasserstein velocity of µ.

If µ satisfies the energy inequality then

1

2

Z t

0

“
|µ̇r|

2 + |∂Φ|2(µr)
”

dr ≤ Φ(µ0)− Φ(µt)
chain rule

= −

Z t

0

Z

Rd
�vr, ∂◦Φ(µr)� dµr

so that
1

2

Z t

0

“
|µ̇r|

2 + |∂Φ|2(µr) + 2

Z

Rd
�vr, ∂◦Φ(µr)� dµr

”
dr ≤ 0

i.e.
vt = −∂◦Φ(µt) for a.e. t > 0.
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Convexity Slope Generation Convergence

The main generation result

Theorem (Ambrosio-Gigli-S. 05, S. 07)

Let Φ : P2(Rd) → (−∞, +∞] be a proper, lower semicontinuous, and

displacement λ-convex functional. For every µ0 ∈ D(Φ) there exists a unique
curve µt = St[µ0] solution of (EVI) such that limt↓0 µt = µ0.

� The map t �→ St[·] is a continuous semigroup of λ contractions in

D(Φ) ⊂ P2(Rd),

W2(St[µ0], St[µ1]) ≤ e−λtW2(µ0, µ1)

� µ is locally Lipschitz in (0, +∞), for every t > 0, St[µ0] ∈ D(∂Φ) ⊂ D(Φ),
and satisfies the regularization estimate (here λ = 0)

1

2
W 2

2 (µt, σ) + t
`
Φ(µt)− Φ(σ)

´
+

t2

2
|∂Φ|2(µt) ≤

1

2
W 2

2 (µ0, σ) ∀σ ∈ D(Φ)

� The curves t �→ µt and t �→ Φ(µt) are right differentiable at every t > 0 and
satisfies the minimal selection principle

t �→ −
d

dt+
Φ(µt) = |µ̇t+|

2 = |∂Φ|2(µt) is nonincreasing.

� Asymptotic decay, λ > 0 W2(µt, µmin) ≤ e−λtW2(µ0, µmin)

Φ(µt)− Φ(µmin) ≤ e−2λt
“
Φ(µ0)− Φ(µmin)

”
, |∂Φ|2(µt) ≤ e−2λt

|∂Φ|2(µ0)
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Convexity Slope Generation Convergence

Convexity properties of the distance

The squared distance enters in a crucial way in the minimizing functional

M �→
1

2τ
W 2

2 (Mn−1
τ , M) + Φ(M).

The behaviour of the squared distance along geodesics should play a
crucial role. In the Euclidean case

x0

x1

u

xt

d2(u, xθ ) = (1− θ)d2(u, x0) + θd2(u, x1)− θ(1 − θ)d2(x0, x1).
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Convexity Slope Generation Convergence

The Wasserstein space is Positively Curved (PC)

In Rm = P2(R2) consider two point masses µ0 and µ1 . . . and a third reference
measure ν.

µ1

µ1µ0

µ0

µ1

µ1µ0

µ0

µ1/4

µ1/4

µ1/2 µ1/2

µ3/4

µ3/4

ν

ν

a

b

The Wasserstein distance is given by

W 2
2 (ν, µθ) = min

“
a2 + b2θ2, a2 + b2(1− θ)2

”

It is not λ-convex, for any λ.

0

t

W 2
2 (µθ, ν)

11/2
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Convexity Slope Generation Convergence

Slope estimate (1)

Rewrite the minimum problem

W 2
2 (Mn

τ , Mn−1
τ )

2τ
+ Φ(Mn

τ ) ≤
W 2

2 (V , Mn−1
τ )

2τ
+ Φ(V )

as

Φ(Mn
τ )− Φ(V ) ≤

W 2
2 (V , Mn−1

τ )

2τ
−

W 2
2 (Mn

τ , Mn−1
τ )

2τ

=
W2(V , Mn−1

τ )−W2(Mn
τ , Mn−1

τ )

τ

W2(V , Mn−1
τ ) + W2(Mn

τ , Mn−1
τ )

2

(triangular inequality) ≤
W2(V, Mn

τ )

τ

W2(V , Mn−1
τ ) + W2(Mn

τ , Mn−1
τ )

2
.

Dividing by W2(V, Mn
τ ) and passing to the limit as V → Mn

τ we get

|∂Φ|(Mn
τ ) ≤

W2(Mn
τ , Mn−1

τ )

τ
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Convexity Slope Generation Convergence

Positively Curved (PC) spaces and semiconcavity of the

distance

The euclidean case � identity

d2(u, xt)=(1− t)d2(u, x0) + td2(u, x1) − t(1 − t)d2(x0, x1).

The Wasserstein case � inequality

W 2
2 (ν, µt) ≥ (1− t)W 2

2 (ν, µ0) + tW 2
2 (ν, µ1) − t(1 − t)W 2

2 (µ0, µ1).

x0

x1

u

xt

xt

Difficulty: the functional µ �→
1

2τ
W 2

2 (ν, µ) + Φ(µ)

looses any convexity property
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Convexity Slope Generation Convergence

Refined discrete energy estimate (2): convex functionals

Mn
τ minimizes the functional U �→

W 2
2 (U, Mn−1

τ )

2τ
+ φ(U)

Vθ := (1− θ)Mn−1
τ + θ Mn

τ
θ↑1
−→Mn

τ

Mn
τ

Mn−1
τ

Vθ

W 2
2 (Vθ, Mn−1

τ )

2τ
= θ2 W 2

2 (Mn
τ , Mn−1

τ )

2τ
, Φ(Vθ) ≤ (1− θ) Φ(Mn−1

τ ) + θ Φ(Mn
τ )

The function

θ �→ θ2 W 2
2 (Mn

τ , Mn−1
τ )

2τ
+ (1− θ) Φ(Mn−1

τ ) + θ Φ(Mn
τ )

has a minimum at θ = 1; its derivative at θ = 1 is therefore nonpositive and we
find

1
W 2

2 (Mn
τ , Mn−1

τ )

τ
+ Φ(Mn

τ )− Φ(Mn−1
τ ) ≤ 0
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Convexity Slope Generation Convergence

Discrete slope-energy inequality, convex functionals

Slope estimate (1)

☛
✡

✟
✠|∂Φ|(Mn

τ ) ≤
W2(Mn

τ , Mn−1
τ )

τ

Discrete energy estimate (2)

☛
✡

✟
✠W 2

2 (Mn
τ , Mn−1

τ )

τ
≤ Φ(Mn−1

τ )− Φ(Mn
τ )

τ

2

W 2
2 (Mn

τ , Mn−1
τ )

τ2
+

τ

2
|∂Φ|2(Mn

τ ) ≤ Φ(Mn−1
τ )− Φ(Mn

τ )

Summing up:

τ

2

NX

n=1

W 2
2 (Mn

τ , Mn−1
τ )

τ2
+

τ

2

NX

n=1

|∂Φ|2(Mn
τ ) ≤ Φ(u0)− Φ(MN

τ )

Compare with the continuous energy identity

1

2

Z T

0
|u̇t|

2 dt +
1

2

Z T

0
|∂Φ|2(ut) dt = Φ(u0)− Φ(ut).
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Convexity Slope Generation Convergence

Slope decay (2), convex functionals

☛
✡

✟
✠τ

2
|∂Φ|2(Mn

τ ) +
τ

2

W 2
2 (Mn

τ , Mn−1
τ )

τ2
≤ Φ(Mn−1

τ )− Φ(Mn
τ )

By the definition of the slope for a convex function

Φ(Mn−1
τ )− Φ(Mn

τ ) ≤ |∂Φ|(Mn−1
τ ) W2(Mn−1

τ , Mn
τ )

τ

2
|∂Φ|2(Mn

τ ) +
τ

2

W 2
2 (Mn

τ , Mn−1
τ )

τ2
≤ Φ(Mn−1

τ )− Φ(Mn
τ ) ≤ |∂Φ|(Mn−1

τ ) W2(Mn−1
τ , Mn

τ )

≤
τ

2
|∂Φ|2(Mn−1

τ ) +
1

2τ
W 2

2 (Mn−1
τ , Mn

τ )

|∂Φ|(Mn
τ ) ≤ |∂Φ|(Mn−1

τ )
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Convexity Slope Generation Convergence

Summary

� Rough discrete energy inequality

τ

2

W 2
2 (Mn

τ , Mn−1
τ )

τ2
≤ Φ(Mn−1

τ )− Φ(Mn
τ )

� Slope estimate

|∂Φ|(Mn
τ ) ≤

W2(Mn
τ , Mn−1

τ )

τ

Convexity:

� Discrete slope–energy inequality

τ

2

W 2
2 (Mn

τ , Mn−1
τ )

τ2
+

τ

2
|∂Φ|2(Mn

τ ) ≤ Φ(Mn−1
τ )− Φ(Mn

τ )

� Slope decay

|∂Φ|(Mn
τ ) ≤ |∂Φ|(Mn−1

τ )
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Convexity Slope Generation Convergence

Convergence for convex functionals with compact sublevels

If Φ : P2(Rd) → (−∞, +∞] be a convex functional with compact sublevels then
the piecewise constant interpolant Mτ converge pointwise in P2(Rd). Passing to
the limit by lower semicontinuity in the inequality

τ

2

NX

n=1

W 2
2 (Mn

τ , Mn−1
τ )

τ2
+ |∂Φ|2(Mn

τ ) + Φ(MN
τ ) ≤ Φ(M0

τ )

we get
1

2

Z T

0
|µ̇t|

2 + |∂Φ|2(µt) dt + Φ(µT ) ≤ Φ(µ0)

which is enough to conclude.
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