Phase Field Models and
Diffusion Generated Motion

in Image Processing and Computer Vision Applications



Approximation of Perimeter

= Modica-Mortola Energies:

Few) = |

1
e|Vul? + =W ) dx
o £

where W () is a double well potential with equidepth wells:

W(s) vs. &
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Approximation of Perimeter

E.(u) = j e|Vul? +%W(u) dx

Q

= The term
1
—f Wu) dx
€Jo

acts as a penalty term: Imposes the constraint
u(x) € {0,1} forall x € Q.

= The term
ef |Vul|? dx
Q

incurs a cost for transitions between u = 0 and u = 1.



Approximation of Perimeter

0X

Tubular nhd.;
~ ¢ thick

u nheeds to make a transition between 0 and 1 on a tubular nhd.
of thickness 0 (¢).



Approximation of Perimeter

In the tubular nhd. T,

1
[Vul = —
£

= Size of tubular nhd. T:
~ Le where L = Per(2).

2
1

j e|Vul? dx =~ e(—) Le = L.

. £

= |n reality, both terms [ &|Vu|? dx and fﬁW(u) dx contribute to E.(u).

= Therefore,

=  We have:
E.(u) - y - Per(2)



Approximation of Perimeter

" The constant y depends on details of W (¢).

= Consider the 1D version of the problem:

0 1
mjin j e +-W(u) dx
u(=00)=0""% £
u(o0)=1

=  Minimizer:
1
—2eu’’ + EW’(u) =0
= |ntegrate once:

1
u' = E\/W(u)



Approximation of Perimeter

= That gives:
W) = e?(u')?
so that
E, = ZJ VW @)u' dx
1
—2 [ JW® ¢
0
so that

1
y = zj JW@) dé.
0




Approximation of Perimeter

1
E.(u) = j e|Vul? + =W ) dx
0 3
= Gradient descent in L? gives: Allen-Cahn equation.
1
u = Au — = W'u).
3

=  We would expect it to be related to mean curvature motion.

= |ndeed, consider the ansatz

u(x,t) = qb(
where ¢ solves ¢"' — W' (¢) = 0; p(—0) = 0; p(0) = 1; $p(0) =

=1

dy(p)(x)
&

=  We have:

Au =ld)” (dZ(t)(X)>|de<t> (x)l +— </> ( Z(t)(x)) Ads )

g2 €

1, (dsp®)\ 1 (dsep(x)
=5¢ (“’2 >+;¢(Z“§ )x(x,t).




Approximation of Perimeter

and

1 dZ(t) (x) a These cancel since
= —o' d ¢ solves 1d problem.

Substituting into the PDE:

1 d d 1 d 1 d
;qb’( z(tg)(x)> 0 ) - 8—24’"( Z(t)(x)) . _¢,< z(t)(x)> 0

&

Normal speed
of the curve.

d
) —dz i) (x)|= k(x, t).

= Hence, if the curve moves by mean curvature motion, the ansatz solves
the PDE very well right on the curve.



Approximation of Perimeter
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Application: P.C. Mumford Shah

= Piecewise constant Mumford-Shah with two regions:

E(Z,cq,cy) = Per(Z) + A{j (f —c)?dx + (f —cp)? dx}
s

O\
= Phase-Field approximation:

E.(u,cq,c) = j

1
e|Vul? + =W (u)
5 £

+A{(f —c)*u® + (f — c2)*(1 —u)*} dx
= Gradient descent:
Uy = eAu — %W’(u) — A(f — ¢1)%u
+A(f — c2)*(1 — )



Application: P.C. Mumford-Shah

Uy = eAu — %W’(u) — A(f — ¢1)*u
+A(f — c)*(1 —u)

= Discretization:
n+1 __

ot

n

u u

1
= eAu™t! — EW’(u") — A(f — cp)*u™
+A(f = c)*(1 —u™)

and use FFT to solve for u™*1 at every time step, or
un+1 —yn 1
57 = eAu™t ——W'W") — A(f — ¢)?unt?
€

+A(f — c2)* (1 —u™)

and use e.g. PCG to solve for u™*1.

= NOTE: Stability restriction on 8t: |6t < 0(¢).




Application: P.C. Mumford-Shah




Application: P.S. Mumford-Shah

= Piecewise smooth Mumford-Shah with two regions:

E(Z, cq,cy) = Per(X) + A{J (f —c1(x)? dx + (f — ¢y (x))? dx}
5

O\Z
+cx1j|\7c1|2 dx+0(2j|\7c2|2 dx .
Q )

= u updates are the same.
= Update ¢; and ¢, as:
a;Acy + Au?(f —cy) =0
and
a,Ac, + A(1 —w)?(f —cy) = 0.

Note: From thesis of Catherine Kublik.



Application: P.S. Mumford-Shah
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Multi-Phase P.C. Mumford-Shah

= Easy generalization to > 2 regions:

E(X{,%,,C) = Per(Z,) + Per(Z,) + 1 (¢, — f)? dx
£,NZ,
.
+2 (c; —f)?dx+ A (cz3 — f)?dx
ngnzz %NS
"
+AJ (c3 — f)?dx.

2inxs




Multi-Phase P.C. Mumford-Shah

=  Perimeter terms:

1
E.(u,v) = Jequlz dx +EW(u) dx
Q

1
+J e|Vv|? dx + =W v) dx
o £

= An undesirable feature:

Unequal weights for
some edges.




Multi-Phase Field

=  Example: Three phases.

Vectorial phase function: u = (uq, u,, usz).

= Energy:

3
1

j eZ|Vuj|2 + —W(u) dx
Q ‘— €

Potential:

(0,0,1)

-

3
W e &) = [le-e’
j=1

(0,1,0)

(1,0,0)



Multi-Phase Field

= Alternatively, u = (uq, u,).

= Energy:

2
1

j eZ|Vuj|2 + —W(u) dx
Q ‘o €

= Potential:

A 4

2
W) = 1_[|€ — (Cos 6;,sin HJ-)|2
j=0

where
p _n+2n, o
Y




Phase Field for Full Mumford-Shah

minf |Vu|? dx + u Length(K) + A] (f —u)? dx
O\K Q

u(x)
KcQ
= Ambrosio & Tortorelli (1992)
2 2 (1-2)° 2 2
MSg(u,z)=Jz Vul* + a 4—€+€|\72| + A(f —u)“ dx
Q

u : Piecewise smooth approximation.

Z : Keeps track of edges:
= z = 1 away from edges (most of Q2).

= z = 0 near edges (in an € neighborhood of K).

Jo 2% Vul* dx ~ fT£C||7u|2 dx. \

(1-2)? 2
Jo ——+¢|Vz|? dx ~ Length(K). K




Phase Field for Full Mumford-Shah

= @Gradient descent:
u = V- ((z2+8)Vu) + A(f — u)

and
(1-2)

— 7IVul?
e z|Vul

Zy = Az +

= NOTE:
= u equationis linearin u.
= z equationislinearin z.

= Lag z in the u update; lag u in the z update.

= Difficult to solve: Need to resolve s-thick transitions in z.



Phase Field for Full Mumford-Shah
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High Order Models

Euler’s elastica:

L+ k?do
oz

Phase field approximation (De Giorgi):

1 1 ' 1
,BJ elVul? + =W ) dx+—j (eAu——W’(u)
o £ £Jo\ £

RHS of Allen-Cahn
Expect to be related to k.

dx



High Order Models

= Curvature dependent term:

1 1 ’
—f sAu——W'(u) | dx
€ Jo £

= Recall the ansatz:

1
u = qb(dz(t)(x)) where e¢'"' — EW’((I)) = 0.
= We had:
1
sAu — EW’(u) = ecp’(dz(t) (x))ic

= Also note that:

- cp’(dz(t) (x)) is concentrated in a tubular nhd. T, of thickness € around 0X.

. 1
" |t has magnitude = B there.



High Order Models

= Therefore,

1 1 2 1
_fQ <gAu — EW’(“)) dx = Ejﬂgz((p,(dZ(t) (X)))ZKZ dx

&

1
z—j szxzj kK’ do.
€ Jr, 9%
= [? gradient descent:

1 1 1
U = E—ZW’(u)> + E—ZW”(u) <Au — EW’(u))

Highest order term is linear



High Order Models

= Discretization:

k+1 _ .,k 1 1 1
u N u — _A <Auk+1 . 8_2 Wl(uk)> + 8_2 W/l(uk) <Auk . 8_2 W’(uk)>
= QOr, let

1 /
v=Au—g—2W(u)

and evolve the system:

1
U = Au—g—ZW’(u) — v

1
vy = Av — E—ZW”(u)v

to stationary state.



Application: Nitzberg-Mumford-Shiota

Original 1mage:

Regions taken as mitial guess:



Application: Nitzberg-Mumford-Shiota

Stationary states found: Conclusion: A bar was in front of a fork.



Application: Nitzberg-Mumford-Shiota

Standard segmentation of the given image on the lower right corner.

Joint work with R. March



Application: Nitzberg-Mumford-Shiota

Solution of the NMS model. Conclusion: An ellipse occludes a disk
and a bottle shaped object.



Application: Inpainting

=  Mumford-Shah-Euler Model:

j |Vu|2dx+yjic2+,8da+/1f (f —u)? dx
QO\K K Q\D

= Phase-field approximation:

1—2)?
JZZ||7u|2 dx+,8yje|l72|2 +u dx
o o 4e

2
1_

+Zf <€Az+( Z)> dx
€ Jg 4e

+2 (f —u)? dx
O\D




Application: Inpainting




Application: Inpainting




Inpainting of Binary Images

= Joint work with A. Bertozzi and A. Gilette:

= Motivated by the energy:

1
f elVul? + —W () dx + A (f —u)? dx
Q € O\D

= Gradient descent in L? for

A (f —u)? dx
O\D

= Gradient descent in H~1 for

1
j e|Vul? + =W ) dx
o £



Inpainting of Binary Images

= Cahn-Hilliard based inpainting:
1
uy = —A (eAu — EW’(u)) +Ag\p (f —w)

= Combined with continuation on &:
81>€2>€3>"'

= Example:

aal 1




Inpainting of Binary Images

13

Extension to all images: Do it layer by layer, add up:
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Convexity Splitting

= Suppose we want to implement gradient descent for
E(u) = E;(w) + Ex(w)
where:
= FE; is convex, and
= E, is concave.

= An unconditionally stable scheme (David Eyre):

uk+1 _ uk

ot

= —VE; (uf*1) — VE,(u¥)

l.e. treat
= Convex term implicitly, and

= Concave term explicitly.



Convexity Splitting

= Unconditional stability:

Taylor expand E;:

El(uk) — El(uk“) _ (VEl(uk+1), (uk+1 _ uk)) + %<D2E1€, S;>
> El(uk+1) _ (VEl(uk“), (uk+1 _ uk))
Taylor expand E5:
Ez(uk+1) — Ez(uk) 4+ (VEZ (uk)’ (uk+1 _ uk)) + %(DzEzf, S;>

< E,(uf) + (VE,(uk), (uk+t — uk))



Convexity Splitting

Now look at energy at time step k + 1:
E(uk+1) — El(uk+1) 1 Ez(uk+1)
< E;(uf) + (VE, (uk*1), (uk*t — uk))

+E,(uk) + (VE,(uf), (uk*t — uk))

= B(u) = stl|7Ey (w)||* - 5t [[7E, (ub)|

— 268t (VE, (ukt1), VE, (uf))

< E(u®). Cauchy-Schwartz



Convexity Splitting

= Can be applied very generally.
= Given: Energy E.

= Add and subtract a convex term F':
E=(E—-cF)+cF

= Choose ¢ > 0 large enough so that

E, .= E — cF is concave.

= Let

E1 = CF

which is of course convex.

= Crucial point: Choose F to be easy to invert!



Convexity Splitting

Example: Cahn-Hilliard equation

1
U, = —el <£Au — EWI(U)>

It’s gradient descent in H~! for Modica-Mortola energy:

1
E = feIVuIZ +EW(u) dx

= Let

F = J||7u|2 + u? dx

Add and subtract:
E, :=FE —cF and E; := cF.



Convexity Splitting

= Resulting scheme:

1
— k I} k
5t =|—¢eA <Au — —g /%4 (u ))

+cA2uk — cAuk

—cA2uk*tt 4 cAyktt

= Use FFT to solve

(I + c6tA? — 5t A)uF+t = R.H.S. (u¥)



