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CLASSICAL STOCHASTIC DIFFERENTIAL CONTROL

-
inf E |:/ f(t, X, ar)dt + g( X7, 1)
a€cA 0

subject to dXi= b(t7 Xz,az)dt + O'(t, Xt, at)dW¢; Xo = Xo.

» Analytic Approach (by PDEs)
» HJB equation
» Probabilistic Approaches (by FBSDEs)

1. Represent value function as solution of a BSDE
2. Represent the gradient of the value function as solution of a
FBSDE (Stochastic Maximum Principle)



I. FIRST PROBABILISTIC APPROACH

Assumptions

» o is uncontrolled

» o is invertible
Reduced Hamitonian

H(t7X,y704) = b(t,X,CM) . y+ f(ta X, Oé)
For each control o solve BSDE
dY; = (t Xt, ZtO'(t Xt) Oét)dt + 7 - d'/’/[7 YT = g(XT)
Then
J(a [/ f(t X,,a;)dtJrg(XT,,uT)
So by comparison theorems for BSDEs, optimal control & given by:
ar = a(t, Xi, Zio(t, X,)"), with  &(t, x, y) € argmin, . H(t,x,y, a)

and Y§* = J(&)



II. PONTRYAGIN STOCHASTIC MAXIMUM APPROACH

Assumptions
» Coefficients b, o and f differentiable
> fconvex in (x,a) and g convex

Hamitonian
H(t,x,y,z,a) = b(t,x,a) -y + o(t,x,a) - z+ f(t, X, )

For each control a solve BSDE for the adjoint processes Y = (Y;): and
Z=(Zi)

d%:*(‘?xH(txh )/[,Z[,Of[)dt‘i’zt’th, YTzaxg(XT)
Then, optimal control & given by:

ar=a(t, X, Y1,4), with a(t, x,y,z) € argmin_ ., H(t, x,y, 2, o)



SUMMARY

In both cases (o uncontrolled), need to solve a FBSDE

X = B(t, X, Ye, Z))alt + 5(t, X)dW,
dY: = —F(t, )(17 Y[, Zt)dt + ZidWs

First Approach
B(t,x,y,z) = b(t,x,a(t, x, zo(t, x)’1)),
F(t,x,y,z) = —f(t,x, &(t, x,zo(t, x) ")
— (zo(t,x,)7") - b(t, x, a(t, x, zo(t,x) ™).
Second Approach

B(t,x7y7 Z) = b(t7 X,é\é(txmy)),
F(I»XJC Z) = _6xf(ta X, d(t,x,y)) -y aXb(ta X, d(t,X7y)).



PROPAGATION OF CHAOS & MCKEAN-VLASOV SDES

System of N particles X,N” at time t with symmetric (Mean Field)
interactions

X" = b(t, X\ m)at + o (X i) dW], =1, N

)
where 7l is the empirical measure il = ;SN , 6,
t

Large population asymptotics (N — o)

1. The N processes (X,N’i)ogtgr fori=1,.---, N become
asymptotically i.i.d.

2. Each of them is (asymptotically) distributed as the solution of the
McKean-Vlasov SDE

dX; = b(t, X;, L(X;))dt + o(t, Xi, L(X;))dW,



FORWARD SDES OF MCKEAN-VLASOV TYPE

dXt = B(t, Xt, E(Xt))dt + Z(t, Xtv E(Xt))th, T € [07 T]

Assumption. There exists a constant ¢ > 0 such that

(A1) For each (x,u) € RY x Pp(RY), the processes
B(- -, x,p) : 2 x[0,T] > (w, t) = B(w, t, x, ) and
(X um) Q2% [0,T] 3 (w, t) = X(w, t, X, u) are F-progressively
measurable and belong to H?¢ and H2:9%9 respectively.

(A2) Vte [0, T],Vx,x" € RY, Vu,u' € Pa(RY), with probability 1 under P,
[B(t, x, 1) —=B(t, X", )|+ (t, x, ) =2 (t, X', )| < e[|x—x"|+Wa(u, 1')],

where W, denotes the 2-Wasserstein distance on the space P,(RY).

Result. if Xy € [2(Q, Fy, P; RY), then there exists a unique solution X = (Xt)o<i<T in
§%9 s t. for every p € [1,2]

uz[ sup |x,|ﬁ} < 4o0.
0<t<T

Sznitmann



CONTROLLING LARGE SYMMETRIC POPULATIONS

Assume Mean Field Interactions
aX;"' = b(t, X\ g, a)dt + o (t, X iy, a)dW, i=1,--- N
Assume distributed strategies
= o(t, ;")

Assume population is large (i.e. N = o)
1. The N state processes evolve independently of each other
2. Controlling each of them reduces to the optimal control problem

int EU £(t, X, £X), 6(t, X))t + g(Xr, £(X1))
st dX; = b1, X, L(X), 6t X))t + (8, Xe, LX), 6t X))AWe  Xo = Xo.

Control of a McKean-Vlasov SDE (Markovian - closed loop)



CONTROL OF MCKEAN-VLASOV DYNAMICS

Mathematical Formulation

1. State dynamics given by an SDE of McKean - Vlasov type
aX: = b(t, X, L:(Xt)7 Oq)dt + O'(t, Xi, ,C(Xt), th)th

2. Obijective function to minimize of the McKean-Vlasov type

)
J(a) = E [ [ #2060, et + gk, £067)

Could use open loop formulation.



CONTROL OF MCKEAN - VLASOV SDES

State at time t, say (X;, £(X:)) is infinite dimensional

Analytic Approach
» Infinite dimensional HJB equations (Crandall, Lions, Ishii?)

Probabilistic Approaches
1. McKean - Vlasov FBSDEs !
2. Pontryagin maximum principle approach

» How should we differentiate the Hamiltonian w.r.t. the
measure?

More to come



N-PLAYER STOCHASTIC DIFFERENTIAL GAMES

Assume Mean Field Interactions (symmetric game)
dx' = b(t, XtN’i,ﬁ)A(IIN,ai)dt—i- o(t, X,N*'}ﬁﬁtN,a',')de i=1,.-. N

Assume player / tries to minimize
Ja', -, a) = EU F(t, X gy, o)t + 9(Xr, i)
0

Search for Nash equilibria
» Very difficult in general, even if N is small
> ¢-Nash equilibria? Still hard.
» How about in the limit N — co?

Mean Field Games Lasry - Lions, Caines-Huang-Malhamé



MFG PARADIGM

A typical agent plays against a continuum of players whose states he/she feels
through their distribution »; at time t

1. For each Fixed measure flow (u) in P(R), solve the standard stochastic
control problem

T
& = argianE{/ f(t,X[,u[,Oq)dt-i-g(XT,;,LT)}
« 0

subject to
aX; = b(t, Xt, it Oét)dt + U(t, Xt, [t Oét)th

2. Fixed Point Problem: determine (u) so that

vte[0,T], L(X:)=pwut as.

Once this is done one expects that, if & = ¢(t, Xi),
o =¢* (X)), =1, N

form an approximate Nash equilibrium for the game with N players.



I. VALUE FUNCTION REPRESENTATION: PREP.
Recall

o(t, X, u, a) = o(t, x) uniformly Lip-1 and uniformly elliptic

H(t,X,l,L,y,Oé) =y b(t,X, 1y Oé) + f(tv X, W, Oé)
and
&(t,x,p1,y) € arg €aca H(t, X, 11,y ).

(A.1) bis affine in a: b(t, x, u, &) = by (&, X, u) + bo(t)cx with by and b,
bounded.

(A.2) Running cost f strongly convex

f(t, X', 1, o/) — f(t, x, p, ) — ((X' —x,o — @), O,y (L, X, iy ) > )\|o/ — ol

Then
a(t, x, u, y) is unique and
[0, T] x R x Po(R?) x R? 3 (t, X, 1, y) = &(t, X, 11, Y)

is measurable, locally bounded and Lipschitz-continuous with respect
to (x, y), uniformly in (t, 1) € [0, T] x P2(RY)



I. VALUE FUNCTION REPRESENTATION: CONT.

If A c R¥ is bounded (not really needed), if X"* = (X!*)i<s<7 is the unique
strong solution of dX; = o(t, X;)dW; over [t, T] s.t. X! = x, and if (Y**, 2"¥)
is a solution of the BSDE

dV* = —H(t, X, ps, Z&* o (8, Xe™) 1 a8, XX, s, Z&¥ o (s, X&) ")) ds
— ZbXdWs, t<s<T,
with ¥7 = g(X2*, ur), then
& = A8, Xe™, ps, 2% (s, Xe*) 1)

is an optimal control over the interval [¢, T] and the value of the problem is
given by: .
Vit x)= Y.

The value function appears as the decoupling field of an FBSDE.



FIXED POINT STEP —> MCKEAN-VLASOV FBSDE

Starting from t = 0 and dropping the superscript **

aXi = b(t, Xi, Ut é\é(t, X, Ut Z;U(L X1)71 ))dt + O’(f, X[)dVVz
dYe = —H(t, Xe, put, Zio (8, X)) ™1, 6(t, Xe, pur, Zo (t, Xe) ™)) dlt — ZidW,

for0 < t < T, with Yr = g(Xr, uu7).

Implementing the fixed point step
pe = L(X)

gives an FBSDE of McKean-Vlasov type.



II. PONTRYAGIN STOCHASTIC MAXIMUM PRINCIPLE

Freeze 1 = (put)o<i<7,
Recall (reduced) Hamiltonian

H(taxaﬂayaa) = b(t7X,/,L,Oé) Y+ f(t,X,/j/,Oé)

Adjoint processes
Given an admissible control & = (at)o<:<7 and the corresponding controlled
state process X = (X{*)o<:<1, any couple (Y;, Zt)o<i< 1 satisfying:

dYr = —0OxH(t, X{*, ut, Yt, ) dt + ZedWy
YT = 8XQ(X?7MT)



STOCHASTIC CONTROL STEP

Determine
a(t, x,pu,y) = arginf H(t, x, 1, ¥, )

Inject in FORWARD and BACKWARD dynamics and SOLVE

dXt = b(t7 Xta Kt é\l(ta Xta Hts Yf))dt + U(ta Xt)th
de = _aXH(t7 Xa Mty Yf7&(t7 Xfaufv »/t))dt—’— Zdet

with Xo = X0 and YT = 8XQ(XT,/LT)

Standard FBSDE (for each fixed t — ;)



FIXED POINT STEP

Solve the fixed point problem

(m)o<t<t  —  (X)o<e<st — (L(Xt))o<e<T

Note: if we enforce u; = L(X;) forall 0 < t < T in FBSDE we have

dXt = b(t, Xf, E(X[), d(t, Xt, £(X1), Yt))dt + O’(t, Xt)dVVt,
d)/t = _6XH(t7 X[av[’(xf)a Yfa&(t7 XU‘C(XT)? Yt))dt+ thWt

with
Xo = Xo and YT = 6XQ(XT, E(XT))

FBSDE of McKean-Vlasov type !!!
Very difficult



FBSDES OF MCKEAN - VLASOV TYPE

In both probabilistic approaches to the MFG problem the problem reduces to
the solution of an FBSDE

X = B(t, Xi, £(X:), Yo, Z)dt + E(t, Xe, £(X0))dWh,
dY: = (t Xt,ﬁ(Xt), Yt,Z[)dt-i- ZidW;

with in the first approach

B(t,X, 1,y 2) = b{t, X, . &t X, 1 20 (%) 1)),
F(t,Xyli:y,z) - —f(t7X,,LL,Oé(t,X,/,L,ZO'(t,X) )—ZU(t,X) 1b(t X, 1, & (t X, [, Z¢

and in the second:

B(t, x, . y,2) = b(t, X, pu, &(t, X, i, ¥)),
F(t7X7M7.y7 ):_ax (t7XHU’7 (t,X,/J/, ))_yaxb(t7x7.u‘7d(taxyu‘7y))'



A TYPICAL EXISTENCE RESULT

dXe = B(t, Xt, Y1, Zt, P(x,, vy)) dt + Z (8, Xt, Yo, Pix,,v,)) AW
dYi = —F(t, X, Y, Z,P(x,v) 0t + ZedWs, 0<t<T,

with Xo = xo and Y7 = G(Xt, L(X7T)).

Assumptions

(A1). B, F, ¥ and G are continuous in  and uniformly (in u) Lipschitz in (x, y, z)
(A2). X and G are bounded and

1/2
1B(t, %, y.2,p)] < L[1 x| Iyl 12+ (fRdep \(x',y'>|2du(x',y’)) }
1/2
IF(t, %, v, 2, 1)] < L[1 e+ (fRdw |y'|2du<x/,y')) }
(A3). X is uniformly elliptic
(X, Y, I Xy, ) > Ly

and [0, T] > t — %(t,0,0,4(0,0)) is also assumed to be continuous.

Under (A1-3), there exists a solution (X,Y,Z) € S%9 x S2P x HZP*m



MEAN FIELD GAMES WITH A COMMON NOISE

Starting with a finite player game, i.e.

Simultaneous Minimization of
J' () :E{/ f(t,x,',u,“’,a',)dHg(xr,u'y)}, i=1,---,N
0

under constraints (dynamics of players private states)
aX! = b(t, X, @Y, ah)dt + o (t, X, 7, a)dW! + o (t, X[, i, o) dWP

for i.i.d. Wiener processes W," fork=0,1,--- ,N.



LARGE GAME ASYMPTOTICS (CONT.)

Conditional Law of Large Numbers
» If we consider exchangeable equilibriums,(a},--- ,aV), then

» By de Finetti LLN
lim 7t = Pyt 7o
N— oo t 1t
» Dynamics of player 1 (or any other player) becomes
aX = b(t, X, e, o )dt+o(t, X', pe, af)dWs+ 0" (8, X7 e, ) AW,
with Ht = ]P)XJ ‘]_-?.
» Cost to player 1 (or any other player) becomes

T
E{/ f(t7anu/Y7a;)dt+g(XTnuT)}
0



MFG WITH COMMON NOISE PARADIGM

1. For each Fixed measure valued (F°)-adapted process (x:) in P(R), solve the
standard stochastic control problem

.
& = arginfE {/ f(t, Xt, pt, o)t + Q(XT’#T)}
@ 0
subject to
dX; = b(t, Xe, put, ) dt + o (t, X, pue, ad) AW + 0O (8, Xe, pue, o) AW

2. Fixed Point Problem: determine (u¢) so that

VEe[0,T), Py zo=p as.

Once this is done one expects that, if & = ¢(t, X;), for N player game,
o =¢* (X)), j=1, N

form an approximate Nash equilibrium for the game with N players.



EX: PONTRYAGIN STOCHASTIC MAXIMUM
PRINCIPLE

Freeze . = (ut)o<i<T, Write (reduced) Hamiltonian

H(t, x, .y, a) = b(t, X, p, @) - y + £(t, X, p, @)

Standard definition

Given an admissible control a = (at)o<:< 7 and the corresponding controlled
state process X = (X{*)o<i<1, any couple (Y:, Zt)o<i<r satisfying:

AdYs = —OH(t, XE, e, Ye, ) alt + ZeaWs + Z0dW?
Yr = aXg()(?:/'”—)

is called a set of adjoint processes



STOCHASTIC CONTROL STEP SOLUTION

Determine
a(t, x,pu,y) = arginf H(t, x, 1, ¥, )
Inject in FORWARD and BACKWARD dynamics and SOLVE

dX[ = b(t, X[, ﬂ[,é\l(t, Xt,,ut, Yt))dt + O'(t, Xt)th + O'O(t, Xt)thO,
dY; = —8XH“'(t, X, Yt,d(h Xt, ot Yt))dt-i- ZdW; + ZtOC/WtO

with Xo = X0 and YT = 8XQ(XT,/LT)

Standard FBSDE (for each fixed t — py)



FIXED POINT STEP

Solve the fixed point problem
(ntdostsr — (Xdosest — (Pygyz0)o<e<r
Note: if we enforce u; = }P’leo forall0 <t < T in FBSDE we have
dX; = b(t, X;, Py, 50, & a X7 (1, X, Y0)dt + o, X)) AW, + o (£, X;) o dWP,
Yy = —OH X7 (8, X2, Ye, &7 (8, X, Yo))dlt + ZedWy + Z0dW?,

with
Xo=xo and Y7 = 0x9(X7. Py, 50)

FBSDE of Conditional McKean-Viasov type !!!
Very difficult



SEVERAL APPROCHES

» Relaxed Controls (R.C. - Delarue - Lacker)

» FBSDEs of Conditional McKean-Vlasov Type (RC - Delarue)
» SDEs of Conditional McKean-Vlasov Type (RC - Zhu)

Conditional Propagation of Chaos (RC - Zhu)

Existence for a finite common noise (Schauder Theorem)

Weak Solution by Limiting arguments

Unigueness via Monotonicity or Strong Convexity

Strong Solution via extension of Yamada-Watanabe

v

vvyY vy



Back to Control of
McKean - Vlasov
Dynamics

Say using Pontryaging Maximum Principle



DIFFERENTIABILITY AND CONVEXITY OF 1 — h(u)

> Notions of differentiability for functions defined on spaces of measures
from theory of optimal transportation, gradient flows, etc) studied by
Ambrosio, De Giorgi, Otto, Villani, etc

» Tailored made notion (Lions’ College de France Lectures,
Cardaliaguet)

Lift a function . < h(y) to L2(Q2, F,P) into

X < h(X) = h(x)
and say
his differentiable at 1. if h is Fréchet differentiable at X whenever By = .

A function g on R? x Py (RY) is said to be convex if for every (x, 1) and
(X', 1) in R x Py (R?) we have
g(leﬂ/) - g(X7 /1') - axg(xali) : (X/ - X) - I‘.E[aﬂg()ﬂ)”() ) ()?’ - )N()] 2 0

!

whenever Py, = yand By, =



POTENTIAL GAMES

Start with Mean Field Game a la Lasry-Lions

r

. 1

inf E[/ [§|a1\2 + f(t7 Xulh)] at + g(XT, ;LT)
0

a=(at)o<t< 1, Ai=ardt+odWy

such that f and g are differentiable w.r.t. x s.t. there exist differentiable
functions F and G

Oxf(t,x, 1) = OuF(t,p)(x) and  xg(x, p) = 0, G(p)(x) (1)

Solving this MFG is equivalent to solving the central planner optimization
problem

inf E MT [%\a,f + F(t, £(X:))] dt + G(L(Xr))

a=(at)o<t< T, Xt=ardt+odWr

Special case of McKean-Vlasov optimal control



THE ADJOINT EQUATIONS

Lifted Hamiltonian B B
H(t, x, X, y,a) = H(t, X, i, y, @)

for any random variable X with distribution .

Given an admissible control & = (at)o<:< 7 and the corresponding controlled
state process X = (X{*)o<i<7, any couple (Y:, Zt)o<i< 1 satisfying:

dYy = —0xH(t, Xza7PXta> Y, ai)dt + Z,dW;
—E[9, H(t, X:, X, Vs, )] x=xp dt
Y7 = 0xg(X7, Pxe) + E[0,9(X, Xt)]lx=x

where (&, X, Y, Z) is an independent copy of (a, X*, Y, Z), is called a set of
adjoint processes

BSDE of Mean Field type according to Buckhdan-Li-Peng !!!

Extra terms in red are the ONLY difference between MFG and Control of
McKean-Vlasov dynamics !!!



PONTRYAGIN MAXIMUM PRINCIPLE (SUFFICIENCY)

Assume
1. Coefficients continuously differentiable with bounded derivatives;
2. Terminal cost function g is convex;

3. « admissible control, X corresponding dynamics, (Y, Z) adjoint
processes and

(X,ILL7O() — H(t7xvlua Ytazha)

is dt @ dP a.e. convex,
then, if moreover

H(t7 X[,]P)X[, Yt,Zt, Ozt) = Im; H(t, XtaPX” Yt, a), a.s.
ac

Then « is an optimal control, i.e.

J(a) = inf J@)

acA



SCALAR INTERACTIONS

b(t, X, p, @) = b(t, X, (¥, p), @) o(t,X,1,0) = 5(t,X, (¢, 1), @)
f(t,x,/,L,oz):f(t,X,(mu),a) g(X7M):g(X7<C7u>)
> 1, ¢, v and ¢ differentiable with at most quadratic growth at oo,
» b, 5 and 7 differentiable in (x, r) € R? x R for t, o) fixed
> g differentiable in (x,r) € RY x R.
Recall that the adjoint process satisfies
YT = an(XTa IFDXT) + Hh":[aﬂg(j‘(Ta PS(T)(XT)]

but since
0ug(x, 1)(x") = 8:9(x, (¢, ) (),
the terminal condition reads
Y7 = 0x@(Xr, E[C(X7)]) + E[0,9 (X7, E[C(X7)]) ] 9¢(X7)

Convexity in y follows convexity of g



SCALAR INTERACTIONS (CONT.)

H(ta X, 1Y, Z, Oé) = B(t7xv <¢7ﬂ>a a)y+&(t7 X, <¢a ,u‘>7 O‘)’Z+?(tvx7 <’Y,/,L>,Ol)
OuH(t, x, 1, y, Z, ) can be identified wih

8#H(t7X,u,y7 Z, a)(X/) = [8,5(1‘7 X, <1/)7M>’a) . y}@w(x/)
+ [8’&(t7 X, <¢7 M>7 Oé) . Z] 8¢(X,)
+ 8- (L, x, (7, ), @) Dy(x)

and the adjoint equation rewrites:
ay; = f{c?x[)(t, X, E[(Xt)], o) - Yi + 0x6 (8, Xe, E[3(X0)], vt) - Zi
+ 8 F(t, X, B[y (X)), a,)}dt + Z,dW,
—{E[a,b(t, X, Bl (X)), &) - Vi 0w(X) + B[05(t, X, B[p(X)], &) - Z2] 06 (X,)
+E[0:7((t, X, E[y(X)], ér)] aw(x,)}dt

Anderson - Djehiche



SOLUTION OF THE MCKYV CONTROL PROBLEM

Assume

> b(t, X, p, ) = bo(t) [pa xdpu(x) + bi(t)x 4 be(t)x
with by, by and b, is R?*%-valued and are bounded.

» fand g as in MFG problem.
There exists a solution (X;, Y:, Zt)o of the McKean-Vlasov FBSDE

adX; = bo(H)E(X:)at + by (1) Xelt + ba(1)a(t, Xe, Px,, Ye)alt + odWs,
Y, = —0xH(t, Xo, Px,, Yo, ¢ dlt
—E[0,H(t, X[, X, Y{,64)] ot + ZiaW,.

with Y; = u(t, X, Px,) for a function
u:[0, T] x RY x Py(R?) 3 (t, x, i) — u(t, x, 1)

uniformly of Lip-1 and with linear growth in x.



A FINITE PLAYER APPROXIMATE EQUILIBRIUM

For N independent Brownian motions (W', ..., WN) and for a square integrable
exchangeable process 3 = (87, . .. ,BN), consider the system

N
axj = Nbo(t)z X+ by(DX] + ba(1)Bf + odW],  X§ =&,
j=1

and define the common cost

T . . 1 N
JN(ﬁ):E[/O f(s, X5, g, BL) ds + g(XT, iY) |, wimﬁ;\’:ﬁzfsx{.
i=1

Then, there exists a sequence (en)n>1, en N\ 0, s.t. forall g = (3',...,8M),

J(8) = S(@) — en,
where, a = (a',--- , o) with

of = a(s, X, u(t, X)), Px,)

where X and u are from the solution to the controlled McKean Vlasov problem, and

(X1,...,XN) is the state of the system controlled by «, i.e.

N

o1 iy oy .y g L .

axi = N E bo()X] + by (1) X] + ba(t)é(s, XL, u(s, X8),Px,) + odW/, X{=¢.
=1



