Application of Optimal Transport to Evolutionary PDEs

4 - Displacement convexity

Giuseppe Savaré http://www.imati.cnr.it/~savare Department of Mathematics, University of Pavia, Italy

$$2010\ {\rm CNA}\ {\rm Summer}\ {\rm School}$$ New Vistas in Image Processing and PDEs

Carnegie Mellon Center for Nonlinear Analysis, Pittsburgh, June 7-12, 2010

Convexity	Slope	Generation	Convergence

Outline

1 Displacement convexity

2 Slope and subgradient inequalities: applications to Sobolev and logarithmic Sobolev inequalities

3 Generation results for gradient flows of displacement λ -convex functionals

4 Convergence of the variational scheme by energy identity

Convexity	Slope	Generation	Convergence

Outline

1 Displacement convexity

- **2** Slope and subgradient inequalities: applications to Sobolev and logarithmic Sobolev inequalities
- **B** Generation results for gradient flows of displacement λ -convex functionals
- **4** Convergence of the variational scheme by energy identity

Convexity	Slope
-----------	-------

Displacement interpolation

If $\mu_0, \mu_1 \in \mathscr{P}_2(\mathbb{R}^d)$ and $\boldsymbol{\mu} \in \Gamma_o(\mu_0, \mu_1)$ is an optimal coupling, we can consider the **displacement interpolating** curve $\mu_{\theta}, \theta \in [0, 1]$,

$$\mu_{\theta} = \left((1-\theta)\pi^1 + \theta\pi^2 \right)_{\#} \boldsymbol{\mu}, \quad \pi^1(x_1, x_2) = x_1, \quad \pi^2(x_1, x_2) = x_2$$

Equivalent probabilistic notation: let X_0, X_1 be an optimal couple of random variables, $(X_i)_{\#}\mathbb{P} = \mu_i$, $(X_0, X_1)_{\#}\mathbb{P} = \mu$. $\mu_{\theta} = ((1 - \theta)X_0 + \theta X_1)_{\#}\mathbb{P}$ is just the law of the interpolated random variable $X_{\theta} := (1 - \theta)X_0 + \theta X_1$ μ_{θ} is a minimal, constant speed geodesic connecting μ_0 and μ_1 , since

$$W_2(\mu_s,\mu_t) = |t-s|W_2(\mu_0,\mu_1), \quad |\dot{\mu}_{\theta}| \equiv W_2(\mu_0,\mu_1) = \mathcal{L}[\mu].$$

When $\mu_0 \ll \mathscr{L}^d$ is absolutely continuous, then Brenier theorem shows that μ is unique and it is concentrated on the graph of an optimal map t,

$$\boldsymbol{\mu} = (\boldsymbol{i} \times \boldsymbol{t})_{\#} \mu_0, \quad \mu_{\theta} = ((1-\theta)\boldsymbol{i} + \theta \boldsymbol{t})_{\#} \mu_0.$$

The map \boldsymbol{t} is (cyclically monotone), the interpolated maps $\boldsymbol{t}_{\theta}(x) := (1 - \theta)x + \theta \boldsymbol{t}(x), \ \theta \in [0, 1)$ are also **strongly** monotone, since

$$\langle oldsymbol{t}(x) - oldsymbol{t}(y), x - y
angle \geq 0, \quad \langle oldsymbol{t}_{ heta}(x) - oldsymbol{t}_{ heta}(y), x - y
angle \geq (1 - heta) |x - y|^2,$$

Convexity	Slope	Generation	Converge

Displacement convexity

Definition (McCann '97)

A functional $\Phi : \mathscr{P}_2(\mathbb{R}^d) \to (-\infty, +\infty]$ is λ -displacement convex if for every couple of measures $\mu_0, \mu_1 \in D(\Phi)$ there exists a geodesic $\mu_{\theta}, \theta \in [0, 1]$ connecting them (equivalently, an optimal coupling $\boldsymbol{\mu} \in \Gamma_o(\mu_0, \mu_1)$) such that

$$\Phi(\mu_{\theta}) \le (1-\theta)\Phi(\mu_0) + \theta\Phi(\mu_1) - \frac{\lambda}{2}\theta(1-\theta)W_2^2(\mu_0,\mu_1).$$
 (DC)

A few comments:

• (DC) is modelled on the analogous inequality for λ -convex functions in \mathbb{R}^m :

$$\phi((1-\theta)x_0+\theta x_1) \le (1-\theta)x_0+\theta x_1 - \frac{\lambda}{2}\,\theta(1-\theta)\,|x_0-x_1|^2.$$

Just replace segments with geodesics and the euclidean distance with the Wasserstein one.

Since geodesics are not unique, the present definition only requires that convexity inequality holds at least along one geodesic. This is sufficient for the applications and enjoys nice stability properties with respect to perturbation of the functional (e.g. under Γ-convergence).

Convexity	Slope	Generation	Conve

Displacement convexity for potential energy

Let $V:\mathbb{R}^d\to(-\infty,+\infty]$ be a lower semicontinuous potential with the associated potential energy

$$\mathcal{V}(\mu) := \int_{\mathbb{R}^d} V(x) \,\mathrm{d}\mu(x).$$

Notice that the functional \mathcal{V} is linear (thus convex) with respect to the usual linear structure in the space of measures.

Theorem

 \mathcal{V} is displacement $\boldsymbol{\lambda}$ -convex iff V is $\boldsymbol{\lambda}$ -convex.

Proof. Let (X_0, X_1) be an optimal couple of random variables with law μ_0, μ_1 . $\mu_{\theta} = (X_{\theta})_{\#} \mathbb{P}$ where $X_{\theta} = (1 - \theta)X_0 + \theta X_1$ and

$$\begin{aligned} \mathcal{V}(\mu_{\theta}) &= \int_{\mathbb{R}^d} V(x) \, \mathrm{d}\mu_{\theta} = \mathbb{E}\Big[V(X_{\theta})\Big] \leq \mathbb{E}\Big[(1-\theta)V(X_0) + \theta V(X_1) - \frac{\lambda}{2}\theta(1-\theta)|X_0 - X_1|^2\Big] \\ &= (1-\theta)\mathbb{E}\Big[V(X_0)\Big] + \theta\mathbb{E}\Big[V(X_1)\Big] - \frac{\lambda}{2}\theta(1-\theta)\mathbb{E}\Big[|X_0 - X_1|^2\Big] \\ &= (1-\theta)\mathcal{V}(\mu_0) + \theta\mathcal{V}(\mu_1) - \frac{\lambda}{2}\theta(1-\theta)W_2^2(\mu_0,\mu_1). \end{aligned}$$

In the last identity we used the optimality of X_0, X_1 , i.e.

$$\mathbb{E}\Big[|X_0 - X_1|^2\Big] = W_2^2(\mu_0, \mu_1).$$

Convexity Slope Generation Con

Displacement convexity for the interaction energy

Let $W:\mathbb{R}^d\to(-\infty,+\infty]$ be a lower semicontinuous, even interaction potential with the associated interaction energy

$$\mathcal{W}(\mu) := \frac{1}{2} \iint_{\mathbb{R}^d \times \mathbb{R}^d} W(x - y) \,\mathrm{d}\mu(x) \,\mathrm{d}\mu(y).$$

Theorem

Suppose $\lambda \leq 0$: W is displacement λ -convex iff W is λ -convex.

Comments.

• The functional W is quadratic but it is generally not convex with respect to the usual linear structure in the space of measures. Consider e.g. $W(x) := \frac{1}{2}|x|^2$:

$$\mathcal{W}(\mu) = \frac{1}{2} \iint |x - y|^2 \, \mathrm{d}\mu(x) \, \mathrm{d}\mu(y) = \int_{\mathbb{R}^d} |x|^2 \, \mathrm{d}\mu(x) - \left| \int_{\mathbb{R}^d} x \, \mathrm{d}\mu(x) \right|^2$$

so that $\mathcal{W}((1-\theta)\delta_0 + \theta\delta_x) = (\theta - \theta^2)|x|^2$

• When W is λ -covex with $\lambda > 0$ we can only deduce that W is displacement convex: the functional is in fact invariant by translation.

Convexity	Slope	Generation	Converge

Displacement convexity for internal energy functionals

Let $F:[0,+\infty)\to \mathbb{R}$ be a continuous convex function with F(0)=0 and let

$$\mathcal{F}(\mu) := \int_{\mathbb{R}^d} F(u(x)) \, \mathrm{d} x, \qquad \mu = u \mathscr{L}^d, \quad u = \frac{\mathrm{d} \mu}{\mathrm{d} \mathscr{L}^d}.$$

Theorem (McCann '97)

 \mathcal{F} is displacement convex iff $r \mapsto r^{-d}F(r^d)$ is convex and non increasing in $(0, +\infty)$.

Comments:

- When d = 1 McCann condition is equivalent to the convexity of F. When d > 1 it is stronger.
- The logarithmic entropy \mathcal{H} corresponding to $F(r) = r \log r$ is always displacement convex.

The power energy
$$F(r) = \frac{1}{\beta - 1} r^{\beta}$$
 is displacement convex iff $\beta \ge 1 - 1/d$.

	$\mathbf{n}\mathbf{v}$	ext	1.17
-			· · ·

Application: a simple proof of Talagrand inequality

Let us consider a reference probability measure $\gamma = e^{-V}$ where V satisfies the Bakry-Emery condition $D^2 V \ge \lambda I$, i.e. it is λ -convex with $\lambda > 0$. The typical example is the Gaussian measure $\gamma := (2\pi)^{-d/2} e^{-|x|^2/2} \mathscr{L}^d$, $V(x) := \frac{1}{2}|x|^2 + \frac{d}{2}\log(2\pi)$. The relative entropy functional w.r.t. γ

$$\mathcal{H}(\mu|\gamma) := \int_{\mathbb{R}^d} \frac{\mathrm{d}\mu}{\mathrm{d}\gamma} \log\left(\frac{\mathrm{d}\mu}{\mathrm{d}\gamma}\right) \mathrm{d}\gamma = \mathcal{H}(\mu) + \mathcal{V}(\mu) \quad \text{is displacement } \boldsymbol{\lambda}\text{-convex}.$$

Jensen inequality yields

$$\mathcal{H}(\mu|\gamma) \ge \mu(\mathbb{R}^d) \log(\mu(\mathbb{R}^d)) = 0 = \mathcal{H}(\gamma|\gamma).$$

so that γ is the (unique) minimizer of $\mathcal{H}(\cdot|\gamma)$ in $\mathscr{P}_2(\mathbb{R}^d)$.

Theorem (Talagrand inequality (Otto-Villani '00))

$$\frac{\lambda}{2}W_2^2(\mu,\gamma) \leq \mathcal{H}(\mu|\gamma) \quad for \ every \ \mu \in \mathscr{P}_2(\mathbb{R}^d).$$

Proof. Take a geodesic μ_{θ} conecting γ to μ and apply the convexity inequality

$$0 \leq \mathcal{H}(\mu_{\theta}|\gamma) \leq (1-\theta)\mathcal{H}(\gamma|\gamma) + \theta\mathcal{H}(\mu|\gamma) - \frac{\lambda}{2}\theta(1-\theta)W_{2}^{2}(\mu,\gamma)$$
$$= \theta\mathcal{H}(\mu|\gamma) - \frac{\lambda}{2}\theta(1-\theta)W_{2}^{2}(\mu,\gamma).$$

Dividing by θ and letting $\theta \downarrow 0$ we conclude.

Convexity Slope Generation Conv

Displacement convexity of the logarithmic entropy

Let $\mu_i = u_i \mathscr{L}^d$ be probability measures with finite entropy, let \boldsymbol{t} the Brenier map pushing μ_0 to μ_1 , and let $\mu_{\theta} = u_{\theta} \mathscr{L}^d = (\boldsymbol{t}_{\theta})_{\#} \mu_0$ with $\boldsymbol{t}_{\theta} = (1 - \theta) \boldsymbol{i} + \theta \boldsymbol{t}$. We have already shown that

$$\mathcal{H}(\mu_{\theta}) = \mathcal{H}(\mu_{0}) - \int_{\mathbb{R}^{d}} \log \left(\det \mathrm{D}\boldsymbol{t}_{\theta}(x) \right) u_{0}(x) \,\mathrm{d}x$$

Thus it is sufficient to show that

the map
$$\theta \mapsto \log \left(\det \mathrm{D} t_{\theta}(x) \right)$$
 is concave for μ_0 -a.e. $x \in \mathbb{R}^d$.

Notice that $D\mathbf{t}_{\theta}(x) = (1-\theta)\mathbf{I} + \theta D(x)$ where \mathbf{I} is the identity matrix and $D(x) = D\mathbf{t}(x)$ is a symmetric and positive definite matrix for μ_0 -a.e. x (Brenier theorem). Denoting by $\lambda_i(x)$ its positive eigenvalues, we have

$$\log\left(\det \mathbf{D}\boldsymbol{t}_{\theta}(x)\right) = \log\left(\Pi_{i=1}^{d}\left(1-\theta+\theta\lambda_{i}(x)\right)\right) = \sum_{i=1}^{d}\log\left(\left(1-\theta+\theta\lambda_{i}(x)\right)\right)$$

which is clearly concave w.r.t. θ .

Convexity	Slope	Generation	Convergence

Outline

1 Displacement convexity

2 Slope and subgradient inequalities: applications to Sobolev and logarithmic Sobolev inequalities

3 Generation results for gradient flows of displacement λ -convex functionals

4 Convergence of the variational scheme by energy identity

Convexity	Slope	Generation	Convergence

Metric slope

Let us recall that the metric slope of a functional $\Phi: \mathscr{P}_2(\mathbb{R}^d) \to (-\infty, +\infty]$ is defined as

$$|\partial \Phi|(\mu) := \limsup_{\sigma \to \mu} \frac{\left(\Phi(\mu) - \Phi(\sigma)\right)_+}{W_2(\sigma, \mu)}.$$

The slope provides a simple upper bound of the norm of the (weak) Wasserstein gradient of Φ :

$$\|\partial \Phi(\mu)\|_{L^2(\mu;\mathbb{R}^d)} \le |\partial \Phi|(\mu).$$

In fact, if $\boldsymbol{g} = \partial \Phi(\mu)$, $\boldsymbol{\xi} \in C_c^{\infty}(\mathbb{R}^d; \mathbb{R}^d)$, $\dot{X} = \boldsymbol{\xi}(X)$, and $\mu_{\varepsilon} := (X_{\varepsilon})_{\#}\mu$, we have by definition

$$\begin{split} \int_{\mathbb{R}^d} \langle \boldsymbol{g}, \boldsymbol{\xi} \rangle \, \mathrm{d}\mu &= \lim_{\varepsilon \downarrow 0} \varepsilon^{-1} \Big(\Phi(\mu) - \Phi((X_\varepsilon)_{\#} \mu) \Big) \\ &\leq \limsup_{\varepsilon \downarrow 0} \frac{\left(\Phi(\mu) - \Phi((X_\varepsilon)_{\#} \mu) \right)_+}{W_2(\mu_\varepsilon, \mu)} \, \frac{W_2(\mu_\varepsilon, \mu)}{\varepsilon} \\ &\leq |\partial \Phi|(\mu) \limsup_{\varepsilon \downarrow 0} \frac{W_2(\mu_\varepsilon, \mu)}{\varepsilon} \leq |\partial \Phi|(\mu)| \|\boldsymbol{\xi}\|_{L^2(\mu; \mathbb{R}^d)} \end{split}$$

since

$$\varepsilon^{-2} W_2^2(\mu_{\varepsilon},\mu) \leq \varepsilon^{-2} \int_{\mathbb{R}^d} |X_{\varepsilon}(x) - x|^2 \,\mathrm{d}\mu \xrightarrow{\varepsilon\downarrow 0} \int_{\mathbb{R}^d} |\boldsymbol{\xi}|^2 \,\mathrm{d}\mu.$$

Extremal properties of the slope

Theorem

If
$$\Phi$$
 is displacement convex then $|\partial\Phi|(\mu) := \boxed{\sup_{\sigma \neq \mu} \frac{(\Phi(\mu) - \Phi(\sigma))_+}{W_2(\sigma, \mu)}}.$

In particular, if Φ is lower semicontinuous, the map $\mu \mapsto |\partial \Phi|(\mu)$ is also lower semicontinuous in $\mathscr{P}_2(\mathbb{R}^d)$.

Proof. If σ_{θ} is a geodesic connecting μ with σ , displacement convexity yields

$$\theta \mapsto \frac{\Phi(\sigma_{\theta}) - \Phi(\mu)}{W_2(\mu, \sigma_{\theta})} \quad \text{is nondecreasing, so that} \\ \frac{\left(\Phi(\mu) - \Phi(\sigma)\right)_+}{W_2(\sigma, \mu)} \leq \frac{\left(\Phi(\mu) - \Phi(\sigma_{\theta})\right)_+}{W_2(\sigma_{\theta}, \mu)} \leq \limsup_{\theta \downarrow 0} \frac{\left(\Phi(\mu) - \Phi(\sigma_{\theta})\right)_+}{W_2(\sigma_{\theta}, \mu)} \leq |\partial \Phi|(\mu).$$

The "sup" formula for the slope can be equivalently stated as

$$-|\partial\Phi|(\sigma)W_2(\mu,\sigma) \le \Phi(\mu) - \Phi(\sigma) \le |\partial\Phi|(\mu)W_2(\mu,\sigma).$$

When Φ is $\boldsymbol{\lambda}$ convex we have more generally

$$-|\partial\Phi|(\sigma)W_2(\mu,\sigma) + \frac{\lambda}{2}W_2^2(\mu,\sigma) \leq \Phi(\mu) - \Phi(\sigma) \leq |\partial\Phi|(\mu)W_2(\mu,\sigma) + \frac{\lambda}{2}W_2^2(\mu,\sigma)$$

If $\lambda > 0$ and choosing $\sigma := \mu_{min}$ the minimizer of Φ , we have $|\partial \Phi|(\mu_{min}) = 0$ and

$$\frac{\lambda}{2}W_2^2(\mu,\mu_{min}) \le \Phi(\mu) - \Phi(\mu_{min}) \le \frac{1}{2\lambda} |\partial\Phi|^2(\mu).$$

Convexity Slope Generation

Convergence

Strong Wasserstein gradients

Let us suppose that Φ is displacement convex.

Theorem (Strong Wasserstein subgradient)

If $|\partial \Phi|(\mu) < +\infty$ then there exists a vector field $\boldsymbol{g} = \partial^{\circ} \Phi(\mu) \in L^{2}(\mu; \mathbb{R}^{d})$ such that

$$\|\boldsymbol{g}\|_{L^{2}(\mu;\mathbb{R}^{d})} = |\partial\Phi|(\mu), \qquad \Phi(\boldsymbol{t}_{\#}\mu) - \Phi(\mu) \geq \int_{\mathbb{R}^{d}} \langle \boldsymbol{g}, \boldsymbol{t} - \boldsymbol{i} \rangle \,\mathrm{d}\mu(x) + \mathscr{R}(\boldsymbol{t}),$$

where $\mathscr{R}(\mathbf{t}) = o(\|\mathbf{t} - \mathbf{i}\|_{L^2(\mu;\mathbb{R}^d)})$ and $\mathscr{R}(\mathbf{t}) = 0$ if \mathbf{t} is an optimal map.

- \blacktriangleright If Φ is differentiable along smooth vector fields, then a strong gradient is also a weak one.
- Conversely, in all the previous examples concerning potential, interaction, and internal energies (under further suitable conditions...), weak Wasserstein gradients are also strong. They can then be used to obtain quantitative estimates on Φ , e.g. in the case of displacement λ -convex functionals, thus satisfying the metric inequality

$$\frac{\lambda}{2}W_2^2(\mu,\mu_{min}) \le \Phi(\mu) - \Phi(\mu_{min}) \le \frac{1}{2\lambda} |\partial\Phi|^2(\mu).$$

-								
	0	n	\$76	1	5	÷	Ż.	

Slope

A general result

Let $\Phi(\mu) = \mathcal{V}(\mu) + \mathcal{W}(\mu) + \mathcal{F}(\mu)$ where

- ► $\mathcal{V}(\mu) = \int_{\mathbb{R}^d} V(x) \, d\mu(x)$ for a lower semicontinuous and convex potential $V : \mathbb{R}^d \to (-\infty, +\infty]$ with $\Omega \subset D(V) \subset \overline{\Omega}$, Ω open in \mathbb{R}^d .
- ▶ $\mathcal{W}(\mu) := \int_{\mathbb{R}^d} W(x-y) \, \mathrm{d}\mu(x) \, \mathrm{d}\mu(y)$ for a λ -convex and differentiable potential $W : \mathbb{R}^d \to \mathbb{R}$ satisfying a doubling condition.
- ▶ $\mathcal{F}(\mu) := \int_{\mathbb{R}^d} F(u) \, dx$ for a convex and superlinear function $F : [0, +\infty) \to \mathbb{R}$, F(0) = 0, satisfying McCann condition.

Theorem (Ambrosio-Gigli-S.)

The weak Wasserstein differential of Φ is characterized by

$$\boldsymbol{g} = \partial \Phi(\mu) \in L^2(\mu; \mathbb{R}^d) \quad \Leftrightarrow \quad \begin{cases} \mu = u \mathscr{L}^d, \quad L(u) \in W^{1,1}_{\text{loc}}(\Omega), \\ u \boldsymbol{g} = \nabla L(u) + u (\nabla V + \nabla W * u) \end{cases}$$

and it is also a strong differential; in particular its $L^2(\mu; \mathbb{R}^d)$ coincides with the metric slope $|\partial \Phi|(\mu)$ of Φ .

Convexity	Slope	Generation	Converge

Application: Logarithmic Sobolev inequalities

Let $\gamma = e^{-V}$ be a reference probability measure where V satisfies the Bakry-Emery condition $D^2 V \ge \lambda I$, i.e. it is λ -convex with $\lambda > 0$. We choose $\Phi(\mu) := \mathcal{H}(\mu|\gamma) = \mathcal{H}(\mu) + \mathcal{V}(\mu)$; the Wasserstein gradient of Φ is, at least formally,

$$\partial \Phi(\mu) = \partial \mathcal{H}(\mu) + \partial \mathcal{V}(\mu) = \frac{\nabla u}{u} + \nabla V = \nabla \left(\log u + V \right) = \nabla \log \left(u/\mathrm{e}^{-V} \right) = \nabla \log \left(\frac{\mathrm{d}\mu}{\mathrm{d}\gamma} \right).$$

The relative Fisher information is the L^2 -norm of the Wasserstein gradient

$$\mathcal{I}(\mu|\gamma) := \int_{\mathbb{R}^d} \left| \nabla \log \left(\frac{\mathrm{d}\mu}{\mathrm{d}\gamma} \right) \right|^2 \mathrm{d}\mu = \int_{\mathbb{R}^d} \frac{|\nabla u + u \nabla V|^2}{u} \, \mathrm{d}\gamma.$$

Theorem (Logarithmic Sobolev inequality (Gross, ..., Otto-Villani))

The relative Fisher information is the (squared) slope of the relative entropy and

$$\mathcal{H}(\mu|\gamma) \le \frac{1}{2\lambda} \mathcal{I}(\mu|\gamma).$$
 (LS)

The proof of (LS) follows from the general inequality for λ -convex functionals

$$\Phi(\mu) - \Phi(u_{min}) \le \frac{1}{2\lambda} |\partial \Phi|^2(\mu)$$

once we know that $\mathcal{I}(\mu, \gamma) = |\partial \mathcal{H}(\cdot|\gamma)|^2(\mu)$.

nvexity

Application: optimal constant in Sobolev inequality Let $d \ge 3$ and $p := 2^*$ such that $\frac{1}{p} = \frac{1}{2} - \frac{1}{d}$. Then

$$\min\left\{\int_{\mathbb{R}^d} |\nabla w|^2 \,\mathrm{d}x : \int_{\mathbb{R}^d} w^p \,\mathrm{d}x = 1\right\} = \int_{\mathbb{R}^d} |\nabla w_b|^2 \,\mathrm{d}x, \qquad w_b := \left(\mathsf{a} + \frac{1}{2(d-1)}|x|^2\right)^{-d/p}.$$

Proof. Let $w^p =: u, w^p_b =: u_b$ and take $F(u) := -d u^{1-1/d}, L(u) := u^{1-1/d}$,

$$\Phi(\mu) := \mathcal{F}(\mu) + \frac{1}{2} \int_{\mathbb{R}^d} |x|^2 \,\mathrm{d}\mu, \quad \partial \Phi(\mu) = \frac{\nabla L(u)}{u} + x, \quad \Phi(\mu) \ge \Phi(\mu_b).$$

$$\begin{split} |\partial\Phi|^2(\mu) &= \int_{\mathbb{R}^d} \left| \frac{\nabla L(u)}{u} + x \right|^2 u \, \mathrm{d}x = \int_{\mathbb{R}^d} \frac{|\nabla L(u)|^2}{u} \, \mathrm{d}x + \int_{\mathbb{R}^d} |x|^2 \, \mathrm{d}\mu + 2 \int_{\mathbb{R}^d} \langle \nabla L(u), x \rangle \, \mathrm{d}x \\ &= \int_{\mathbb{R}^d} \frac{|\nabla L(u)|^2}{u} \, \mathrm{d}x + \int_{\mathbb{R}^d} |x|^2 \, \mathrm{d}\mu - 2d \int_{\mathbb{R}^d} L(u) = 2c_d \int_{\mathbb{R}^d} \left| \nabla u^{1/p} \right|^2 \, \mathrm{d}x + 2\Phi(\mu), \end{split}$$

where $c_d := 2\left(\frac{d-1}{d-2}\right)^2$. Since $|\partial \Phi|(\mu_b) = 0$ we get

$$c_d \int_{\mathbb{R}^d} \left| \nabla u_b^{1/p} \right|^2 \mathrm{d}x = -\Phi(\mu_b)$$

$$\Phi(\mu) - \Phi(\mu_b) \le \frac{1}{2} |\partial \Phi|^2(\mu) = c_d \int_{\mathbb{R}^d} \left| \nabla u^{1/p} \right|^2 \mathrm{d}x + \Phi(\mu),$$

so that

$$\int_{\mathbb{R}^d} \left| \nabla u^{1/p} \right|^2 \ge \int_{\mathbb{R}^d} \left| \nabla u_b^{1/p} \right|^2.$$

Convexity	Slope	Generation	Convergence

Outline

1 Displacement convexity

2 Slope and subgradient inequalities: applications to Sobolev and logarithmic Sobolev inequalities

B Generation results for gradient flows of displacement λ -convex functionals

4 Convergence of the variational scheme by energy identity

Convexity	Slope	Generation	Conve
-----------	-------	------------	-------

Equivalent definitions

Theorem (Ambrosio-Gigli-S.)

Let $\Phi : \mathscr{P}_2(\mathbb{R}^d) \to (-\infty, +\infty]$ be a proper, lower semicontinuous, and displacement λ -convex functional and let $\mu : (0, +\infty) \to \mathscr{P}_2(\mathbb{R}^d)$ be a locally Lipschitz curve. The following properties are equivalent:

 \blacktriangleright μ satisfies the continuity equation

$$\partial_t \mu + \operatorname{div}(\mu \boldsymbol{v}) = 0 \quad \int_{t_0}^{t_1} \int_{\mathbb{R}^d} |\boldsymbol{v}_t|^2 \, \mathrm{d}\mu_t \, \mathrm{d}t < +\infty \quad \text{for every } 0 < t_0 < t_1 < +\infty$$

and v is a strong Wasserstein subgradient $v_t = -\partial^{\circ} \Phi(\mu_t)$ for a.e. t.

• μ satisfies the Evolution Variational inequality for a.e. t > 0

$$\frac{\mathrm{d}}{\mathrm{d}t}W_2^2(\mu_t,\sigma) \le \Phi(\sigma) - \Phi(\mu_t) - \frac{\lambda}{2}W_2^2(\mu_t,\sigma) \quad \text{for every } \sigma \in D(\Phi) \quad \text{(EVI)}$$

• μ satisfies the *Energy identity*

$$-\frac{\mathrm{d}}{\mathrm{d}t}\Phi(\mu_t) = \frac{1}{2}|\dot{\mu}_t|^2 + \frac{1}{2}|\partial\Phi|^2(\mu_t) \quad a.e. \ in \ (0, +\infty),$$

also in the weaker integrated-inequality form (when $\mu_0 \in D(\Phi)$)

$$\Phi(\mu_t) + \frac{1}{2} \int_0^t \left(|\dot{\mu}_r|^2 + |\partial \Phi|^2(\mu_r) \right) \mathrm{d}r \le \Phi(\mu_0).$$

Convexity Slope Generation Converg

A key ingredient: the chain rule

Theorem (Chain rule)

Let $\Phi : \mathscr{P}_2(\mathbb{R}^d) \to (-\infty, +\infty]$ be a proper, lower semicontinuous and λ -convex functional, and let $\mu : [a,b] \to \mathbb{R}^d$ be a Lipschitz curve. If $t \mapsto |\partial \Phi|(\mu_t)$ is integrable in (a,b) then the map $t \mapsto \Phi(\mu_t)$ is absolutely continuous and

$$\frac{\mathrm{d}}{\mathrm{d}t}\Phi(\mu_t) = \int_{\mathbb{R}^d} \left\langle \boldsymbol{v}_t, \partial^{\circ} \Phi(\mu_t) \right\rangle \mathrm{d}\mu_t \ge -|\dot{\mu}_t| \left| \partial \Phi|(\mu_t) \quad a.e. \ in \ (a,b)$$

where v_t is the Wasserstein velocity of μ .

If μ satisfies the energy inequality then

$$\frac{1}{2} \int_0^t \left(|\dot{\mu}_r|^2 + |\partial \Phi|^2(\mu_r) \right) \mathrm{d}r \le \Phi(\mu_0) - \Phi(\mu_t) \qquad \stackrel{chain\ rule}{=} - \int_0^t \int_{\mathbb{R}^d} \left\langle \boldsymbol{v}_r, \partial^\circ \Phi(\mu_r) \right\rangle \mathrm{d}\mu_r$$

so that

$$\frac{1}{2} \int_0^t \left(|\dot{\mu}_r|^2 + |\partial \Phi|^2(\mu_r) + 2 \int_{\mathbb{R}^d} \langle \boldsymbol{v}_r, \partial^{\circ} \Phi(\mu_r) \rangle \, \mathrm{d}\mu_r \right) \, \mathrm{d}r \le 0$$

i.e.

$$\boldsymbol{v}_t = -\partial^{\circ} \Phi(\mu_t) \quad \text{for a.e. } t > 0.$$

The main generation result

Theorem (Ambrosio-Gigli-S. 05, S. 07)

Let $\Phi : \mathscr{P}_2(\mathbb{R}^d) \to (-\infty, +\infty]$ be a proper, lower semicontinuous, and displacement λ -convex functional. For every $\mu_0 \in \overline{D(\Phi)}$ there exists a unique curve $\mu_t = \mathsf{S}_t[\mu_0]$ solution of (EVI) such that $\lim_{t \downarrow 0} \mu_t = \mu_0$.

 $\stackrel{\text{The map } t \mapsto \mathsf{S}_t[\cdot] \text{ is a continuous semigroup of } \lambda \text{ contractions in } }{\overline{D(\Phi)} \subset \mathscr{P}_2(\mathbb{R}^d), }$

$$W_2(\mathsf{S}_t[\mu_0],\mathsf{S}_t[\mu_1]) \le e^{-\lambda t} W_2(\mu_0,\mu_1)$$

▶ μ is locally Lipschitz in $(0, +\infty)$, for every t > 0, $\mathsf{S}_t[\mu_0] \in D(\partial\Phi) \subset D(\Phi)$, and satisfies the regularization estimate (here $\lambda = 0$)

$$\frac{1}{2}W_2^2(\mu_t, \sigma) + t(\Phi(\mu_t) - \Phi(\sigma)) + \frac{t^2}{2}|\partial\Phi|^2(\mu_t) \le \frac{1}{2}W_2^2(\mu_0, \sigma) \quad \forall \sigma \in D(\Phi)$$

• The curves $t \mapsto \mu_t$ and $t \mapsto \Phi(\mu_t)$ are right differentiable at every t > 0 and satisfies the minimal selection principle

$$t\mapsto -\frac{\mathrm{d}}{\mathrm{d}t_+}\Phi(\mu_t)=|\dot{\mu}_{t+}|^2=|\partial\Phi|^2(\mu_t)$$
 is nonincreasing.

• Asymptotic decay, $\lambda > 0$ $W_2(\mu_t, \mu_{\min}) \le e^{-\lambda t} W_2(\mu_0, \mu_{\min})$

$$\Phi(\mu_t) - \Phi(\mu_{\min}) \le e^{-2\lambda t} \Big(\Phi(\mu_0) - \Phi(\mu_{\min}) \Big), \quad |\partial \Phi|^2(\mu_t) \le e^{-2\lambda t} |\partial \Phi|^2(\mu_0)$$

Convexity	Slope	Generation	Convergence

Outline

1 Displacement convexity

2 Slope and subgradient inequalities: applications to Sobolev and logarithmic Sobolev inequalities

3 Generation results for gradient flows of displacement λ -convex functionals

4 Convergence of the variational scheme by energy identity

Convexity Slope Generation Conv

Convergence

Convexity properties of the distance

The squared distance enters in a crucial way in the minimizing functional

$$\boldsymbol{M} \mapsto \frac{1}{2\boldsymbol{\tau}} W_2^2(M_{\tau}^{n-1}, \boldsymbol{M}) + \Phi(\boldsymbol{M}).$$

The **behaviour of the squared distance along geodesics** should play a crucial role. In the Euclidean case

 $\mathsf{d}^2(u, \boldsymbol{x_\theta}) = (1 - \boldsymbol{\theta}) \mathsf{d}^2(u, \boldsymbol{x}_0) + \boldsymbol{\theta} \mathsf{d}^2(u, \boldsymbol{x}_1) - \boldsymbol{\theta} (\mathbf{1} - \boldsymbol{\theta}) \mathsf{d}^2(\boldsymbol{x}_0, \boldsymbol{x}_1).$

Convexity	Slope	Generation	Convergence

In $\mathbb{R}^m = \mathscr{P}_2(\mathbb{R}^2)$ consider two point masses μ_0 and $\mu_1 \ldots$

Convexity	Slope	Generation	Convergence
The Wasserste In $\mathbb{R}^m = \mathscr{P}_2(\mathbb{R}^2)$	in space is Po) consider two point	sitively Curved masses μ_0 and μ_1	(PC)
(μ_1		

 μ_1

Convexity	Slope	Generation	Convergence

In $\mathbb{R}^m = \mathscr{P}_2(\mathbb{R}^2)$ consider two point masses μ_0 and μ_1 ...

Conv	exity		Slope		Gen	eration		Conve	rgence
 ***				-		\sim	 100	-	

In $\mathbb{R}^m = \mathscr{P}_2(\mathbb{R}^2)$ consider two point masses μ_0 and $\mu_1 \dots$

Convexity	Slope	Generation	Convergence
The Wasserstein s In $\mathbb{R}^m = \mathscr{P}_2(\mathbb{R}^2)$ con	pace is Positi	ively Curved sets μ_0 and μ_1	(PC)
μ_1			μο
$\mu_{3/4}$			
			μ _{3/4}
(μ_0)			(μ_1)

Convexity	Slope	Generation	Convergenc
The Wasserstein s In $\mathbb{R}^m = \mathscr{P}_2(\mathbb{R}^2)$ con	space is Pos	sitively Curved masses μ_0 and μ_1	(PC)
			\frown

Conv	exity	Slope	Generation	Convergence
The Wasse In $\mathbb{R}^m = \mathcal{L}$	$\mathbb{P}_2(\mathbb{R}^2)$ consider	ce is Positi	vely Curved ses μ_0 and μ_1	(PC) and a third reference
measure <i>v</i>		ν		μο
	μο	ν		μ_1

Convexity	Slope	Generation	Convergence

In $\mathbb{R}^m = \mathscr{P}_2(\mathbb{R}^2)$ consider two point masses μ_0 and μ_1 ... and a third reference measure ν .

Convexity	Slope	Generation	Convergence
The Wasserstein spin $\operatorname{In} \mathbb{R}^m = \mathscr{P}_2(\mathbb{R}^2) \operatorname{const}$	oace is Pos ider two point i	sitively Curve masses μ_0 and μ_1 .	d (PC) and a third reference
measure ν .			
		V	μο μο μο μο μο μο μο μο μο μο
			:

V

 $\mu_{1/4}$

 μ_0

v

 μ_1

Convexity	Slope	Generation	Convergenc

In $\mathbb{R}^m = \mathscr{P}_2(\mathbb{R}^2)$ consider two point masses μ_0 and μ_1 ... and a third reference measure ν .

Convexity	Slope	Generation	Convergence

In $\mathbb{R}^m = \mathscr{P}_2(\mathbb{R}^2)$ consider two point masses μ_0 and μ_1 ... and a third reference measure ν .

Convexity	Slope	Generation	Convergence
The Wasserstein spin $\mathbb{R}^m = \mathscr{P}_2(\mathbb{R}^2)$ const	pace is Pos	sitively Curv masses μ_0 and μ_1	ed (PC) and a third reference
measure ν .			
μ_1		ν	μο
µ _{3/4}			
			$\mu_{3/4}$
μ0		ν	(µ 1)

Convexity	Slope	Generation	Convergence	
The Wasserstein space is Positively Curved (PC) In $\mathbb{R}^m = \mathscr{P}_2(\mathbb{R}^2)$ consider two point masses μ_0 and μ_1 and a third reference				
$\frac{\mu_1}{\mu_1}$	·	ν	μο	
μo)	ν	μ1	
	/			

Convexity	Slope	Generation	Convergence

Slope estimate (1)

Rewrite the minimum problem

$$\frac{W_2^2(M_{\tau}^n, M_{\tau}^{n-1})}{2\tau} + \Phi(M_{\tau}^n) \le \frac{W_2^2(V, M_{\tau}^{n-1})}{2\tau} + \Phi(V)$$

as

$$\begin{split} \Phi(M_{\tau}^{n}) - \Phi(V) &\leq \frac{W_{2}^{2}(V, M_{\tau}^{n-1})}{2\tau} - \frac{W_{2}^{2}(M_{\tau}^{n}, M_{\tau}^{n-1})}{2\tau} \\ &= \frac{W_{2}(V, M_{\tau}^{n-1}) - W_{2}(M_{\tau}^{n}, M_{\tau}^{n-1})}{\tau} \frac{W_{2}(V, M_{\tau}^{n-1}) + W_{2}(M_{\tau}^{n}, M_{\tau}^{n-1})}{2} \\ (triangular inequality) &\leq \frac{W_{2}(V, M_{\tau}^{n})}{\tau} \frac{W_{2}(V, M_{\tau}^{n-1}) + W_{2}(M_{\tau}^{n}, M_{\tau}^{n-1})}{2}. \end{split}$$

Dividing by $W_2(V, M^n_\tau)$ and passing to the limit as $V \to M^n_\tau$ we get

$$|\partial\Phi|(M^n_{\tau}) \le \frac{W_2(M^n_{\tau}, M^{n-1}_{\tau})}{\tau}$$

Convexity	Slope	Generation	Convergence

Positively Curved (PC) spaces and semiconcavity of the distance

The euclidean case $\amalg \hspace{0.1 cm} \downarrow \hspace{0.1 cm}$ identity

$$d^{2}(u, \boldsymbol{x_{t}}) = (1 - t)d^{2}(u, \boldsymbol{x_{0}}) + td^{2}(u, \boldsymbol{x_{1}}) - t(1 - t)d^{2}(\boldsymbol{x_{0}}, \boldsymbol{x_{1}}).$$

Convexity	Slope	Generation	Convergence

Positively Curved (PC) spaces and semiconcavity of the distance

The euclidean case $\amalg \hspace{0.1 cm} \downarrow \hspace{0.1 cm}$ identity

$$\mathsf{d}^2(u, \boldsymbol{x_t}) = (1 - \boldsymbol{t}) \mathsf{d}^2(u, \boldsymbol{x_0}) + \boldsymbol{t} \mathsf{d}^2(u, \boldsymbol{x_1}) \qquad - \boldsymbol{t} (1 - \boldsymbol{t}) \mathsf{d}^2(\boldsymbol{x_0}, \boldsymbol{x_1}).$$

The Wasserstein case $\downarrow \downarrow$ inequality

$$W_2^2(\nu, \mu_t) \ge (1-t) W_2^2(\nu, \mu_0) + t W_2^2(\nu, \mu_1) - t(1-t) W_2^2(\mu_0, \mu_1).$$

Convexity	Slope	Generation	Convergenc

Positively Curved (PC) spaces and semiconcavity of the distance

The euclidean case $\amalg \hspace{0.1 cm} \downarrow \hspace{0.1 cm}$ identity

$$\mathbf{d}^2(u, \mathbf{x}_t) = (1 - \mathbf{t})\mathbf{d}^2(u, \mathbf{x}_0) + \mathbf{t}\mathbf{d}^2(u, \mathbf{x}_1) \qquad - \mathbf{t}(1 - \mathbf{t})\mathbf{d}^2(\mathbf{x}_0, \mathbf{x}_1).$$

The Wasserstein case $\downarrow \downarrow$ inequality

$$W_2^2(\nu, \mu_t) \ge (1-t) W_2^2(\nu, \mu_0) + t W_2^2(\nu, \mu_1) - t(1-t) W_2^2(\mu_0, \mu_1).$$

Difficulty: the functional $\boldsymbol{\mu} \mapsto \frac{1}{2\tau} W_2^2(\nu, \boldsymbol{\mu}) + \Phi(\boldsymbol{\mu})$

looses any convexity property

Convexity Slope Convergence Refined discrete energy estimate (2): convex functionals M^n_{τ} minimizes the functional $U \mapsto \frac{W_2^2(U, M^{n-1}_{\tau})}{2\tau} + \phi(U)$ V_{θ} $V_{\theta} := (1-\theta)M_{\tau}^{n-1} + \theta M_{\tau}^n \xrightarrow{\theta \uparrow 1} M_{\tau}^n$ M^{n-1} $\frac{W_2^2(V_{\theta}, M_{\tau}^{n-1})}{2\tau} = \theta^2 \frac{W_2^2(M_{\tau}^n, M_{\tau}^{n-1})}{2\tau}, \quad \Phi(V_{\theta}) \le (1-\theta) \, \Phi(M_{\tau}^{n-1}) + \theta \, \Phi(M_{\tau}^n)$ The function $\theta \mapsto \theta^2 \frac{W_2^2(M_\tau^n, M_\tau^{n-1})}{2\tau} + (1-\theta) \Phi(M_\tau^{n-1}) + \theta \Phi(M_\tau^n)$ has a minimum at $\theta = 1$; its derivative at $\theta = 1$ is therefore nonpositive and we find $\boxed{\mathbf{1}} \frac{W_2^2(M_\tau^n, M_\tau^{n-1})}{\tau} + \Phi(M_\tau^n) - \Phi(M_\tau^{n-1}) \le 0$

Convexity Slope Generation C

Convergence

Discrete slope-energy inequality, convex functionals

Slope estimate (1)

$$\begin{aligned}
\left| \partial \Phi | (M_{\tau}^{n}) \leq \frac{W_{2}(M_{\tau}^{n}, M_{\tau}^{n-1})}{\tau} \right| \\
Discrete energy estimate (2)
\end{aligned}
\left(\begin{aligned}
\frac{W_{2}^{2}(M_{\tau}^{n}, M_{\tau}^{n-1})}{\tau} \leq \Phi(M_{\tau}^{n-1}) - \Phi(M_{\tau}^{n}) \\
\tau
\end{aligned}$$

$$\frac{\tau}{2} \frac{W_2^2(M_{\tau}^n, M_{\tau}^{n-1})}{\tau^2} + \frac{\tau}{2} |\partial \Phi|^2(M_{\tau}^n) \le \Phi(M_{\tau}^{n-1}) - \Phi(M_{\tau}^n)$$

Summing up:

$$\frac{\tau}{2}\sum_{n=1}^{N}\frac{W_{2}^{2}(M_{\tau}^{n},M_{\tau}^{n-1})}{\tau^{2}} + \frac{\tau}{2}\sum_{n=1}^{N}|\partial\Phi|^{2}(M_{\tau}^{n}) \leq \Phi(\boldsymbol{u}_{0}) - \Phi(M_{\tau}^{N})$$

Compare with the continuous energy identity

$$\frac{1}{2}\int_0^T |\dot{\boldsymbol{u}}_t|^2 \,\mathrm{d}t + \frac{1}{2}\int_0^T |\partial \Phi|^2(\boldsymbol{u}_t) \,\mathrm{d}t = \Phi(\boldsymbol{u}_0) - \Phi(\boldsymbol{u}_t).$$

Slope decay (2), convex functionals

$$\left(\frac{\tau}{2}|\partial\Phi|^2(M_{\tau}^n) + \frac{\tau}{2}\frac{W_2^2(M_{\tau}^n, M_{\tau}^{n-1})}{\tau^2} \le \Phi(M_{\tau}^{n-1}) - \Phi(M_{\tau}^n)\right)$$

By the definition of the slope for a convex function

 $\Phi(M_{\tau}^{n-1}) - \Phi(M_{\tau}^n) \leq |\partial \Phi|(M_{\tau}^{n-1}) W_2(M_{\tau}^{n-1}, M_{\tau}^n)$

$$\frac{\tau}{2} |\partial \Phi|^2 (M_{\tau}^n) + \frac{\tau}{2} \frac{W_2^2 (M_{\tau}^n, M_{\tau}^{n-1})}{\tau^2} \le \Phi(M_{\tau}^{n-1}) - \Phi(M_{\tau}^n) \le |\partial \Phi| (M_{\tau}^{n-1}) W_2(M_{\tau}^{n-1}, M_{\tau}^n) \\ \le \frac{\tau}{2} |\partial \Phi|^2 (M_{\tau}^{n-1}) + \frac{1}{2\tau} W_2^2 (M_{\tau}^{n-1}, M_{\tau}^n)$$

 $|\partial \Phi|(M^n_\tau) \leq |\partial \Phi|(M^{n-1}_\tau)|$

Convexity	Slope	Generation	Convergence

Summary

► Rough discrete energy inequality

$$\frac{\tau}{2} \frac{W_2^2(M_{\tau}^n, M_{\tau}^{n-1})}{\tau^2} \le \Phi(M_{\tau}^{n-1}) - \Phi(M_{\tau}^n)$$

$$|\partial\Phi|(M^n_{ au}) \le rac{W_2(M^n_{ au}, M^{n-1}_{ au})}{ au}$$

Convexity:

► Discrete slope-energy inequality

$$\frac{\tau}{2} \frac{W_2^2(M_{\tau}^n, M_{\tau}^{n-1})}{\tau^2} + \frac{\tau}{2} |\partial \Phi|^2(M_{\tau}^n) \le \Phi(M_{\tau}^{n-1}) - \Phi(M_{\tau}^n)$$

► Slope decay

 $|\partial \Phi|(M^n_\tau) \le |\partial \Phi|(M^{n-1}_\tau)$

Convexity	Slope	Generation	Convergence

Convergence for convex functionals with compact sublevels

If $\Phi : \mathscr{P}_2(\mathbb{R}^d) \to (-\infty, +\infty]$ be a convex functional with compact sublevels then the piecewise constant interpolant M_{τ} converge pointwise in $\mathscr{P}_2(\mathbb{R}^d)$. Passing to the limit by lower semicontinuity in the inequality

$$\frac{\tau}{2} \sum_{n=1}^{N} \frac{W_2^2(M_{\tau}^n, M_{\tau}^{n-1})}{\tau^2} + |\partial \Phi|^2(M_{\tau}^n) + \Phi(M_{\tau}^N) \le \Phi(M_{\tau}^0)$$

we get

$$\frac{1}{2} \int_0^T |\dot{\mu}_t|^2 + |\partial \Phi|^2(\mu_t) \, \mathrm{d}t + \Phi(\mu_T) \le \Phi(\mu_0)$$

which is enough to conclude.

