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Extended abstract

The analysis of shapes as elements in a frequently infinite-dimensional
space of shapes has attracted increasing attention over the last decade.
There are pioneering contributions in the theoretical foundation of shape
space as a Riemannian manifold as well as path-breaking applications to
quantitative shape comparison, shape recognition, and shape statistics.
The aim of this lecture series is to adopt a primarily physical perspective
on the space of shapes and to relate this to the prevailing geometric
perspective. Indeed, we here consider shapes given as boundary contours
of volumetric objects, which consist either of an elastic solid or a viscous
fluid.
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Extended abstract (cont)

In the first case, shapes are transformed via elastic deformations, where
the associated elastic energy only depends on the final state of the
deformation and not on the path along which the deformation is
generated. The minimal elastic energy required to deform an object into
another one can be considered as a dissimilarity measure between the
corresponding shapes. We apply this approach for shape averaging and
shape statistics. Thereby, an elastic deformation is assigned to each
shape. The shape average is then described as the common image under
all elastic deformations of the given shapes, which minimizes the total
elastic energy stored in these deformations. The model is relaxed
involving a further energy which measures how well the elastic
deformation image of a particular shape matches the average shape, and
a suitable shape prior can be considered for the shape average. Shapes
are represented via their edge sets, which also allows for an application to
averaging image morphologies described via ensembles of edge sets.
Furthermore, based on the notion of nonlinear elastic deformations from
one shape to another, a suitable linearization of geometric shape
variations is introduced.
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Extended abstract (cont)

Furthermore, a covariance metric — an inner product on linearized shape
variations — is introduced, which robustly captures strongly nonlinear
geometric variations in a physically meaningful way and allows to extract
the dominant modes of shape variation. Here, we compare a standard
L2-type covariance metric with a metric based on the Hessian of the
nonlinear elastic energy. To make this approach computationally
tractable, in this case sharp edges are approximated via phase fields, and
a corresponding variational phase field model is derived. Finite elements
are applied for the spatial discretization, and a multi-scale alternating
minimization approach allows the efficient computation of shape averages
in 2D and 3D.
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Extended abstract (cont)

In the second case, shapes are transformed into each other via viscous
transport of fluid material, and the flow naturally generates a connecting
path in the space of shapes. The viscous dissipation rate—the rate at
which energy is converted into heat due to friction—can be defined as a
metric on an associated Riemannian manifold. Hence, via the extraction
of shortest transport paths one defines a distance measure between
shapes. The approach can easily be generalized to shapes given as
segment contours of multi-labeled images and to geodesic paths between
partially occluded objects. The proposed computational framework for
finding such a minimizer is based on the time discretization of a geodesic
path as a sequence of pairwise matching problems, which is strictly
invariant with respect to rigid body motions and ensures a 1-1
correspondence along the induced flow in shape space. When decreasing
the time step size, the model leads to the minimization of the actual
geodesic length, where the Hessian of the pairwise matching energy
reflects the chosen Riemannian metric on the underlying shape space.
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Extended abstract (cont)

If the constraint of pairwise shape correspondence is replaced by the
volume of the shape mismatch as a penalty functional, one obtains for
decreasing time step size an optical flow term controlling the transport of
the shape by the underlying motion field. The method is implemented via
a level set representation of shapes, and a finite element approximation is
again employed as spatial discretization both for the pairwise matching
deformations and for the level set representations.

Beyond a detailed presentation of these two approaches we give a
detailed comparison of the path-based and the state-based approach.
This lecture series is based on joint work with Leah Bar, Guillermo Sapiro
from the University of Minnesota at Minneapolis and Benedikt Wirth
from the University of Bonn.
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A Teaser
Average of 3D kidneys

Five kidneys and their average (right).
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A Teaser
Shape PCA for scanned 3D feet
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A Teaser
Nonlinear interpolation in multi–component cell motion
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Two different concepts

Recalling the finite dimensional case

Path based Riemannian setup

State based elastic approach
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Two different concepts �
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Two different concepts � Recalling the finite-dimensional case
Springs or dashpots

Some simple physics:

Geodesic distance between x1, x2 ∈ Rd is ‖x2 − x1‖2.

F = C(x2 − x1)
F = 2µv

= 2µ(x2 − x1)

x1

x2

x1

x2

Spring model: By Hooke’s law—the elastic energy of a spring
extended from x1 to x2 is W = 1

2C‖x2 − x1‖22 −→ state based

Dashpot model: The dissipated energy of a dashpot which is
extended from x1 to x2 at constant speed is

Diss =
∫ 1

0
2µ‖v‖22 dt = 2µ‖x2 − x1‖22 −→ path based

Using this physical interpretation, we can express for instance the
arithmetic mean x = 1

n

∑n
i=1 xi = argminx̃

∑n
i=1 ‖xi − x̃‖22 either as the

minimizer of the total elastic deformation energy W in a system where x
is connected to each xi by elastic springs or as the minimizer of the total
viscous dissipation when extending dashpots from xi to x.

14



Two different concepts � Recalling the finite-dimensional case
First recalling some basic geometric concepts

A Riemannian manifold is a setM that is locally diffeomorphic to
Euclidean space.

Given a path x(t) ∈M, t ∈ [0, 1], we define its derivative ẋ(t) as a
tangent vector to M at x(t) −→ Tx(t)M
Tx(t)M is equipped with the metric gx(t)(·, ·)
The length of a path x(t) ∈M, t ∈ [0, 1], is defined as∫ 1

0

√
gx(t)(ẋ(t), ẋ(t)) dt, and locally shortest paths are denoted

geodesics.

There is a bijection expx : TxM→M of a neighborhood of
0 ∈ TxM into a neighborhood of x ∈M that assigns to each
tangent vector v ∈ TxM the end point of the geodesic emanating
from x with initial velocity v.

M x1

x2
x3

x

logxx1

logxx2

logxx3

−→ enables the definition
mean and PCA later. 15



Two different concepts � Recalling the finite-dimensional case
Dissipation and the Riemannian structure

In a Riemannian space M, the path-based approach directly applies:∫ 1

0
gx(t)(ẋ(t), ẋ(t)) dt can be considered as the energy dissipation Diss

spent to move a point from x(0) to x(1) along a geodesic.

Why is this consistent with geodesics on a finite dimensional manifold?

Let M be a finite dimensional Riemannian manifold and consider a curve
s : [0, 1]→M with s(0) = sA and s(1) = sB , then s is a (shortest)
geodesic connecting sA and sB , iff∫ 1

0

√
g(ṡ, ṡ) dt ≤

∫ 1

0

√
g(ċ, ċ) dt

⇔ ∫ 1

0

g(ṡ, ṡ) dt ≤
∫ 1

0

g(ċ, ċ) dt

for all curves c : [0, 1]→M with c(0) = sA and c(1) = sB .
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Two different concepts � Recalling the finite-dimensional case
Why are these concepts in general different?

For any reasonable (even finite-dimensional) model of shape space,
objects are not rigid, and the inner relation between points defines the
Riemannian (and thus the path-based) structure:

Dissipation Diss reflects the internal interaction accumulated in
time.

This dissipation depends significantly on the path in shape space.

In contrast, when applying the state-based approach:

we directly compare the state of internal interaction independent of
time

i.e. there is no history of these relations

This comparison can be quantified based on a stored (elastic)
interaction energy:

√
W.

which is then a quantitative measure of the dissimilarity of the two
objects but in general no metric distance.
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Two different concepts � Recalling the finite-dimensional case
Testing the triangle inequality and the symmetry

L = 0.0870

L = 0.1853

L = 0.0989x x x x x x x
x x xxx

√ W = 0.08
737

√
W = 0.19016

√
W

=
0.09976

- -

√
W = 0.24311

√
W = 0.20460
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Two different concepts �

Recalling the finite dimensional case

Path based Riemannian setup

State based elastic approach
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Two different concepts � Path based Riemannian setup
A short review of dissipation in continuum mechanics

Viscosity describes the internal resistance in a fluid as a macroscopic
measure of the friction between fluid particles.

(viscosity of honey is significantly larger than that of water)

Mathematically, the friction is described in terms of the (symmetric)
stress tensor

σ = (σij)ij=1,...d

whose entries represent a force per area element. (σij is the force in xi
direction acting on an area element normal to the xj direction)

In a (monopolar) fluid: σ = σ(Dv) (v velocity)

Dv := ( ∂vi

∂xj
)ij=1,...d
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Two different concepts � Path based Riemannian setup
A short review of dissipation in continuum mechanics (cont)

For rigid body motions the stress should vanish:

rotational component of the local motion is 1
2 (Dv − (Dv)T )

(local rotation axis ∇× v and angular velocity |∇ × v|)

−→ σ = σ(ε[v]) with ε[v] := 1
2 (Dv + (Dv)T )

compressive stresses ↔ tr(Dv) (trace of Dv)
shear stresses ↔ trace-free part of Dv

σij = µ (σshear)ij +Kc (σbulk)ij

:= µ

(
∂vi
∂xj

+
∂vj
∂xi
− 2
d

∑
k

∂vk
∂xk

δij

)
+Kc

∑
k

∂vk
∂xk

δij

= λδijtr(ε[v]) + 2µεij [v]

(µ viscosity, Kc modulus of compression, λ := Kc − 2µ
d )
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Two different concepts � Path based Riemannian setup
A short review of dissipation in continuum mechanics (cont)

a simple example:

xd

x1,...,d−1

v(x) =
xd
H
v∂ −→

pure shear stress µv
∂

H on horizontal area elements
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Two different concepts � Path based Riemannian setup
A short review of dissipation in continuum mechanics (cont)

local rate of viscous dissipation: the rate at which mechanical energy is
locally converted into heat due to friction

diss[v] =
λ

2
(trε[v])2 + µtr(ε[v]2) ,

indeed σ is the first variation of the local dissipation rate:

δ(Dv)ij
diss = λ trε δij + 2µ εij = σij

accumulated global dissipation of the motion field v in the time interval
[0, 1] on a path of a moving object (O(t))t∈[0,1]:

Diss
[
(v(t),O(t))t∈[0,1]

]
=
∫ 1

0

∫
O(t)

diss[v] dxdt
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Two different concepts � Path based Riemannian setup
Defining a Riemannian shape space

A metric G on the (infinite-dimensional) manifold S assigns each
element S ∈ S an inner product on variations δS of S.

The length of a differentiable curve S : [0, 1]→ S is then given by

L[S] =
∫ 1

0
‖Ṡ(t)‖dt =

∫ 1

0

√
G[S(t)](Ṡ(t), Ṡ(t)) dt.

An infinitesimal variation δS of a shape S = ∂O is associated with
a (non–unique) transport field v ∈ V(δS):

v(x) · ν[S](x) = δS(x) · ν[S](x) for all x ∈ S
The metric in terms of the motion field:

G(δS, δS) := min
v∈V(δS)

∫
O diss[v] dx

2.1 Definition (Geodesic path). A geodesic path between SA and SB
in S is a curve (S(t))t∈[0,1] ⊂ S with S(0) = SA and S(1) = SB which is
a local minimizer of

min
v(t)∈V(Ṡ(t))

Diss
[
(v(t),O(t))t∈[0,1]

]
among all differentiable paths in S.
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Two different concepts � Path based Riemannian setup
An example

geodesic path (L = 0.2225, Diss = 0.0497)

non geodesic path (L = 0.2886, Diss = 0.0880)

computation based on a variational time discretization
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Two different concepts �
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State based elastic approach
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Two different concepts � State based elastic approach
A short review of elasticity

Deformation of length, area and volume:

|Dφ| =
√

tr(DφTDφ) controls the averaged change of length:∫ 1

0

| d
dt

(φ ◦ c)(t)|dt =
∫ 1

0

√
Dφ ċ · Dφ ċdt =

∫ 1

0

√
DφTDφ ċ · ċdt

|cofDφ| controls the averaged change of area:

νφ = |cofDφ ν|−1cofDφ ν , daφ = |cofDφ ν| da

where cofA = detA A−T .

|detDφ| controls the local change of volume

|Dφ|
length variation

|cof(Dφ)|
area variation

det (Dφ)
volume variation
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Two different concepts � State based elastic approach
A short review of elasticity (cont.)

Cauchy stress tensor: σφ = (σφij)ij in deformed config.

Transformation of force density:

σ ν da = σφνφ daφ ⇒ σ = σφcofDφ

Axiom of elasticity: σ = σ(Dφ)

Hyperelasticity:

stored elastic energy: W[φ] =
∫
Ω
W (Dφ) dx

Euler Lagrange equations:
∫
Ω
W,A(Dφ) : Dψ dx = 0

−→ −divW,A(Dφ) = 0 in Ω , W,A(Dφ)ν = 0 on ∂Ω.

Relating stress and energy: σ = W,A

frame indifference: W (Dφ) = W̃ (DφTDφ)

isotropy: W (Dφ) = W̄ (I1, I2, I3) where
I1, I2, I3 are the principal invariance of DφTDφ:
I1 = |Dφ|2, I2 = |cofDφ|2, I3 = detDφ
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Two different concepts � State based elastic approach
A short review of elasticity (cont.)

we consider a slightly more general:

W (A) = Ŵ (A, cofA,detA)

and later assume that Ŵ is convex.

Linearized elasticity:

W lin =
∫

Ω

λ

2
(trε[u])2 + µtr(ε[u]2) dx

where ε[u] = 1
2 (Du+DuT )

drawbacks:

rigid body motion invariant only for infinitesimal displacements
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Two different concepts � State based elastic approach
The elastic dissimilarity measure

-

�

-

�

-

�

√
W = 0.19945
√
W = 0.19696

√
W = 0.23346
√
W = 0.34599

√
W = 0.16861
√
W = 0.20534

Dissimilarity measure between two different shapes:

delast(SA,SB) := min
φ,φ(SA)=SB

√
W[φ,OA] .
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Two different concepts � State based elastic approach
Overview

A Teaser

Two different shape space concepts

A brief review of some related work

Elasticity-based shape averaging

Elasticity-based shape PCA

Viscous fluid based shape space

Conclusions

Recommended reading
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Related Work
The very first appearance of the notion shape space

David G. Kendall: Shape manifolds, procrustean metrics, and complex
projective spaces. 1984

Polygons with vertices P1, P2, . . . , Pk in Rm

Define Shape space as the quotient space

Σkm = {(Rm)k−1 \ 0}/Sim ,

where Sim denotes the group of similarities generated by the
rotations and dilatations
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Related Work
Distance measures between shapes

G. Charpiat, O. Faugeras, R Keriven: Approximations of Shape Metrics
and Applications to Shape Warping and Empirical Shape Statistics, 2005

distance measure between closed sets

ρ(Ω1,Ω2) = sup
x∈D
|dΩ1(x)− dΩ2(x)|

equivalent to the Hausdorff-metric

ρH(Ω1,Ω2) = max
{

sup
x∈D

dΩ1(x), sup
x∈D

dΩ2(x)
}

implemented via an approximations based on

sup
x′∈Γ′

dΓ(x′) = lim
β→+∞

( 1
|Γ′|

∫
Γ′
dβΓ(x′)dΓ′(x′)

)1/β
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Related Work
Distance measures between shapes (cont.)

F. Mémoli, G. Sapiro: A Theoretical and computational framework for
isometry invariant recognition of point cloud data,

Consider bounded metric spaces (X, dX) and (Y, dY ).
Then the Gromov-Hausdorff distance dGH(, ) is given by

dGH(X,Y ) = inf
φ:X→Y
ψ:Y→X

sup
x1,x2∈X
y1,y2∈Y

(xi,yi)∈G(φ,ψ)

|dX(x1, x2)− dY (y1, y2)|

where G(φ, ψ) = {(x, φ(x)), x ∈ X} ∪ {(ψ(y), y), y ∈ Y } and the
infimum is taken over all arbitrary maps φ : X → Y and ψ : Y → X.

in case of point clouds:

for discrete metric spaces (X = {x1, . . . , xn}, dX) and
(Y = {y1, . . . , yn}, dY) we define

d(X,Y) = min
π∈Πn

max
1≤i,j≤n

|dX(xi, xj)− dY(yπi
, yπj

)|
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Related Work
Shape Averaging and shape PCA

G. Charpiat, O. Faugeras, R Keriven (see above)

Empirical mean (E based on Hausdorff distance and perimeter):

1
N

∑
i=1,...,N

E2(Γ,Γi) −→ min

Empirical covariance

gradient of Γ→ E2(Γ,Γi) defines a normal velocity field βi

consider infinitesimal deformation x− εβi(x)n(x) of Γ

mean velocity β̄ = (1/N)
∑N
i=1 βi

define the covariance operator Λ : L2(Γ)→ L2(Γ) such that

β →
N∑
i=1

g(β, (βi − β̄))(βi − β̄)
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Related Work
Shape Averaging and shape PCA (cont.)

P. T. Fletcher, S. Venkatasubramanian, S. Joshi: Robust statistics on
Riemannian manifolds via the geometric median. 2008

Let M be a Riemannian manifold. The weighted geometric median
is defined as

m = argminx∈M

N∑
i

wid(x, xi)

iterative scheme to compute the geometric median:

mk+1 = mk − αGk

Gk =
∑
i∈Ik

wixi
d(xi,mk)

·
(∑
i∈Ik

wi
d(xi,mk)

)−1
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Related Work
Computing geodesics in shape space

M. Kilian, N. J. Mitra, H. Pottmann:
Geometric modeling in shape space, 2007

triangular meshes S are treated as shapes in a shape space

the tangent bundle of S is given by discrete vector fields

a deformation field at time t is given by

X(t) :=
( d
dt
p(t)

)
p nodes of S

definition of the Riemannian metric

G(X,Y ) :=
∑

p,q nodes of S

(Xp −Xq) · (p− q) (Yp − Yq) · (p− q)

where Xp ∈ R3 for each tangent vector X.
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Related Work
Computing geodesics in shape space (cont.)

F. R. Schmidt, M. Clausen, D. Cremers: Shape matching by variational
computation of geodesics on a manifold, 2006

manifold of preshapes:

closed planar curves c parametrized over S1 and represented by the
velocity c′ instead of the curve c itself

arclength parametrization: c′(eit) = eiϑ(t), where ϑ : [0, 2π]→ R

shape space S consists of all orbits ϑ · S1

geodesic distance between two shapes ϑ1 · S1
1 and ϑ2 · S1

2:

inf
s1∈S11

inf
s2∈S12

‖ϑ1 · s1 − ϑ2 · s2‖L2 = inf
s∈S1
‖ϑ1 − ϑ2 · s‖L2

38



Related Work
Computing geodesics in shape space (cont.)

P. W. Michor, D. Mumford:
Riemannian geometries on spaces of plane curves, 2005

space of smooth regular curves in the plane viewed as the orbit
space of maps on S1 modulo reparameterizations

Riemannian metric:

gAc (v, w) :=
∫
S1

(1 +Aκc(θ)2)〈v(θ), w(θ)〉|c′(θ)|dθ

where κc is the curvature of the curve c and v, w are normal vector
fields to c

Aκ2
c is a regularization term:

for A = 0 the geodesic distance between two distinct curves is 0,
while for A > 0 the distance is always positive

interesting properties of the space: among large smooth curves, all
its sectional curvatures are ≥ 0, while for curves with high curvature
or pertubations of high frequency, the curvatures are ≤ 0
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Related Work
Computing geodesics in shape space (cont.)

M. F. Beg, M. I. Miller, A. Trouvé, L. Younes: Computing large
deformation metric mappings via geodesic flows of diffeomorphisms, 2003

images I0, I1 are given and connected via the diffeomorphic change
of coordinates I0 ◦ ϕ−1 = I1

here ϕ = φ1 is the end point at t = 1 of the curve (φt)t∈[0,1]

satisfying φ̇t = vt(φt)with φ0 = id

the variational problem takes the form

argminv:φ̇t=vt(φt)

(∫ 1

0

‖vt‖2V dt+ ‖I0 ◦ φ−1
1 − I1‖2L2

)
where ‖vt‖V is an appropriate higher order Sobolev norm

related to multipolar fluids [Necas, Silhavy ’91]
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Related Work
Computing geodesics in shape space (cont.)

M. Fuchs, B. Jüttler, O. Scherzer, H. Yang: Shape metrics based on
elastic deformations,

For S = ∂O define linear ”elastic” deformation energy

E[u] :=
∫
O

λ

2
tr(ε[u])2 + µtr(ε2[u]) dx

Elastic deformation energy of an infinitesimal boundary deformation:

|u∂ |2e,S := inf
u∈H1(O,R2)

Tru=u∂

E[u]

Let SA,SB ∈ S and S : [0, 1]→ S piecewise continuously
differentiable, then

L(S) :=
∫ 1

0

|Ṡ(t)|e,S(t)dt and E(S) :=
∫ 1

0

|Ṡ(t)|2e,S(t)dt

explicit triangular finite element mesh for intermediate shapes
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Elasticity-based shape averaging

Variational definition of the shape average

A relaxed formulation

Applications

Numerical Implementation

Generalization of the model
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Elasticity-based shape averaging
Input objects
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Elasticity-based shape averaging
Statistical tools

averaging

=⇒

dominant modes of variation

=⇒
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Elasticity-based shape averaging
Statistical tools

averaging

=⇒
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Elasticity-based shape averaging �

Variational definition of the shape average

A relaxed formulation

Applications

Numerical Implementation

Generalization of the model
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Elasticity-based shape averaging � Variational definition
Recalling the spring model

given: n points in space xi, i = 1, . . . , n

classic arithmetic mean: x =
1
n

n∑
i=1

xi = argmin
x̃

n∑
i=1

(x̃−xi)2

x = argmin
x̃

n∑
i=1

Ei where si = x− xi

force F = Ds
energy Ê = D

2 s
2
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Elasticity-based shape averaging � Variational definition
Transfering the spring model to shapes

consider a one-to-one deformation φ
from a shape to the (yet unknown) average

assign an “elastic” energy W[Oi, φi] to each deformation

minimize the accumulated energy
n∑
i=1

W[Oi, φi]→ min!

φ3 φ4

φ2
φ1

48



Elasticity-based shape averaging � Variational definition
A further example

φ3

S φ1

φ2

S2

S1

S3

S4

φ4
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Elasticity-based shape averaging � Variational definition
A rigorous definition

4.1 Definition (Average Shape). The stored elastic energy of a spring
system is given by

Ê [S, (φi)i=1,...,n] =

{ 1
n

∑
i=1,...,n

W[Oi, φi] ; φi(Si) = S for i = 1, . . . , n

∞ ; else .

Additionally, an interface regularization L is added

E [S, (φi)i=1,...,n] = Ê [S, (φi)i=1,...,n] + µL[S̃] .

Let AS be the admissible set of shapes. Then the average shape S is
defined as

S = arg min
S̃∈AS , φi:Oi→Rd

E [S̃, (φi)i=1,...,n]
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Elasticity-based shape averaging � Variational definition
An existence result

4.2 Theorem (Existence of a shape average). Let p > d and let the
hyperelastic energy density be denoted by W . We assume that

W is polyconvex,

has the form W (A) = Ŵ (A, cofA,detA)

and satisfies W (A) ≥ C‖A‖pF − C̃

for some C, C̃ > 0 and for all A ∈ Rd×d.

Furthermore, assume there exist homeomorphisms ψkl ∈W 1,p(Ok)
between Ok and Ol with W[Ok, ψkl] <∞ for all 1 ≤ k, l ≤ n.

Then E [S, (φi)i=1,...,n] admits a minimizing shape S ⊂ Rd and
corresponding deformations φi : Oi → Rd, i = 1, . . . , n.
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Elasticity-based shape averaging � Variational definition
An existence result (cont.)

Proof.

inf E <∞ due to E [Sl, (ψil)i=1,...,n] <∞ for 1 ≤ l ≤ n.

Consider a minimizing sequence (φji )j and Sj = φji (Si).

growth conditions on W ⇒ φji uniformly bounded in W 1,p(Oi) ⇒
weakly converging subsequence, strongly in C0,α(Oi) for α < 1− d

p .

φjl ◦ ψkl(Sk) = φjk(Sk)→ φk(Sk)

φjl ◦ ψkl(Sk)→ φl ◦ ψkl(Sk) = φl(Sl)

Hence, φk(Sk) = φl(Sl) =: S ∀k, l and thus
E [S, (φi)i=1,...,n] = 1

n

∑n
i=1W[Oi, φi].

Due to polyconvexity of W , p > d usual weak lower semi continuity
applies and thus E [S, (φi)i=1,...,n] ≤ lim infj E [Sj , (φji )i=1,...,n]
⇒ the minimizer is (S, (φi)i=1,...,n).

�
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Elasticity-based shape averaging � Variational definition
A PDE constrained optimization problem

φ3

S φ1

φ2

S2

S1

S3

S4

φ4

4.3 Remark. Our approach can be considered as a PDE-constrained
shape optimization model:

We optimize the shape S with respect to the cost functional
n∑
i=1

W[Oi, φ∗i ]

under the constraint that φ∗i is a minimizer of the functional

φi 7→ W[Oi, φi]
with φi(Si) = S.
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Elasticity-based shape averaging � Variational definition
The Euler Lagrange equations

4.4 Lemma (Point wise force balance). The average shape is
characterized by the system PDEs −divW,A(Dφi) = 0 for every
deformation φi on Oi \ Si and the boundary condition

0 =
∑

i=1,...,n

σdef[φi](x)ν[S](x)

Here ν[S](x) is the outer normal on S and

σdef[φi] =
(
σ[φi](detDφi)−1DφTi

)
◦ φ−1

i

the Cauchy stress tensor corresponding to the deformation φi in the
deformed configuration.

φ−1
3 (x)

φ1

φ−1
1 (x)

φ2φ−1
2 (x)

σ1ν

σ3ν

φ3

σ2ν x
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Elasticity-based shape averaging � Variational definition
The Euler Lagrange equations (cont.)

Proof. For the consistent variations (1+ εu) ◦ φi we obtain
d
dε

∑
i=1,...,n

W[Oi, (1+ εu) ◦ φi]
∣∣
ε=0

= 0 . Hence

0 =
∑

i=1,...,n

∫
Oi

W,A(Dφi) : D(u ◦ φi) dx

=
∑

i=1,...,n

(
−
∫
Oi

divW,A(Dφi)(u ◦ φi) dx+
∫
Si

W,A(Dφi) : (u ◦ φi)⊗ ν[Si] da[Si]
)
,

where ν[Si] is the outer normal in Si ⇒ balance relation between
deformation stresses on the averaged shape S:∑

i=1,...,n

σ[φi]ν[Si] da[Si] = 0,

Finally, by a push forward:

σ[φi]ν[Si] da[Si] = σdef[φi](x)ν[S](x) da[S]

�
55



Elasticity-based shape averaging � Variational definition
Impact of the underlying elasticity model

Hyperelastic energy:

W[φ] =
∫

Ω

Ŵ (Dφ, cof(Dφ),det (Dφ)) dx

naturally built in frame indifference, measures lack of isometry

frees us from imposing artificial boundary conditions

A straight and a folded bar are averaged. The distribution of |Dφi|2 and

det (Dφi) with ranges of [0.97
√

2, 1.03
√

2] and [0.97, 1.03] color-coded
as . The original bars describe an angle of 180◦ and 118◦, while
the average has an angle of ≈ 150◦. The image resolution is 513× 513.
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Elasticity-based shape averaging � Variational definition
An alternative model

4.5 Definition (inverse model). Take into account the corresponding
inverse maps ψi = φ−1

i and their elastic energy:

Obviously, detDψi = 1
detDφi

, Dψi = cofDφT
i

detDφi
, and cofDψi = DφT

i

detDφi
.

Hence, the elastic energies associated with the inverse deformations ψi
on the stress-free reference configuration S are defined as:

W inv[ψi] :=
∫
Oi

|detDφi| W̄

(
|cofDφi|22
(detDφi)2

,
|Dφi|22

(detDφi)2
,

1
detDφi

)
dx ,

where W inv[ψi] =W inv[Oi, φi].
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Elasticity-based shape averaging � A relaxed formulation
Mismatch penalty and length regularization

The hard constraint φi(Si) = S is often inadequate in applications due to
local shape fluctuations or noise in the shape acquisition which should
not be encountered in the shape average.

4.6 Definition (relaxed variational model). Consider the mismatch
penalty

F [Si, φi,S] = Hd−1(Si4φ−1
i (S)) ,

where A4B = A \B ∪B \A, and the resulting total energy

Eγ [S, (φi)i=1,...,n] =
1
n

n∑
i=1

(W[Oi, φi] + γF [Si, φi,S]) + µL[S].

and define

S = arg min
S̃∈AS , φi:Oi→Rd

E [S̃, (φi)i=1,...,n]

where AS is an admissible set of shapes.
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Elasticity-based shape averaging � A relaxed formulation
Extracting shapes from images

shapes may be seen as special cases of images

consider the edge set/discontinuity set S
of an image u as shape

images ui

edge sets Si

diffused interface: Ambrosio–Tortorelli approximation

EεAT[u, v] = α

∫
Ω

(u− u0)2 dx+ β

∫
Ω

v2|∇u|2 dx

+ ν

∫
Ω

ε|∇v|2 +
1
4ε

(v − 1)2 dx

smooth edge representation:
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Elasticity-based shape averaging � A relaxed formulation
Deriving a phase field model

given n images ui

obtain phase fields vi by
Ambrosio-Tortorelli segmentation

find average phase field v : Ω→ R
(and corresponding deformationsφi)

φi(Si) ≈ S becomes vi ≈ v ◦ φi

complementarity energy: symmetric edge matching

Fε[v ◦ φi, vi] =
1
ε

∫
Ω

(v ◦ φi)2(1− vi)2 + v2
i (1− v ◦ φi)2 dx

Lε[v] =
1
2

∫
Ω

ε|∇v|2 +
1
4ε

(v − 1)2 dx
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Elasticity-based shape averaging � A relaxed formulation
Energies in the phase field model

hyperelastic energy

W[O, φ] =
∫
O
Ŵ (Dφ, cofDφ,det Dφ) dx

Ŵ (A,C,D) = a1|A|p + a2|C|q + Γ(D)

complementarity energy and regularization

Fε[v ◦ φi, vi] =
1
ε

∫
Ω

(v ◦ φi)2(1− vi)2 + v2
i (1− v ◦ φi)2 dx

Lε[v] =
∫

Ω

ε|∇v|2 +
1
4ε

(v − 1)2 dx

shape averaging functional

E [v,φ1,...,φn] =
n∑
i=1

(W[Oi, φi] + γF ε[v ◦ φi, vi] + µLε[v])

γ � 1, µ� 1
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Elasticity-based shape averaging � A relaxed formulation
Practical modification of the elastic energy

soft material outside (δ = 10−4):

Wε,δ[Oi, φi] =
∫

Ω

(
(1− δ)χε

Oi
+ δ
)
W (Dφi) dx ,

where χε
Oi

is a smooth approximation of χOi
.

Impact of the choice of the effective elastic domain:

δ = 10−4 :

δ = 1 :
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Elasticity-based shape averaging � A relaxed formulation
Existence of a minimizer for the relaxed model

4.7 Theorem (existence of a phase field shape average). Suppose
d = 3, ε, δ, γ, µ > 0, and consider a set of admissible deformations

A := {φ : Ω→ Ω
∣∣ φ ∈W 1,p(Ω), cofDφ ∈ Lq(Ω),

detDφ ∈ Lr(Ω),detDφ > 0 a.e. in Ω, φ = 1I on ∂Ω}

on a uniform image domain Ω = [0, 1]3, where p, q > 3 and r > 1. We
assume W̄ is convex and the growth condition such that
Ŵ (A,C,D) ≥ κ(|A|p + |C|q +Dr +D−s) holds for κ > 0 and s > 2q

q−3 .

If the input phase fields (vi)i=1,...,n lie in W 1,2(Ω) with 0 ≤ vi ≤ 1, then
the energy

Eε[v, (φi)i=1,...,n] =
1
n

n∑
i=1

(
Wε,δ[Oi, φi] + γFε[vi, φi, v]

)
+ µLε[v]

attains its minimum over v ∈W 1,2(Ω) and (φi)i=1,...,n in An.
Furthermore, v ∈ C1,α(Ω̄), φi ∈ C0,β(Ω̄), v ◦ φi ∈ C0,β for all
0 < α < 1− 3

s+1 , 0 < β < 1− 3
p and the minimizing deformations are

homeomorphisms.
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Elasticity-based shape averaging � A relaxed formulation
Existence of a minimizer for the relaxed model

Proof. E [v,φ1,...,φn] =
n∑
i=1

(∫
Ω

Ŵ (Dφi, cofDφi,detDφi) dx

+
γ

ε

∫
Ω

(v◦φi)2(1−vi)2+v2
i (1−v◦φi)2 dx+ µ

∫
Ω

ε|∇v|2+
1
4ε

(v−1)2 dx
)

W [Dφ] ≥ κ(|Dφ|p+|cofDφ|q+detDφr+detDφ−s), p, q>3, s> 2q
q−3 , r>1

� energy not infinite and bounded below

� minimizing sequence (vk, φk1 , . . . , φ
k
n)

� det Dφki > 0 a.e., φki bounded in W 1,p(Ω), φki homeomorphism (cf. [Ball’83])

� byproduct: transformation rule
∫
Ω
f ◦ φki detDφki dx =

∫
φk

i (Ω)
f dx

� replace vk by argminv E [v, φk1 , . . . , φkn]
� Euler-Lagrange:

−εµ∆vk=− µ
4ε

(vk−1)−γ
ε

n∑
i=1

(
(vk◦ φki )(1−vi)2+(vk ◦ φki −1)v2

i

)
|detD(φki )

−1|

� new vk bounded in L∞(Ω) ∩W 2,s+1 with vk(x) ∈ [0, 1]

� sequential weak lower semi-continuity for (vk, φki ) ⇀ (v, φi) �
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Elasticity-based shape averaging � Applications
Averaging B’s

φ3

S φ1

φ2

S2

S1

S3

S4

φ4

Resolution 257× 257 and parameters γ = 107, µ = 1,
(a1, a2, a3) = (106, 0, 106).
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Elasticity-based shape averaging � Applications
Averaging 2D silhouettes

resolution 513× 513, and parameters γ = 107, µ = 10−2,
(a1, a2, a3) = (1010, 0, 1010)
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Elasticity-based shape averaging � Applications
Shape averaging examples (cont.)

20 shapes “device7” from the MPEG7 shape database and their average
phase field.
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Elasticity-based shape averaging � Applications
Further 2D examples (cont.)

18 hand and 8 fish silhouettes ([Cootes, Taylor, Cooper,Graham ’95] shape
database at the Centre for Vision, Speech, and Signal Processing,
University of Surrey)
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Elasticity-based shape averaging � Applications
Further 2D examples (cont.)

20 shapes “stef” from the MPEG7 shape database and their average
phase field (bottom right) for elastic parameters

(a1, a2, a3) = (107, 0, 106) (black) and (a1, a2, a3) = (105, 0, 106) (red)

(resolution 129× 129, γ = 107, µ = 10−2)
71



Elasticity-based shape averaging � Applications
Average of 3D kidneys

The averaged shape of the first two, four, five, six, eight and of all 48
kidneys are depicted.
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Elasticity-based shape averaging � Applications
Average of 3D kidneys (cont.)

Five kidneys and their average (right).

73



Elasticity-based shape averaging � Applications
Average of 3D scanned feet
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Elasticity-based shape averaging � Applications
Averaging image morphologies

Averaging CT scan slices of the thorax from four different patients,
from left to right: original image, φi, |Dφi|2, and det (Dφi)

(resolution 257× 257 and parameters γ = 107, µ = 0.1,
(a1, a2, a3) = (106, 0, 106).)
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Elasticity-based shape averaging � Numerical Implementation
Variation of the energy

For the total energy

Eε[v, (φi)i=1,...,n] =
1
n

n∑
i=1

(
Wε,δ[Oi, φi] + γFε[vi, φi, v]

)
+ µLε[v]

we compute δvEε = γ
n

∑n
i=1 δvFε + µδvLε and

δφiEε = 1
n

∑n
i=1(δφiWε + γδφiFε) with

〈δvFε, ϑ〉 =
2
ε

∫
φi(Ω)

(
v(1−vi ◦ φ−1

i )2−(vi ◦ φ−1
i )2(1− v)

)
· ϑ |det (Dφ−1

i )| dx

〈δφiFε, ψ〉 =
2
ε

∫
Ω

(
(1−vi)2(v ◦ φi)− v2

i (1−v ◦ φi)
)
(∇v ◦ φi) · ψ dx

〈δvLε, ϑ〉 = 2
∫
Ω

ε∇v · ∇ϑ+
1
4ε

(v − 1)ϑ dx

〈δφiWε,δ, ψ〉 =
∫

Ω

(
(1− δ)χε

Oi
+ δ
)
W,A(Dφi) : Dψ dx
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Elasticity-based shape averaging � Numerical Implementation
Variation of the energy (cont.)

fully enrolling the derivatives:

if Ŵ (A,C,D) = W̄ (|A|2, |C|2, D) and
W̄ (I1, I2, I3) = a1(I1 − 3)

p
2 + a2(I2 − 3)

q
2 + a3

(
I−s3 + s

r I
r
3 − r+s

r

)
then

W,A(A) : B = 2 ∂I1W̄ (|A|22 , |cofA|22 ,detA) A : B +

2 ∂I2W̄ (|A|22 , |cofA|22 ,detA) cofA : ∂Acof(A)(B) +

∂I3W̄ (|A|22 , |cofA|22 ,detA) ∂Adet (A)(B) ,

∂Adet (A)(B) = det (A)tr (A−1B) ,
∂Acof(A)(B) = det (A)tr (A−1B)A−T − det (A)A−TBTA−T .
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Elasticity-based shape averaging � Numerical Implementation
Space discretization via finite elements

Consider images ui, phase fields v, vi, and deformations φi as being
represented by continuous, piecewise multilinear (trilinear in 3D and
bilinear in 2D) finite element functions on Ω = [0, 1]d

denote discrete quantities by Ui, V , Vi, Φi, e.g. V = (Vj)j∈Ih
with

V =
∑
j∈Ih

Vjϕj where {ϕj}j∈Ih
is the nodal basis and Ih the

grid node index set

For ease of implementation we suppose dyadic resolutions of the
images with 2L + 1 pixels or voxels in each direction corresponding
to a grid size h = 2−L.

Φ =
∑
j∈Ih

∑
j=1,...,dΦjkϕjek, where e1, . . . , ed is the canonical

basis in Rd
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Elasticity-based shape averaging � Numerical Implementation
Space discretization via finite elements (cont.)

0 = δvEε = γ
n

∑n
i=1 δvFε + µδvLε −→

0 =

(
γ

nε

n∑
i=1

M
[(

(1−Vi◦Φ−1
i )2+(Vi◦Φ−1

i )2
)
detDΦ−1

i

]
+µεL+

µ

4ε
M [1]

)
V

−

(
γ

nε

n∑
i=1

M
[
(Vi ◦ Φ−1

i )2detDΦ−1
i

]
+
µ

4ε
M [1]

)
1 =: AVi,ΦiV − bVi,Φi ,

where the generalized mass matrix M [ω] and the matrix L are defined as

M [ω] =
(∫

Ω

ωϕiϕj dx
)
ij

, L =
(∫

Ω

ω∇ϕi · ∇ϕj dx
)
ij

,

↔ linear in V, nonlinear in Φi
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Elasticity-based shape averaging � Numerical Implementation
Space discretization via finite elements (cont.)

0 = δφi
Eε = 1

n

∑n
i=1(δφi

Wε + γδφi
Fε) −→

0 =
2γ
nε

∫
Ω

(
(1− Vi)2(V ◦ Φi)− V 2

i (1− V ◦ Φi)
)
Ψ · (∇V ◦ Φi) dx

+
1
n

∫
Ω

(
(1− δ)χε

Oi
+ δ
)
W,A(DΦi) : DΨdx

nonlinear in Φi

perform a fixed point iteration, alternatingly updating V and Φi
Equation resulting from 0 = δvEε is linear in the vector V for fixed
deformations Φi and therefore solved by conjugate gradient
iteration.

Resort to a regularized gradient descent to update Φi according to

Φi = Φold
i − τ gradΦi

Eγ,εh ,

with respect to the weighted H1 inner product

(Ψ1,Ψ2)σ := (Ψ1,Ψ2)L2 +
σ2

2
(DΨ1,DΨ2)L2 .
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Elasticity-based shape averaging � Numerical Implementation
Computing pull back and push forward under a deformation

� φ
�

�A
A

��@
@

r rr rr rrr pull back functionals
∫
Ω
f(U ◦ Φ) dx

exact evaluation at quadrature points

u

� φ
�

�A
A

��@
@ rr

rr push forward functionals
∫
Ω
f(V ◦ Φ−1) dx∫

Ω
f(Ih(V ◦ Φ−1)) dx not sufficient

compute Ih(Φ−1):

for each grid cell C
identify nodes Ni ∈ Φ(C)
(O(1) on a structured grid)
Newton iteration for Φ−1(Ni)

compute
∫
Ω
f(V ◦ Ih(Φ−1)) dx as above

v

-Ih(Φ−1)
��cc

�
�ee

r rr r r r rr
v
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Elasticity-based shape averaging � Numerical Implementation
Computation cost for an example

��

2573 grid nodes
48 data sets
each with 1 phase field

3D deformation

∼ 3 · 109 dofs (12GB in case of 4 byte per dof)

remarks on the implementation:

problems on multiple scales

alternating gradient descent ←→ easy to run in parallel
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Elasticity-based shape averaging � Numerical Implementation
Algorithm

EnergyRelaxation
(
(U0

i )i=1,...,n

)
initialize Φi = 1 on grid level l0 for all i = 1, . . . , n;
for grid level l = l0 to L {

do {
segment the images (U0

i )i=1,...,n to obtain phase fields (Vi)i=1,...,n;
Vold = V;
solve the linear system

AVi,ΦiV = bVi,Φi for the phase field vector V;
for image i = 1 to n

for count k = 1 to K {
Φold
i = Φi;

perform a gradient descent step
Φi = Φold

i − τ gradΦold
i
Eγ,εh [V, (Φj)j=1,...,n]

with Armijo step size control for τ ; }
} while(

∑n
i=1 |Φold

i −Φi|+ |Vold −V| ≥ Threshold);
if (l < L) prolongate V, Φi for all i = 1, . . . , n onto the next grid level;

}
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Elasticity-based shape averaging � Numerical Implementation
Energy decay in the algorithm
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Elasticity-based shape averaging � Generalization of the model
Weighted averaging in shape space

modified averaging functional:

Eγ,ε[v, (φi)i=1,...,n] =
n∑
i=1

(
λiWε[Oi, φi] +

γ

n
Fε[vi, φi, v]

)
+ µLε[v] ,

with λi > 0 and
∑n
i=1 λi = 1
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Elasticity-based shape averaging � Generalization of the model
Joint segmentation and averaging

So far the shapes Si are assumed to be robustly extracted from a set of
images ui with i = 1, . . . , n and are a priori given.

However, image edges may be characterized by significant noise or low
contrast and hence will be difficult to extract.

Alternative: Joint approach of shape segmentation and registration with
an averaged shape:

the quality of shape averaging highly depends on the robustness of
the edge detection in the input images

a reliable average shape can be used to improve edge detection in
case of poor image quality
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Elasticity-based shape averaging � Generalization of the model
Extending the variational approach

For shape segmentation we pick up the Mumford and Shah approach for
input images u0 on an image domain Ω:

EMS[u,S, u0] = α

∫
Ω

(u− u0)2 dx+ β

∫
Ω\S
|∇u|2 dx+ νHd−1(S) ,

and end up with the joint functional

Ejoint[S,(ui,Si,φi)i=1,...,n] =
1
n

n∑
i=1

(
EMS[ui,Si,u0

i ]+W[Ω,φi]+γF [Si,φi,S]
)

+µL[S],

Task: Relax simultaneously in the unknowns ui, Si, φi for i = 1, . . . , n
and S for a fixed given set of input images (u0

i )i=1,...,n

resolution 513× 513, γ = 107, µ = 10−2, (a1, a2, a3) = (108, 0, 108),
α = 1010, β = 105, ν = 106.
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Elasticity-based shape averaging � Generalization of the model
Phase field approximation

Eεjoint[v,(ui,vi,φi)i]=
1
n

n∑
i=1

(
EεAT[ui,vi,u

0
i ]+Wε[Ω,φi]+γFε[vi,φi,v]

)
+µLε[v]

4.8 Theorem. Under the above assumption and for u0
i ∈ L2(Ω) for

i = 1, . . . , n the energy

Eεjoint[v, (ui, vi, φi)i=1,...,n]

attains its minimum over n-tupels of images ui ∈W 1,2(Ω), phase fields
vi ∈W 1,2(Ω), and deformations φi ∈ A with i = 1, . . . n, and over phase
fields v ∈W 1,2(Ω). Finally, for the minimizer vi ∈ C1,α′(Ω̄),
v ∈ C1,α′′(Ω̄), φi ∈ C0,β′(Ω̄), v ◦ φi ∈ C0,β′ for all 0 < α′ < 1,
0 < α′′ < 1− 3

s+1 , 0 < β′ < 1− 3
p and the minimizing deformations are

homeomorphisms.
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Elasticity-based shape PCA � General set up
Extending the statistical tools

averaging

=⇒

dominant modes of variation

=⇒
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Elasticity-based shape PCA � General set up
PCA of data points in Rn

[Cootes, Taylor, Cooper, Graham ’95]

data points X = (x1| . . . |xn)

correlation matrix C =
1
n

(xi · xj)ij =
1
n
XTX

matrix decomposition C = OΛOT

modes of variation Y = XO
√

Λ−1
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Elasticity-based shape PCA � General set up
PCA of points on a manifold

[Fletcher, Lu, Joshi ’03]

[Charpiat, Faugeras, Keriven ’03]

[Fuchs, Jüttler, Scherzer, Yang ’09]

[Miller, Trouvé, Younes ’02]

x

x1 x2

x3

x4

inner product

geodesic distance

average

linear representative

〈·, ·〉y in TyM

d(·, ·)

x = argmin
x̃

∑n
i=1 d(x̃, xi)

2

vi ∈ TxM with xi = expx(vi)

data points X = (v1| . . . |vn)

correlation matrix C = (
1
n
gx(vi, vj))ij

matrix decomposition C = OΛOT

modes of variation Y = XO
√

Λ−1
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Elasticity-based shape PCA � General set up
Building blocks of a shape PCA

Outline:

represent shapes via a mode of variation in a linear space:

variation of the average shape via a displacement

scalar product on these modes:

best physically motivated on the prestressed average object

singular value decomposition of the modes:

physically sound dominant displacement modes

−→ can be used for further statistical analysis

−→ allows to define a new distance measure from a set of training data
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Elasticity-based shape PCA � Linear shape variations
Boundary stresses as a representation of shape variations

φ−1
3 (x)

φ1

φ−1
1 (x)

φ2φ−1
2 (x)

σ1ν

σ3ν

φ3

σ2ν x

By the Cauchy stress principle, each deformation φi : Oi → O is
characterized by pointwise boundary stresses σiν on S:

The resulting stress σiν is a force density acting S.

S is in equilibrium if the opposite force is applied as external load.

The average shape can be described in terms of the input shape Si
and the boundary stress σiν, and we write S = Si[σiν].
There is an associated one-parameter family of shapes
S(t) = Si[tσiν] connecting Si = S(0) with S = S(1).

Characterization of the shape average by the point wise balance relation:

0 =
∑

i=1,...,n

σi(x)ν(x)
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Elasticity-based shape PCA � Linear shape variations
Displacements representing shape variations

How to compute a representing displacement for the family Si[tσiν]?
Apply the Cauchy stress δσkν to the average shape S (δ << 1) and
define the perturbed energy

Ek[δ, u]=
1
n

n∑
i=1

W[Oi, (1+δu)◦φi]−δ2
∫
S
σkν ·u da .

Define a displacement uk as the minimizer of Ek[δ, u] for fixed
deformations (φi)i=1,...,n under the constraints

∫
O uk dx = 0 and∫

O x× uk dx = 0.

5.1 Lemma (Euler–Lagrange condition for uk). The scaled
displacement δ uk solves −div σ[δ uk] = 0 on O and σ[δ uk]ν = δσkν on
S with

σ[δ uk] :=
1
n

n∑
i=1

W,A((1+ δDuk)Dφi ◦ φ−1
i )cofD(φ−1

i )

the first Piola–Kirchhoff stress tensor on the compound object O.
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Elasticity-based shape PCA � Linear shape variations
Displacements representing shape variations (cont.)

Proof. Abbreviating ψk := 1+ δuk, the optimality condition reads

0 = 〈∂ψk
Ek, ψ〉

=
1
n

n∑
i=1

∫
Oi

W,A(D(ψk ◦ φi)) : Dψ ◦ φiDφi dx−δ
∫
S
(σkν)·ψ da

=
1
n

n∑
i=1

∫
O
W,A(DψkDφi ◦ φ−1

i )cofD(φ−1
i ) : Dψ dx−δ

∫
S
(σkν)·ψ da

=
∫
O
σ[δ uk] : Dψ dx− δ

∫
S
(σkν) · ψ da

=
∫
S
((σ[δ uk]− δσk)ν) · ψ da−

∫
O

divσ[δ uk] · ψ dx

for all test functions ψ, where

σ[δ uk] :=
1
n

n∑
i=1

W,A((1+ δDuk)Dφi ◦ φ−1
i )cofD(φ−1

i )

Hence, as Euler–Lagrange condition for uk we obtain −div σ[δ uk] = 0
on O and σ[δ uk]ν = δσkν on S. �
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Elasticity-based shape PCA � Linear shape variations
Displacements representing shape variations (cont.)

The first Piola–Kirchhoff stress tensor σ[δ uk] reflects an average of all
stresses:

σ[δ uk] cofD(1+ δuk)

=

(
1
n

n∑
i=1

W,A(D((1+ δuk) ◦ φi)) cofD((1+ δuk) ◦ φi)

)
◦ φ−1

i

=

(
1
n

n∑
i=1

σi[δ uk]

)
◦ (1+ δuk) ,

where the σi[δ uk] are indeed the Cauchy stresses of the different objects
Oi when deformed into (1+ δuk)(O) = ((1+ δuk) ◦ φi)(Oi).

5.2 Remark. The boundary integral
∫
S σkν · ψ da can be replaced by the

volume integral
∫
O σk : Dψ dx ←→ numerically more convenient.
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Elasticity-based shape PCA � Linear shape variations
Linearization based on infinitesimal variations

shortcoming: As long as A 7→W (A) is not quadratic in A, uk still
solves a nonlinear elastic problem.

alternative: consider the limit δ → 0 of the Euler–Lagrange equations

5.3 Lemma. In the limit for δ → 0 an infinitesimal variation uk of the
average shape S uniquely solves

div (C ε[u]) = 0 in O , C ε[u] ν = σkν on S

under the constraints
∫
O u dx = 0 and

∫
O x× u dx = 0 where C is the

compound elasticity tensor:

C =
1
n

n∑
i=1

(
1

detDφi
DφiW,AA[Dφi]DφT

i

)
◦ φ−1

i

φ−1
3 (x)

φ1

φ−1
1 (x)

φ2φ−1
2 (x)

σ1ν

σ3ν

φ3

σ2ν x
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Elasticity-based shape PCA � Linear shape variations
Linearization based on infinitesimal variations (cont.)

Proof. linearization for small δ yields

Ek[δ,u] =̇
1

n

nX
i=1

“
W[Oi, φi] + δ

Z
Oi

W,A[Dφi] : D(u ◦ φi) dx

+
δ2

2

Z
Oi

W,AA[Dφi]D(u◦φi) : D(u◦φi) dx
”
−δ2

Z
O
σk:Du dx

= C + δ

Z
S

 
1

n

nX
i=1

σiν

!
· u da− δ

Z
O

 
1

n

nX
i=1

div σi

!
· u dx

δ2

2n

nX
i=1

Z
O

„
DφiW,AA[Dφi]DφT

i

detDφi

«
◦φ−1

i Du :Du dx− δ2

Z
O

σk : Du dx

= C + δ2

Z
O

1

2
CDu : Du− σk : Du dx

= C + δ2

Z
O

1

2
Cε[u] : ε[u]− σk : Du dx.

for C = 1
n

Pn
i=1

“
1

detDφi
DφiW,AA[Dφi]DφT

i

”
◦ φ−1

i

�

103



Elasticity-based shape PCA � Linear shape variations
Linearization for infinitesimal variations (cont.)

C = 1
n

∑n
i=1

(
1

detDφi
DφiW,AA[Dφi]DφT

i

)
◦ φ−1

i

Weak form of the problem to be solve:

Find uk : O → Rd, such that∫
O

Cε[uk] : ε[ψ]− σk : Dψ dx = 0

for all smooth test functions ψ : O → Rd.

numerical implementation: Discretize this with finite elements, where
the finite element approximation of the elastic covariance metric is given
by (

1
n

n∑
i=1

∫
Oi

W,AA[DΦi]D(Θj ◦ Φi er) : D(Θk ◦ Φi es) dx

)
ikrs

,

where Θj er, Θk es represent the vector-valued finite element basis
functions.
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Elasticity-based shape PCA � Linear shape variations

General set up

Linear shape variations

The actual covariance analysis

Applications
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Elasticity-based shape PCA � The actual covariance analysis
Recalling the ingredients of a shape PCA

φ−1
3 (x)

φ1

φ−1
1 (x)

φ2φ−1
2 (x)

σ1ν

σ3ν

φ3

σ2ν x

normal stresses σkν[S] : S → Rd (k = 1, . . . , n) as shape representations
with 0 =

∑
k=1,...,n

σkn[S](x)

u2 u1 u3

displacements uk : O → Rd, k = 1, . . . , n with
∑n
k=1 uk = 0

div(Cε[uk]) = 0 on O, C = elasticity tensor (compound config.)

Cε[uk]ν = σkν on S
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Elasticity-based shape PCA � The actual covariance analysis
Outline of the principal component analysis

φ−1
3 (x)

φ1

φ−1
1 (x)

φ2φ−1
2 (x)

σ1ν

σ3ν

φ3

σ2ν x

Covariance metric: inner product g(σ1ν, σ2ν) := g(u1, u2)
u2 u1 u3

input data X = (u1| . . . |un)

covariance matrix C = (
1
n
g(ui, uj))ij

matrix decomposition C = OΛOT

modes of variation Y = XO
√

Λ−1
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Elasticity-based shape PCA � The actual covariance analysis
Two different scalar products on shape variations

The L2-product. Given two square integrable displacements u, ũ we
define

g(u, v) :=
∫
O
u · v dx

This product weights local displacements equally on the whole
compound object O.

The Hessian of the energy as inner product.

g(u, v) :=
∫
O

Cε[u] : ε[v] dx

This product weights local displacements higher in heavily
prestressed areas of the compound object O.
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Elasticity-based shape PCA � The actual covariance analysis
A covariance operator on boundary stresses

5.4 Remark. That g induces a metric

g̃(σν, σ̃ν) := g(u, ũ)

on the associated boundary stress.

Due to the linearity of the operator σν 7→ u the metric g̃ is bilinear and
symmetric as well.

Finally, the positive definiteness of g̃ follows from the positive definiteness
of g and the injectivity of the map σν 7→ u.
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Elasticity-based shape PCA � The actual covariance analysis

General set up

Linear shape variations

The actual covariance analysis

Applications
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Elasticity-based shape PCA � Applications
Qualitative properties

Two dominant modes (right) for four different shapes (left) demonstrate
that our principal component analysis properly captures strong geometric
nonlinearities.

Average and variation (right) for two shapes with pins at different
positions (left). The pins are not interpreted as shifted versions of each
other.
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Elasticity-based shape PCA � Applications
Qualitative properties (cont.)

A set of input shapes and their modes of variation with ratios λi

λ1
of 1,

0.22, 0.15, and 0.06.

Six input shapes and their first two modes of variation with ratios λi

λ1
of 1

and 0.34.
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Elasticity-based shape PCA � Applications
Dependance on the chosen scalar product

g(u, v) := (u, v)L2

with O non-prestressed

g(u, v) := (u, v)L2

with O prestressed

g(u, v) :=
∫
O Cε[u] : ε[v] dx

with O prestressed
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Elasticity-based shape PCA � Applications
Further applications

First three modes of variation with ratios λi

λ1
of 1, 0.49, and 0.26 for 8

fish silhouettes (shape database Centre for Vision, Speech, and Signal

Processing, University of Surrey)

First three modes of variation with ratios λi

λ1
of 1, 0.88, and 0.42 for 18

hand silhouettes from [Cootes, Tayler, Cooper, Graham ’95]
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Elasticity-based shape PCA � Applications
“device7” from MPEG7 database
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Elasticity-based shape PCA � Applications
Role of elasticity model

high length change penalization high volume change penalization
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Elasticity-based shape PCA � Applications
Application to image morphologies

covariance analysis based on the scalar product g(u, v) =
∫
O u · v dx
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Elasticity-based shape PCA � Applications
Variation of segmented kidneys
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Elasticity-based shape PCA � Applications
Variation of foot scans

λ1/λ1 = 1 λ2/λ1 = 0.010

λ3/λ1 = 0.010 λ4/λ1 = 0.003

λ5/λ1 = 0.001 λ6/λ1 = 0.0008

covariance analysis for scalar product g(u, v) =
∫
O u · v dx
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Elasticity-based shape PCA � Applications
Variation of foot scans (cont.)

λ1/λ1 = 1 λ2/λ1 = 0.404

λ3/λ1 = 0.172 λ4/λ1 = 0.146

λ5/λ1 = 0.104 λ6/λ1 = 0.083

covariance analysis for scalar product g(u, v) =
∫
O Cε[u] : ε[v] dx

modes representing change in volume (λ1), width / length (λ2) variation
of toe positions (λ3, λ4) and heel position / instep shape (λ5, λ6)
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Elasticity-based shape PCA � Applications
Using the PCA to analyze additional feet

δ� -

For a new, additional foot (top left), a linear representative û is
computed and visualized as a variation of the average foot S via
(1+ δû)(S) (top right)

Mahalanobis distance dM (Ŝ,S) =
√

1
n

∑n
k=1

g(û,yk)2

λk
= 1.23

(dM = 1 would correspond to the standard deviation)

reconstruction
using modes 1 1,2 1,2,3 1,. . .,6 1,. . .,23 original

using PCA to reconstruct the new foot
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Viscous fluid based shape space

Time discrete geodesic paths

A relaxed formulation

The numerical algorithm
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Qualitative properties of the model

Generalized models
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Viscous fluid based shape space
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Viscous fluid based shape space � Time discrete geodesic paths
Recalling the definition of a geodesic

The metric G on the (infinite-dimensional) manifold S assigns each
element S ∈ S an inner product on variations δS of S.

The metric is based on physical dissipation in a viscous fluid model:

G(δS, δS) := min
v∈V(δS)

∫
O diss[v] dx

A geodesic path between SA and SB in S is a curve
(S(t))t∈[0,1] ⊂ S with S(0) = SA and S(1) = SB , which (locally)
minimizes

Diss
[
(v(t),O(t))t∈[0,1]

]
=
∫ 1

0

G(Ṡ(t), Ṡ(t)) dt

among all differentiable paths in S and all consistent motion fields
v(t) ∈ V(Ṡ(t)).
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Viscous fluid based shape space � Time discrete geodesic paths
Variational time discretization in finite dimensions

An approximate time discrete geodesic between sA and sB :

Consider points sA = s0, s1, . . . , sK = sB and minimize

1
τ

K∑
k=1

dist2(sk−1, sk)
(
≈
∫ 1

0

g(ṡ, ṡ) dt
)
,

where dist(·, ·) is an approximate Riemannian distance and τ = 1
K .

example: spherical projection onto R2

aim: infinite-dimensional counterpart in shape space
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Viscous fluid based shape space � Time discrete geodesic paths
Goals of this approach

• a physically sound modeling of the geodesic flow of shapes given as
boundary contours of objects on a void background

• a coarse time discretization which is nevertheless invariant with
respect to rigid body motions and ensures a 1-1 object
correspondence

• approximation of a continuous geodesic path for decreasing time
step

• a numerically effective hierarchical treatment of the resulting
problem in space time
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Viscous fluid based shape space � Time discrete geodesic paths
Discrete paths and pairwise matching

consider for given shapes SA, SB in a shape space S

discrete path of shapes

sequence S0, S1, . . . , SK of shapes with S0 = SA, SK = SB ,

where Sk approximates S(tk) on a continuous path S(t)

matching deformation

deformation φk for each pair Sk−1,Sk with φk(Sk−1) = Sk
associated with a deformation energy

W[φk,Sk−1] =
∫
Ok−1

W (Dφk) dx

Sk−1 Sk

φk-
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Viscous fluid based shape space � Time discrete geodesic paths
Rigid body motion invariance and 1-1 matching

desired properties of W[φk,Sk−1] =
∫
Ok−1

W (Dφk) dx :

invariance with respect to rigid body motions, i. e.

W[Q◦φk+b,Sk−1] =W[φk,Sk−1] ∀Q ∈ SO(d), b ∈ Rd

⇒ W (Dφ) = W̄ (DφTDφ) for some W̄

isotropy ⇒ W̄ (DφTDφ) = Ŵ (Dφ, cofDφ,detDφ)

tr(DφTDφ) tr(cof(DφTDφ)) det (DφTDφ)

with Ŵ convex in Dφ, cofDφ, detDφ (polyconvexity)
and ensuring injectivity of φ under certain growth conditions

isometries (DφT(x)Dφ(x) = id) are minimizers, W̄ (id) = 0.

In what follows, we again choose

Ŵ (A,C,D) = a1|A|p + a2|C|q + Γ(D)
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Viscous fluid based shape space � Time discrete geodesic paths
The hard constraint model

6.1 Definition (Discrete dissipation and discrete path length). Given
a discrete path S0, S1, . . ., SK ∈ S, the total dissipation along a path
can be computed as

Dissτ (S0, S1, . . . , SK) :=
K∑
k=1

1
τ
W[φk,Sk−1] ,

where φk is a minimizer of the deformation energy W[·,Sk−1] over
D[Ok−1] under the constraint φk(Sk−1) = Sk. Furthermore, the discrete
path length is defined as

Lτ (S0, S1, . . . , SK) :=
K∑
k=1

√
W[φk,Sk−1] .

Here D[Ok−1] is a space of admissible deformations on Ok−1.
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Viscous fluid based shape space � Time discrete geodesic paths
The hard constraint model (cont.)

6.2 Definition (discrete geodesic path). A discrete path
S0, S1, . . . , SK in a set of admissible shapes S connecting two shapes
SA and SB in S is a discrete geodesic if there exists an associated family
of deformations (φk)k=1,...,K with φk ∈ D[Ok−1] and φk(Sk−1) = Sk
such that (φk,Sk)k=1,...,K minimize the total energy

∑K
k=1W[φ̃k, S̃k−1]

over all intermediate shapes S̃1, . . . , S̃K−1 ∈ S and all possible matching
deformations φ̃1, . . . , φ̃K with φ̃k ∈ D[Õk−1], S̃k−1 = ∂Õk−1, and
φ̃k(S̃k−1) = S̃k for k = 1, . . . ,K.

In case d = 3 with

Ŵ (A,C,D) = a1|A|p + a2|C|q + a3

(
D−s + βDr

)
− γ

with a1, a2, a3, β, γ > 0, p, q > 3, r > 1 and s > 2q
q−3 choose

D[Ok−1] := {φ : Ok−1 → Rd
∣∣ φ ∈W 1,p(Ok−1), cofDφ ∈ Lq(Ok−1),

detDφ ∈ Lr(Ok−1),detDφ > 0 a.e. in Ok−1, φ(Ok−1) = Ok} .
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Viscous fluid based shape space � Time discrete geodesic paths
The hard constraint model (cont.)

6.3 Theorem (Existence of a discrete geodesic). If S consists of
shapes S which are boundary contours of open, bounded sets O and can
be decomposed into a bounded number of spline surfaces with control
points on a fixed compact domain. Furthermore, the shapes are supposed
to fulfill a two-sided uniform cone condition. Given two diffeomorphic
shapes SA and SB in the above shape space S, there exists a discrete
geodesic S0, S1, . . . , SK ∈ S connecting SA and SB . The associated
deformations φ1, . . . , φK with φk ∈ D[Ok−1] for k = 1, . . . ,K are Hölder
continuous and locally injective in the sense that the determinant of the
deformation gradient is positive almost everywhere.
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Viscous fluid based shape space � Time discrete geodesic paths
The hard constraint model (cont.)

Proof.

• Applying classical existence theory in nonlinear elasticity [Ball ’77] there
exists for any (fixed) pair of consecutive shapes Sk−1 and Sk a
minimizing deformation φk ∈ D[Ok−1] with detDφk > 0 almost
everywhere, which minimizes W[·,Sk−1]. Hence, the discrete dissipation
is well–defined.

• The shape space S can be parametrized with finitely many parameters,
namely the control points of the spline segments. These control points lie
in a compact set and S is closed with respect to the convergence of these
parameters.

• Hence, it is sufficient to verify that Dissτ is continuous function of the
finite set of spline parameters. Consider shapes Sk−1, Sk and S̃k−1, S̃k,
respectively.

For a given small δ0 ≥ δ > 0 assume that the spline parameters are
closed, such that there exists bijective deformations ψi : Õi → Oi with

|ψi − 1|1,∞ +
∣∣ψ−1
i − 1

∣∣
1,∞ ≤ δ .
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Viscous fluid based shape space � Time discrete geodesic paths
The hard constraint model (cont.)

• Now define φ̂ := ψ−1
k ◦ φ ◦ ψk−1 and estimate

Dissτ (S̃k−1, S̃k)−Dissτ (Sk−1,Sk) =
1
τ

∫
Õk−1

W (Dφ̃) dx− 1
τ

∫
Ok−1

W (Dφ) dx

≤ 1
τ

∫
Õk−1

W (Dφ̂) dx− 1
τ

∫
Ok−1

W (Dφ) dx

=
1
τ

∫
Ok−1

W
(
(Dψ−1

k ◦φ)Dφ(Dψk−1◦ψ−1
k−1)

)
|detDψ−1

k−1| −W (Dφ) dx

≤ c(δ0)
τ

∫
Ok−1

|Dφ|p + |cofDφ|q + |detDφ|r +
∣∣(detDφ)−1

∣∣s dx

Hence, due to the Lebesgue’s convergence theorem we obtain
convergence

lim
δ→0

Dissτ (S̃k−1, S̃k)−Dissτ (Sk−1,Sk) ≤ 0

�
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Viscous fluid based shape space � Time discrete geodesic paths
The hard constraint model (cont.)

geodesic path (L = 0.2225, Diss = 0.0497)

non geodesic path (L = 0.2886, Diss = 0.0880)
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Viscous fluid based shape space � Time discrete geodesic paths
Time discrete geodesic

τ = 1
8

τ−2W (Dφ)

τ = 1
4

τ = 1
2

τ = 1

based on a relaxed formulation
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Viscous fluid based shape space � Time discrete geodesic paths

Time discrete geodesic paths

A relaxed formulation

The numerical algorithm

Limit of the time discrete model

Generalized models
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Viscous fluid based shape space � A relaxed formulation
Soft hard model, mismatch penalty, and surface prior

Soft material outside Ok−1 (0 < δ << 1)

Wδ[φk,Sk−1] =
∫

Ω

(
(1− δ)χOk−1

+ δ
)
W (Dφk) dx

Replace hard constraint φk(Sk−1) = Sk by the
mismatch penalty (φk extended outside Ok−1)

F [φk,Sk−1,Sk] = vol(Ok−14φ−1
k (Ok)) ,

where A4B = A \B ∪B \A
additional regularizing surface energy L[S] =

∫
S da

Relaxed formulation

Eδτ [(φk,Sk−1,Sk)k=1,...,K ] =
K∑
i=1

(1
τ
Wδ[φk,Sk−1] + γF [φk,Sk−1,Sk] + µτL[Sk]

)
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Viscous fluid based shape space � A relaxed formulation
Regularized level set approximation

Describing shapes via level sets:

O(t) = {x ∈ Ω : u(t, x) > 0}

Encode partition into object and background via regularized Heaviside
function Hε(x) := 1

2 + 1
π arctan

(
x
ε

)
[Chan, Vese ’01]

Eεmatch[φk, uk−1, uk] =
∫

Ω

(Hε(uk(φk))−Hε(uk−1))
2 dx

Eεarea[uk] =
∫

Ω

|∇Hε(uk)|dx

Eε,δdeform[φk, uk−1] =
∫

Ω

((1− δ)Hε(uk−1) + δ)W (Dφk) dx,

(here δ = 10−4)

Eε,δτ [(φk, uk)k] =
K∑
k=1

1
τ
Eε,δdeform[φk, uk−1] + ηEεmatch[φk, uk−1, uk] + µτEεarea[uk]
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Viscous fluid based shape space � A relaxed formulation

Time discrete geodesic paths

A relaxed formulation

The numerical algorithm

Limit of the time discrete model

Qualitative properties of the model

Generalized models
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Viscous fluid based shape space � The numerical algorithm
Cascadic finite elements discretization

multilinear finite elements, regular quadrilateral grid, Ω=[0,1]d

Gaussian quadrature of third order on each grid cell

pushforwards U ◦ Φ evaluated exactly at quadrature points (for
discretized level set functions and deformations U,Φ)

alternating gradient descent steps

all deformations
all level set functions

Armijo stepsize control

dyadic grid resolution: 2L + 1 vertices in each direction

multi-level approach:

initial optimization on a coarse scale
successive refinement
interface parameter linked to grid size: ε = h
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Viscous fluid based shape space � The numerical algorithm
A sketch of the algorithm

EnergyRelaxation (Ustart, Uend)
for time level j = j0 to J {
K = 2j ; U j0 = Ustart; U

j
K = Uend

if (j = j0) {
initialize Φji = 1, U ji = U jK , i = 1, . . . ,K
} else {
initialize Φj2i−1 = 1+ 1

2 (Φj−1
i − 1), Φj2i = Φj−1

i ◦ (Φj2i−1)
−1,

U j2i = U j−1
i , U j2i−1 = U j−1

i ◦ Φj2i, i = 1, . . . , K2 }
restrict Uj

i , Φj
i for all i = 1, . . . ,K onto the coarsest grid level l0;

for grid level l = l0 to L {
for step k = 0 to kmax {

(Φi)i=1,...,K = (Φold
i )i=1,...,K − τ grad(Φold

i )i=1,...,K
Eε,δτ [(Ui,Φi)i=1,...,K ]

(Ui)i=1,...,K = (Uold
i )i=1,...,K − τ grad(Uold

i )i=1,...,K
Eε,δτ [(Ui,Φi)i=1,...,K ]

with Armijo step size control for τ ;
}
if (l < L) prolongate Uj

i , Φj
i for all i = 1, . . . ,K onto the next grid level;

}
}
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Viscous fluid based shape space � The numerical algorithm
Level set representation and topological transitions
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Viscous fluid based shape space � The numerical algorithm
Comparison to some related methods

cf. [Charpiat, Faugeras, Keriven ’05]

cf. [Fuchs, Jüttler, Scherzer, Yang ’09]
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Viscous fluid based shape space � The numerical algorithm
Testing the robustness of the approach

Continuity with respect to shape variations:

L = 0.1040

L = 0.1220

L = 0.1276

Evaluating the lack of symmetry:

L = 0.1030

Geodesic distances for discrete geodesics of different resolutions:

K = 4 K = 8 K = 16

0.1068 0.1040 0.1025

0.1265 0.1220 0.1201

0.1324 0.1276 0.1259
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Viscous fluid based shape space � The numerical algorithm
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Limit of the time discrete model

Qualitative properties of the model

Generalized models
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Viscous fluid based shape space � Limit of the time discrete model
Relating the time discrete and the time continuous model

Recall:

diss[v] =
λ

2
(trε[v])2 + µtr(ε[v]2)

Ŵ (A,C,D) = a1|A|p + a2|C|q + Γ(D)

Key assumption:

HessW[1,S](v, v) = 2
∫
O

diss[v] dx ∀ velocity fields v

In terms of the energy density W this is expressed by the condition

1
2

d2

dt2
W (1+ tA)|t=0 =

λ

2
(trA)2 +

µ

tr

((
A+AT

)2)
(∗)

6.4 Lemma (W consistent with diss). For any local dissipation rate
diss one can find a nonlinear energy density W̄ which satisfies (∗).
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Viscous fluid based shape space � Limit of the time discrete model
Relating the time discrete and the time continuous model (cont.)

Deducing a discrete flow from a family of successive matches:

Define a temporally piecewise constant motion field vkτ and a
time-continuous deformation field φkτ (interpolating between x ∈ Ok−1

and φk(x) ∈ Ok) by

vkτ (t) :=
1
τ

(φk − 1) ,

φkτ (t) := (1+ (t− tk−1)vkτ )

for t ∈ [tk−1, tk) with tk = kτ .

The corresponding Eulerian motion field is

vτ (t) := vkτ ◦ (φkτ )
−1 .
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Viscous fluid based shape space � Limit of the time discrete model
Viscous fluid model in the limit for τ → 0 (cont.)

6.5 Theorem (convergence to the viscous model). Let (S(t))t∈[0,1]

be a smooth family of shapes. Consider Sk = S(kτ) for τ = 1
K and

φ1, . . . , φK a set of injective deformations, such that the associated
motion field

vτ (t) := vkτ ◦ (φkτ )
−1

(tk−1 ≤ t < tk) converges to a regular motion field v for K →∞.

Furthermore suppose that 1
2

d2

dt2W,AA(1)(Dv) = diss[v] .

Then Eτ [(φk,Sk)k=1,...,K ] converges to

E [(v(t),S(t))t∈[0,1]] = Diss[v] + γ EOF[v, S] + µ

∫ 1

0

L[S(t)] dt

for K →∞. Here

EOF[v, S] :=
∫
T

∣∣(1, v(t))T · νS(t)
∣∣ da

where nS(t) denotes the space time normal on the shape tube
T = ∪t∈[0,1](t,S(t)) and (1, v(t)) is the space time motion field.
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Viscous fluid based shape space � Limit of the time discrete model
Viscous fluid model in the limit for τ → 0 (cont.)

Proof. By second order Taylor one obtain

W (Dφk) = W (1) + τW,A(1)(Dvkτ ) +
τ2

2
W,AA(1)(Dvkτ ,Dvkτ ) +O(τ3)

= 0 + 0 +
τ2

2
d2

dt2
W (1+ tDvkτ )|t=0 +O(τ3)

= τ2diss[vkτ ] +O(τ3) .

Summing over all deformation energy contributions yields

lim
K→∞

K∑
k=1

1
τ
W[φk,Sk−1] = lim

K→∞

K∑
k=1

1
τ

∫
Ok−1

W (Dφk) dx

= lim
K→∞

K∑
k=1

τ

∫
Ok−1

diss[vkτ ] dx =
∫ 1

0

∫
O(t)

diss[v] dxdt

Furthermore, lim
K→∞

∑K
k=1 τL[Sk] =

∫ 1

0

∫
S(t)

dadt.
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Viscous fluid based shape space � Limit of the time discrete model
Viscous fluid model in the limit for τ → 0 (cont.)

Ok−1

φ−1
k (Ok)

Ok

Sk−1

φ−1
k (Sk)

Sk

x

δk(x)ν[Sk−1](x)

x + rk(x)

tk−1 tk
t

Ok−1 Ok

T ruled
k

δkν[Sk−1]
rklk

|εk|

τ

x

Near Sk−1 define δk(x) := sup {s : φk(x+ sν[Sk−1](x)) ∈ Ok}.
Furthermore, connect the shapes S(tk−1) and S(tk) via a ruled surface

T ruled
k :=

{(
t, x+

t− tk−1

τ
rk(x)

)
: t ∈ [tk−1, tk], x ∈ Sk−1

}
approx. the continuous tube Tk := ∪tk−1≤t≤tk(t,S(t)) up to O(τ2).
For the normal νk[tk−1,Sk−1] on the ruled surface T ruled

k we get

|(τ, rk − δkν[Sk−1]) · νk[tk−1,Sk−1]| = τ |(1, vkτ ) · νk[tk−1,Sk−1]|+ o(τ) .
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Viscous fluid based shape space � Limit of the time discrete model
Viscous fluid model in the limit for τ → 0 (cont.)

Ok−1

φ−1
k (Ok)

Ok

Sk−1

φ−1
k (Sk)

Sk

x

δk(x)ν[Sk−1](x)

x + rk(x)

tk−1 tk
t

Ok−1 Ok

T ruled
k

δkn[Sk−1]
rklk

|εk|

τ

x

Next, by an elementary geometric argument for lk :=
√
τ2 + |rk|2 and

εk := (τ, rk − δkν[Sk−1]) · νk[tk−1,Sk−1] one obtains that |εk| lk
τ = |δk|.∫

Tk

|(1, v(x)) · ν[t,S(t)](x)| da =
∫
T ruled

k

|(1, vkτ (x)) · νk[tk−1,Sk−1](x)| da+ o(τ)

=
∫
Sk−1

|(1, vkτ (x)) · νk[tk−1,Sk−1](x)|lk(x) da+ o(τ)

=
∫
Sk−1

1
τ
|(τ, rk(x)− δk(x)ν[Sk−1](x)) · νk[tk−1,Sk−1](x)|lk(x) da+ o(τ)

=
∫
Sk−1

|δk(x)| da+ o(τ) = vol(Ok−14φ−1
k (Ok)) + o(τ)�
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Viscous fluid based shape space � Limit of the time discrete model
A link to optical flow

E [v,S] = Diss[v] + η EOF[v, S] + µ

∫ 1

0

Earea[S(t)] dt

We can rewrite

EOF[(v(t),S(t))t∈[0,1]] =
∫

S
t∈[0,1](t,S(t))

∣∣(1, v(t))T · νS(t)

∣∣ da

=
∫

[0,1]×Rd

∣∣∂tχTO +∇xχTO · v
∣∣ dxdt .

where TO =
⋃
t∈[0,1](t,O(t)).

(cf. TV approaches in optical flow [Black, Anandan ’93])
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Viscous fluid based shape space � Limit of the time discrete model

Time discrete geodesic paths

A relaxed formulation

The numerical algorithm

Limit of the time discrete model

Qualitative properties of the model

Generalized models
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Viscous fluid based shape space � Qualitative properties of the model
Length versus volume preservation

λ/µ = 0.01

λ/µ = 100
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Viscous fluid based shape space � Qualitative properties of the model
Impact of the surface area term

without surface area term:

with surface area term:

155



Viscous fluid based shape space � Qualitative properties of the model
Complexity of shape space at a glance
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Complexity of shape space at a glance
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Complexity of shape space at a glance
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Viscous fluid based shape space � Qualitative properties of the model
Geodesic between different 3D animals
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Viscous fluid based shape space � Qualitative properties of the model
Geodesic between two 3D hand poses
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Viscous fluid based shape space � Qualitative properties of the model
Clustering of 2D and 3D shapes based on geodesic distance

left: geodesic distances between letter shapes.
right: geodesic distances between scanned 3D feet

(data courtesy of adidas).
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Qualitative properties of the model
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Viscous fluid based shape space � Generalized models
Geodesics in the presence of partial occlusion

Frequently, one would like to

evaluate the distance of a partially occluded shape from a given
template shape,

restore partially occluded shapes based on some template shape.
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Viscous fluid based shape space � Generalized models
Geodesics in the presence of partial occlusion (cont)

Let us suppose that the domain O0 associated with shape SA = ∂O0 is
partically occluded. Then, replace the mismatch term
Ematch[φ1,S0,S1] = vol(O04φ−1

1 (O1)) by the term

Ẽmatch[φ1,S0,S1] = vol(O0 \ φ−1
1 (O1)) .

in the numerical implementation: insert a masking function
Hε(Erosionε[u0]) and obtain

Ẽεmatch[φ1, u0, u1] =
∫

Ω

(Hε(u1 ◦ φ1)−Hε(u0))
2
Hε(Erosionε[u0]) dx .

to take advantage of adding parts to ”loose” ends of O0.
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Viscous fluid based shape space � Generalized models
Geodesics in the context of multi–component objects

Only taking into account shapes which are outer boundary contours
S = ∂O of open objects O ⊂ Rd is rather limiting in some applications:

nonlinear interpolation between multi–component objects?

A geodesic between multi–component objects should match
corresponding components, and a change in relative position of
components naturally has to contribute to the geodesic path length.

Task: Compute a geodesic path

(Si(t))i=1,...,m = (∂Oi(t))i=1,...,m

with t ∈ [0, 1] between two multi–component shapes

(SiA)i=1,...,m = (∂OiA)i=1,...,m and (SiB)i=1,...,m = (∂OiB)i=1,...,m.
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Viscous fluid based shape space � Generalized models
Geodesics in the context of multi–component objects (cont.)

The geodesic path is supposed to be generated by a joint motion field
v(t) :

⋃
i=1,...,mOi(t)→ Rd from

⋃
i=1,...,mOiA to

⋃
i=1,...,mOiB .

The resulting total dissipation:

Diss[v] =
∫ 1

0

∫
S

i=1,...,m Oi(t)

λ

2
(trε[v])2 + µ tr(ε[v]2) dxdt .

with the flow constraint v(x) ⊥ ν[Si](x) for x ∈ Si.

Modifications in the definition of a discrete geodesic:

K∑
k=1

W[φk, (Sik−1)i=1,...,m] :=
K∑
k=1

∫
S

i=1,...,m Oi
k−1

W (Dφk) dx ,

with φk(Sik−1) = Sik for k = 1, . . . ,K, i = 1, . . . ,m.
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Viscous fluid based shape space � Generalized models
Geodesics in the context of multiphase objects (cont.)

Generalized relaxed formulation:

Eδτ [(φk, (Sik−1)i=1,...,m, (Sik)i=1,...,m)k=1,...,K ]

=
K∑
i=1

(
1
τ
Eδdeform[φk, (Sik−1)i=1,...,m] +

n∑
i=1

(
ηEmatch[φk,Sik−1,Sik] + µτEarea[Sik]

))
.

(1)

in the numerical implementation:

consider m level set functions to distinguish n = 2m different phases
represented by objects Oi, i = 1, . . . ,m, as well as all possible
combinations of overlapping [Chan Vese ’01].

E.g. the problem can is treated with m = 2 level set
functions for 2m = 4 phases.
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Viscous fluid based shape space � Generalized models
Comparing single and multi component model

Single phase geodesic:

Multi–component geodesic:
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Viscous fluid based shape space � Generalized models
Nonlinear interpolation in multi–component cell motion
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Viscous fluid based shape space � Generalized models
Nonlinear interpolation in case of human motion
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Viscous fluid based shape space �

State based versus path based

Path based, Riemannian, viscous flow approach:

Diss
[
(v(t),O(t))t∈[0,1]

]
+ γF + µL → min

with O(0) = OA , O(1) = OB

State based, non Riemannian, elastic approach:

W[OA, φ]→ min with φ(OA) = OB

choice depends on the applications and the underlying physics

Path based approach requires the solution of a variational problem
in Rd+1, the state based approach a problem in Rd.

state based approach does not lead to a true distance:

no triangle inequality: delast(SA,SB)≤delast(SA,SC) + delast(SC ,SB)
lack of the symmetry: delast(SA,SB)=delast(SB ,SA)
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Viscous fluid based shape space �

Differences in shape statistics

Non-uniqueness:

path based approach: shortest paths need not to be unique

state based approach: due to multiple minimizers in elasticity

Use in quantitative shape analysis:

path based approach: cluster analysis via possible via pairwise
distance computations

state based approach: due to the lack of a triangle inequality
comparison via the dissimilarity measure only between one fixed
shape and a set of varying shapes (averaging, PCA)
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Viscous fluid based shape space �

Some open problem

Existence of time continuous shortest paths in the viscous flow
model?

How to define a distance between true surfaces?

Are topological transitions possible in a rigorous sense in the viscous
flow model?

How to define an elastic shape median?

How to accelerate computations ?
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