OPTIMAL CONTROL OF MCKEAN-VLASOV DYNAMICS

René Carmona

Department of Operations Research & Financial Engineering Bendheim Center for Finance Princeton University

> CMU, June 3, 2015 Steve Shreve's 65th Birthday

CREDITS

Joint Work with

François Delarue (Nice)

(series of papers and forthcoming book)

CLASSICAL STOCHASTIC DIFFERENTIAL CONTROL

$$\inf_{\alpha \in \mathbb{A}} \mathbb{E} \left[\int_0^T f(t, X_t, \alpha_t) dt + g(X_T, \mu_T) \right]$$
subject to
$$dX_t = b(t, X_t, \alpha_t) dt + \sigma(t, X_t, \alpha_t) dW_t; \quad X_0 = x_0.$$

- Analytic Approach (by PDEs)
 - HJB equation
- Probabilistic Approaches (by FBSDEs)
 - 1. Represent value function as solution of a BSDE
 - Represent the gradient of the value function as solution of a FBSDE (Stochastic Maximum Principle)

I. FIRST PROBABILISTIC APPROACH

Assumptions

- \triangleright σ is uncontrolled
- \triangleright σ is invertible

Reduced Hamitonian

$$H(t, x, y, \alpha) = b(t, x, \alpha) \cdot y + f(t, x, \alpha)$$

For each control α solve **BSDE**

$$dY_t = -H(t, X_t, Z_t \sigma(t, X_t)^{-1}, \alpha_t) dt + Z_t \cdot dW_t, \qquad Y_T = g(X_T)$$

Then

$$Y_0^{\alpha} = J(\alpha) = \mathbb{E}\left[\int_0^T f(t, X_t, \alpha_t) dt + g(X_T, \mu_T)\right]$$

So by **comparison theorems** for BSDEs, optimal control $\hat{\alpha}$ given by:

$$\hat{\alpha}_t = \hat{\alpha}(t, X_t, Z_t \sigma(t, X_t)^{-1}), \quad \text{with} \quad \hat{\alpha}(t, x, y) \in \operatorname{argmin}_{\alpha \in A} H(t, x, y, \alpha)$$
 and $Y_0^{\alpha} = J(\hat{\alpha})$

II. PONTRYAGIN STOCHASTIC MAXIMUM APPROACH

Assumptions

- ▶ Coefficients b, σ and f differentiable
- f convex in (x, α) and g convex

Hamitonian

$$H(t, x, y, z, \alpha) = b(t, x, \alpha) \cdot y + \sigma(t, x, \alpha) \cdot z + f(t, x, \alpha)$$

For each control α solve **BSDE** for the adjoint processes $\mathbf{Y} = (Y_t)_t$ and $\mathbf{Z} = (Z_t)_t$

$$dY_t = -\partial_x H(t, X_t, Y_t, Z_t, \alpha_t) dt + Z_t \cdot dW_t, \qquad Y_T = \partial_x g(X_T)$$

Then, optimal control $\hat{\alpha}$ given by:

$$\hat{\alpha}_t = \hat{\alpha}(t, X_t, Y_t, Z_t), \quad \text{with} \quad \hat{\alpha}(t, x, y, z) \in \text{argmin}_{\alpha \in A} H(t, x, y, z, \alpha)$$

and
$$Y_0^{\hat{\alpha}} = J(\hat{\alpha})$$

SUMMARY

In both cases (σ uncontrolled), need to **solve a FBSDE**

$$\begin{cases} dX_t = B(t, X_t, Y_t, Z_t)dt + \Sigma(t, X_t)dW_t, \\ dY_t = -F(t, X_t, Y_t, Z_t)dt + Z_tdW_t \end{cases}$$

First Approach

$$B(t,x,y,z) = b(t,x,\hat{\alpha}(t,x,z\sigma(t,x)^{-1})),$$

$$F(t,x,y,z) = -f(t,x,\hat{\alpha}(t,x,z\sigma(t,x)^{-1}) - (z\sigma(t,x,)^{-1}) \cdot b(t,x,\hat{\alpha}(t,x,z\sigma(t,x)^{-1})).$$

Second Approach

$$B(t, x, y, z) = b(t, x, \hat{\alpha}(t, x, y)),$$

$$F(t, x, y, z) = -\partial_x f(t, x, \hat{\alpha}(t, x, y)) - y \cdot \partial_x b(t, x, \hat{\alpha}(t, x, y)).$$

PROPAGATION OF CHAOS & MCKEAN-VLASOV SDES

System of N particles $X_t^{N,i}$ at time t with **symmetric (Mean Field)** interactions

$$dX_t^{N,i} = b(t, X_t^{N,i}, \overline{\mu}_{X_t^N}^N)dt + \sigma(t, X_t^{N,i}, \overline{\mu}_{X_t^N}^N)dW_t^i, \quad i = 1, \cdots, N$$

where $\overline{\mu}_{X_{t}^{N}}^{N}$ is the empirical measure $\overline{\mu}_{\mathbf{x}}^{N}=\frac{1}{N}\sum_{i=1}^{N}\delta_{x^{i}}$

Large population asymptotics $(N \to \infty)$

- 1. The *N* processes $(X_t^{N,i})_{0 \le t \le T}$ for $i = 1, \dots, N$ become asymptotically **i.i.d.**
- Each of them is (asymptotically) distributed as the solution of the McKean-Vlasov SDE

$$dX_t = b(t, X_t, \mathcal{L}(X_t))dt + \sigma(t, X_t, \mathcal{L}(X_t))dW_t$$

FORWARD SDES OF MCKEAN-VLASOV TYPE

$$dX_t = B(t, X_t, \mathcal{L}(X_t))dt + \Sigma(t, X_t, \mathcal{L}(X_t))dW_t, \qquad T \in [0, T].$$

Assumption. There exists a constant $c \ge 0$ such that

- (A1) For each $(x,\mu) \in \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d)$, the processes $B(\cdot,\cdot,x,\mu): \Omega \times [0,T] \ni (\omega,t) \mapsto B(\omega,t,x,\mu)$ and $\Sigma(\cdot,\cdot,x,\mu): \Omega \times [0,T] \ni (\omega,t) \mapsto \Sigma(\omega,t,x,\mu)$ are \mathbb{F} -progressively measurable and belong to $\mathbb{H}^{2,d}$ and $\mathbb{H}^{2,d \times d}$ respectively.
- (A2) $\forall t \in [0, T], \forall x, x' \in \mathbb{R}^d, \forall \mu, \mu' \in \mathcal{P}_2(\mathbb{R}^d), \text{ with probability 1 under } \mathbb{P},$ $|B(t, x, \mu) B(t, x', \mu')| + |\Sigma(t, x, \mu) \Sigma(t, x', \mu')| \le c \big[|x x'| + W_2(\mu, \mu')\big],$

where W_2 denotes the 2-Wasserstein distance on the space $\mathcal{P}_2(\mathbb{R}^d)$.

Result. if $X_0 \in L^2(\Omega, \mathcal{F}_0, \mathbb{P}; \mathbb{R}^d)$, then there exists a unique solution $\mathbf{X} = (X_t)_{0 \le t \le T}$ in $\mathbb{S}^{2,d}$ s.t. for every $p \in [1,2]$

$$\mathbb{E}\Big[\sup_{0\leq t\leq T}|X_t|^p\Big]<+\infty.$$

Sznitmann

CONTROLLING LARGE SYMMETRIC POPULATIONS

Assume Mean Field Interactions

$$dX_t^{N,i} = b(t, X_t^{N,i}, \overline{\mu}_{X_t^N}^N, \alpha_t^i)dt + \sigma(t, X_t^{N,i}, \overline{\mu}_{X_t^N}^N, \alpha_t^i)dW_t^i \quad i = 1, \cdots, N$$

Assume distributed strategies

$$\alpha_t^i = \phi(t, X_t^{N,i})$$

Assume population is large (i.e. $N = \infty$)

- 1. The N state processes evolve independently of each other
- 2. Controlling each of them reduces to the optimal control problem

$$\inf_{\phi \in \Phi} \mathbb{E} \left[\int_0^T f(t, X_t, \mathcal{L}(X_t), \phi(t, X_t)) dt + g(X_T, \mathcal{L}(X_T)) \right]$$
s.t. $dX_t = b(t, X_t, \mathcal{L}(X_t), \phi(t, X_t)) dt + \sigma(t, X_t, \mathcal{L}(X_t), \phi(t, X_t)) dW_t$ $X_0 = x_0.$

Control of a McKean-Vlasov SDE (Markovian - closed loop)

CONTROL OF MCKEAN-VLASOV DYNAMICS

Mathematical Formulation

1. State dynamics given by an SDE of McKean - Vlasov type

$$dX_t = b(t, X_t, \mathcal{L}(X_t), \alpha_t)dt + \sigma(t, X_t, \mathcal{L}(X_t), \alpha_t)dW_t$$

2. Objective function to minimize of the McKean-Vlasov type

$$J(lpha) = \mathbb{E}\left[\int_0^T f(t, X_t, \mathcal{L}(X_t), lpha_t) dt + g(X_T, \mathcal{L}(X_T))\right]$$

Could use open loop formulation.

CONTROL OF MCKEAN - VLASOV SDES

State at time t, say $(X_t, \mathcal{L}(X_t))$ is **infinite dimensional**

Analytic Approach

Infinite dimensional HJB equations (Crandall, Lions, Ishii?)

Probabilistic Approaches

- 1. McKean Vlasov FBSDEs!
- 2. Pontryagin maximum principle approach
 - How should we differentiate the Hamiltonian w.r.t. the measure?

More to come

N-PLAYER STOCHASTIC DIFFERENTIAL GAMES

Assume Mean Field Interactions (symmetric game)

$$dX_t^{N,i} = b(t, X_t^{N,i}, \overline{\mu}_{X_t^N}^N, \alpha_t^i)dt + \sigma(t, X_t^{N,i}, \overline{\mu}_{X_t^N}^N, \alpha_t^i)dW_t^i \quad i = 1, \cdots, N$$

Assume player i tries to minimize

$$J^{i}(\boldsymbol{\alpha}^{1},\cdots,\boldsymbol{\alpha}^{N})=\mathbb{E}\bigg[\int_{0}^{T}f(t,X_{t}^{N,i},\overline{\mu}_{X_{t}^{N}}^{N},\alpha_{t}^{i})dt+g(X_{T},\overline{\mu}_{X_{T}^{N}}^{N})\bigg]$$

Search for Nash equilibria

- ▶ Very difficult in general, even if *N* is small
- ightharpoonup ϵ -Nash equilibria? Still hard.
- ▶ How about in the limit $N \to \infty$?

Mean Field Games Lasry - Lions, Caines-Huang-Malhamé

MFG PARADIGM

A **typical** agent plays against a **continuum** of players whose states he/she feels through their **distribution** μ_t at time t

1. For each Fixed measure flow (μ_t) in $\mathcal{P}(\mathbb{R})$, solve the standard stochastic control problem

$$\hat{\alpha} = \arg\inf_{\alpha} \mathbb{E} \left\{ \int_{0}^{T} f(t, X_{t}, \mu_{t}, \alpha_{t}) dt + g(X_{T}, \mu_{T}) \right\}$$

subject to

$$dX_t = b(t, X_t, \mu_t, \alpha_t)dt + \sigma(t, X_t, \mu_t, \alpha_t)dW_t$$

2. **Fixed Point Problem**: determine (μ_t) so that

$$\forall t \in [0, T], \quad \mathcal{L}(X_t) = \mu_t \quad a.s.$$

Once this is done one expects that, if $\hat{\alpha}_t = \phi(t, X_t)$,

$$\alpha_t^{j*} = \phi^*(t, X_t^j), \qquad j = 1, \cdots, N$$

form an **approximate Nash equilibrium** for the game with *N* players.

I. VALUE FUNCTION REPRESENTATION: PREP.

Recall

$$\sigma(t, x, \mu, \alpha) = \sigma(t, x)$$
 uniformly Lip-1 and uniformly elliptic

$$H(t, x, \mu, y, \alpha) = y \cdot b(t, x, \mu, \alpha) + f(t, x, \mu, \alpha)$$

and

$$\hat{\alpha}(t, x, \mu, y) \in \arg \in_{\alpha \in A} H(t, x, \mu, y, \alpha).$$

(A.1) b is affine in α : $b(t, x, \mu, \alpha) = b_1(t, x, \mu) + b_2(t)\alpha$ with b_1 and b_2 bounded.

(A.2) Running cost f strongly convex

$$f(t, x', \mu, \alpha') - f(t, x, \mu, \alpha) - \langle (x' - x, \alpha' - \alpha), \partial_{(x,\alpha)} f(t, x, \mu, \alpha) \rangle \ge \lambda |\alpha' - \alpha|^2.$$

Then

 $\hat{\alpha}(t, x, \mu, y)$ is unique and

$$[0,T] \times \mathbb{R}^d \times \mathcal{P}_2(\mathbb{R}^d) \times \mathbb{R}^d \ni (t,x,\mu,y) \to \hat{\alpha}(t,x,\mu,y)$$

is measurable, locally bounded and Lipschitz-continuous with respect to (x,y), uniformly in $(t,\mu)\in[0,T]\times\mathcal{P}_2(\mathbb{R}^d)$

I. VALUE FUNCTION REPRESENTATION: CONT.

If $A \subset \mathbb{R}^k$ is **bounded** (not really needed), if $\mathbf{X}^{t,x} = (X_s^{t,x})_{t \leq s \leq T}$ is the unique strong solution of $dX_t = \sigma(t, X_t) dW_t$ over [t, T] s.t. $X_t^{t,x} = x$, and if $(\hat{\mathbf{Y}}^{t,x}, \hat{\mathbf{Z}}^{t,x})$ is a solution of the BSDE

$$\begin{split} d\hat{Y}_s^{t,x} &= -H(t, X_s^{t,x}, \mu_s, \hat{Z}_s^{t,x} \sigma(s, X_s^{t,x})^{-1}, \hat{\alpha}(s, X_s^{t,x}, \mu_s, \hat{Z}_s^{t,x} \sigma(s, X_s^{t,x})^{-1})) ds \\ &- \hat{Z}_s^{t,x} dW_s, \qquad t \leq s \leq T, \end{split}$$

with $\hat{Y}_T = g(X_T^{t,x}, \mu_T)$, then

$$\hat{\alpha}_t = \hat{\alpha}(s, X_s^{t,x}, \mu_s, \hat{Z}_s^{t,x} \sigma(s, X_s^{t,x})^{-1})$$

is an optimal control over the interval [t, T] and the value of the problem is given by:

$$V(t,x)=\hat{Y}_t^{t,x}.$$

The value function appears as the decoupling field of an FBSDE.

FIXED POINT STEP ⇒ MCKEAN-VLASOV FBSDE

Starting from t = 0 and dropping the superscript t,x

$$\begin{cases} dX_t = b(t, X_t, \mu_t, \hat{\alpha}(t, X_t, \mu_t, Z_t \sigma(t, X_t)^{-1}))dt + \sigma(t, X_t)dW_t \\ dY_t = -H(t, X_t, \mu_t, Z_t \sigma(t, X_t)^{-1}, \hat{\alpha}(t, X_t, \mu_t, Z_t \sigma(t, X_t)^{-1}))dt - Z_t dW_t, \end{cases}$$

for
$$0 \le t \le T$$
, with $\hat{Y}_T = g(X_T, \mu_T)$.

Implementing the fixed point step

$$\mu_t \hookrightarrow \mathcal{L}(X_t)$$

gives an FBSDE of McKean-Vlasov type.

II. PONTRYAGIN STOCHASTIC MAXIMUM PRINCIPLE

Freeze
$$\mu = (\mu_t)_{0 < t < T}$$
,

Recall (reduced) Hamiltonian

$$H(t, x, \mu, y, \alpha) = b(t, x, \mu, \alpha) \cdot y + f(t, x, \mu, \alpha)$$

Adjoint processes

Given an admissible control $\alpha=(\alpha_t)_{0\leq t\leq T}$ and the corresponding controlled state process $X^\alpha=(X^\alpha_t)_{0\leq t\leq T}$, any couple $(Y_t,Z_t)_{0\leq t\leq T}$ satisfying:

$$\begin{cases} dY_t = -\partial_x H(t, X_t^{\alpha}, \mu_t, Y_t, \alpha_t) dt + Z_t dW_t \\ Y_T = \partial_x g(X_T^{\alpha}, \mu_T) \end{cases}$$

STOCHASTIC CONTROL STEP

Determine

$$\hat{\alpha}(t, x, \mu, y) = \arg\inf_{\alpha} H(t, x, \mu, y, \alpha)$$

Inject in FORWARD and BACKWARD dynamics and SOLVE

$$\begin{cases} dX_t = b(t, X_t, \mu_t, \hat{\alpha}(t, X_t, \mu_t, Y_t))dt + \sigma(t, X_t)dW_t \\ dY_t = -\partial_x H(t, X, \mu_t, Y_t, \hat{\alpha}(t, X_t, \mu_t, Y_t))dt + Z_t dW_t \end{cases}$$

with
$$X_0 = x_0$$
 and $Y_T = \partial_x g(X_T, \mu_T)$

Standard **FBSDE** (for each **fixed** $t \hookrightarrow \mu_t$)

FIXED POINT STEP

Solve the fixed point problem

$$(\mu_t)_{0 \leq t \leq T} \longrightarrow (X_t)_{0 \leq t \leq T} \longrightarrow (\mathcal{L}(X_t))_{0 \leq t \leq T}$$

Note: if we enforce $\mu_t = \mathcal{L}(X_t)$ for all $0 \le t \le T$ in FBSDE we have

$$\begin{cases} dX_t = b(t, X_t, \mathcal{L}(X_t), \hat{\alpha}(t, X_t, \mathcal{L}(X_t), Y_t))dt + \sigma(t, X_t)dW_t, \\ dY_t = -\partial_x H(t, X_t^{\alpha}, \mathcal{L}(X_t), Y_t, \hat{\alpha}(t, X_t, \mathcal{L}(X_t), Y_t))dt + Z_t dW_t \end{cases}$$

with

$$X_0 = x_0$$
 and $Y_T = \partial_x g(X_T, \mathcal{L}(X_T))$

FBSDE of McKean-Vlasov type !!!

Very difficult

FBSDES OF MCKEAN - VLASOV TYPE

In both probabilistic approaches to the MFG problem the problem reduces to the solution of an FBSDE

$$\begin{cases} & dX_t = B(t, X_t, \mathcal{L}(X_t), Y_t, Z_t)dt + \Sigma(t, X_t, \mathcal{L}(X_t))dW_t, \\ & dY_t = -F(t, X_t, \mathcal{L}(X_t), Y_t, Z_t)dt + Z_tdW_t \end{cases}$$

with in the first approach

$$\begin{cases} B(t, x, \mu, y, z) = b(t, x, \mu, \hat{\alpha}(t, x, \mu, z\sigma(t, x)^{-1})), \\ F(t, x, \mu, y, z) = -f(t, x, \mu, \hat{\alpha}(t, x, \mu, z\sigma(t, x)^{-1}) - z\sigma(t, x)^{-1}b(t, x, \mu, \hat{\alpha}(t, x, \mu, z\sigma(t, x)^{-1})), \end{cases}$$

and in the second:

$$\begin{cases} B(t,x,\mu,y,z) = b(t,x,\mu,\hat{\alpha}(t,x,\mu,y)), \\ F(t,x,\mu,y,z) = -\partial_x f(t,x,\mu,\hat{\alpha}(t,x,\mu,y)) - y\partial_x b(t,x,\mu,\hat{\alpha}(t,x,\mu,y)). \end{cases}$$

A TYPICAL EXISTENCE RESULT

$$\begin{cases} dX_t = B(t, X_t, Y_t, Z_t, \mathbb{P}_{(X_t, Y_t)}) dt + \Sigma(t, X_t, Y_t, \mathbb{P}_{(X_t, Y_t)}) dW_t \\ dY_t = -F(t, X_t, Y_t, Z_t, \mathbb{P}_{(X_t, Y_t)}) dt + Z_t dW_t, \quad 0 \le t \le T, \end{cases}$$

with $X_0 = x_0$ and $Y_T = G(X_T, \mathcal{L}(X_T))$.

Assumptions

(A1). B, F, Σ and G are continuous in μ and uniformly (in μ) Lipschitz in (x, y, z)

(A2). Σ and G are bounded and

$$\left\{ |B(t,x,y,z,\mu)| \leq L \left[1 + |x| + |y| + |z| + \left(\int_{\mathbb{R}^d \times \mathbb{R}^p} |(x',y')|^2 d\mu(x',y') \right)^{1/2} \right], \\ |F(t,x,y,z,\mu)| \leq L \left[1 + |y| + \left(\int_{\mathbb{R}^d \times \mathbb{R}^p} |y'|^2 d\mu(x',y') \right)^{1/2} \right]. \right.$$

(A3). Σ is uniformly elliptic

$$\Sigma(t, x, y, \mu)\Sigma(t, x, y, \mu)^{\dagger} \geq L^{-1}I_d$$

and $[0, T] \ni t \hookrightarrow \Sigma(t, 0, 0, \delta_{(0,0)})$ is also assumed to be continuous.

Under (A1–3), there exists a solution $(X,Y,Z) \in \mathbb{S}^{2,d} \times \mathbb{S}^{2,p} \times \mathbb{H}^{2,p\times m}$

MEAN FIELD GAMES WITH A COMMON NOISE

Starting with a finite player game, i.e.

Simultaneous Minimization of

$$J^{i}(\alpha) = \mathbb{E}\left\{\int_{0}^{T} f(t, X_{t}^{i}, \overline{\mu}_{t}^{N}, \alpha_{t}^{i}) dt + g(X_{T}, \overline{\mu}_{T}^{N})\right\}, \quad i = 1, \cdots, N$$

under constraints (dynamics of players private states)

$$dX_t^i = b(t, X_t^i, \overline{\mu}_t^N, \alpha_t^i)dt + \sigma(t, X_t^i, \overline{\mu}_t^N, \alpha_t^i)dW_t^i + \sigma^0(t, X_t^i, \overline{\mu}_t^N, \alpha_t^i)dW_t^0$$

for i.i.d. Wiener processes W_t^k for $k = 0, 1, \dots, N$.

LARGE GAME ASYMPTOTICS (CONT.)

Conditional Law of Large Numbers

- ▶ If we consider **exchangeable equilibriums**, $(\alpha_t^1, \dots, \alpha_t^N)$, then
 - ► By de Finetti LLN

$$\lim_{N\to\infty}\overline{\mu}_t^N=\mathbb{P}_{X_t^1|\mathcal{F}_t^0}$$

Dynamics of player 1 (or any other player) becomes

$$dX_t^1 = b(t, X_t^1, \mu_t, \alpha_t^1)dt + \sigma(t, X_t^1, \mu_t, \alpha_t^1)dW_t + \sigma^0(t, X_t^1, \mu_t, \alpha_t^1)dW_t^0;$$
 with $\mu_t = \mathbb{P}_{X_t^1 \mid \mathcal{F}^0}$.

Cost to player 1 (or any other player) becomes

$$\mathbb{E}\left\{\int_0^T f(t, X_t, \mu_t, \alpha_t^1) dt + g(X_T, \mu_T)\right\}$$

MFG WITH COMMON NOISE PARADIGM

1. For each **Fixed** measure valued (\mathcal{F}_t^0) -adapted process (μ_t) in $\mathcal{P}(\mathbb{R})$, solve the standard **stochastic control problem**

$$\hat{\alpha} = \arg\inf_{\alpha} \mathbb{E} \left\{ \int_{0}^{T} f(t, X_{t}, \mu_{t}, \alpha_{t}) dt + g(X_{T}, \mu_{T}) \right\}$$

subject to

$$dX_t = b(t, X_t, \mu_t, \alpha_t)dt + \sigma(t, X_t, \mu_t, \alpha_t)dW_t + \sigma^0(t, X_t, \mu_t, \alpha_t)dW_t^0;$$

2. **Fixed Point Problem**: determine (μ_t) so that

$$\forall t \in [0, T], \quad \mathbb{P}_{X_t \mid \mathcal{F}_t^0} = \mu_t \quad a.s.$$

Once this is done one expects that, if $\hat{\alpha}_t = \phi(t, X_t)$, for N player game,

$$\alpha_t^{j*} = \phi^*(t, X_t^j), \qquad j = 1, \dots, N$$

form an **approximate Nash equilibrium** for the game with *N* players.

EX: PONTRYAGIN STOCHASTIC MAXIMUM PRINCIPLE

Freeze
$$\mu = (\mu_t)_{0 \le t \le T}$$
, write (reduced) Hamiltonian
$$H(t, x, \mu, y, \alpha) = b(t, x, \mu, \alpha) \cdot y + f(t, x, \mu, \alpha)$$

Standard definition

Given an admissible control $\alpha=(\alpha_t)_{0\leq t\leq T}$ and the corresponding controlled state process $X^\alpha=(X^\alpha_t)_{0\leq t\leq T}$, any couple $(Y_t,Z_t)_{0\leq t\leq T}$ satisfying:

$$\begin{cases} dY_t = -\partial_x H(t, X_t^{\alpha}, \mu_t, Y_t, \alpha_t) dt + Z_t dW_t + Z_t^0 dW_t^0 \\ Y_T = \partial_x g(X_T^{\alpha}, \mu_T) \end{cases}$$

is called a set of adjoint processes

STOCHASTIC CONTROL STEP SOLUTION

Determine

$$\hat{\alpha}(t, x, \mu, y) = \arg\inf_{\alpha} H(t, x, \mu, y, \alpha)$$

Inject in FORWARD and BACKWARD dynamics and SOLVE

$$\begin{cases} dX_t = b(t, X_t, \mu_t, \hat{\alpha}(t, X_t, \mu_t, Y_t))dt + \sigma(t, X_t)dW_t + \sigma^0(t, X_t)dW_t^0, \\ dY_t = -\partial_x H^{\mu_t}(t, X, Y_t, \hat{\alpha}(t, X_t, \mu_t, Y_t))dt + Z_t dW_t + Z_t^0 dW_t^0 \end{cases}$$

with
$$X_0 = x_0$$
 and $Y_T = \partial_x g(X_T, \mu_T)$

Standard **FBSDE** (for each **fixed** $t \hookrightarrow \mu_t$)

FIXED POINT STEP

Solve the fixed point problem

$$(\mu_t)_{0 \leq t \leq T} \longrightarrow (X_t)_{0 \leq t \leq T} \longrightarrow (\mathbb{P}_{X_t \mid \mathcal{F}_t^0})_{0 \leq t \leq T}$$

Note: if we enforce $\mu_t = \mathbb{P}_{X_t \mid \mathcal{F}^0_t}$ for all $0 \leq t \leq T$ in FBSDE we have

$$\begin{cases} dX_t = b(t, X_t, \mathbb{P}_{X_t \mid \mathcal{F}_t^0}, \hat{\alpha}^{\mathbb{P}_{X_t \mid \mathcal{F}_t^0}}(t, X_t, Y_t))dt + \sigma(t, X_t)dW_t + \sigma(t, X_t) \circ dW_t^0, \\ dY_t = -\partial_x H^{\mathbb{P}_{X_t \mid \mathcal{F}_t^0}}(t, X_t^{\alpha}, Y_t, \hat{\alpha}^{\mathbb{P}_{X_t \mid \mathcal{F}_t^0}}(t, X_t, Y_t))dt + Z_t dW_t + Z_t^0 dW_t^0, \end{cases}$$

with

$$X_0 = x_0$$
 and $Y_T = \partial_X g(X_T, \mathbb{P}_{X_T \mid \mathcal{F}_T^0})$

FBSDE of Conditional McKean-Vlasov type !!!

Very difficult

SEVERAL APPROCHES

- Relaxed Controls (R.C. Delarue Lacker)
- ► FBSDEs of Conditional McKean-Vlasov Type (RC Delarue)
 - SDEs of Conditional McKean-Vlasov Type (RC Zhu)
 - Conditional Propagation of Chaos (RC Zhu)
 - Existence for a finite common noise (Schauder Theorem)
 - Weak Solution by Limiting arguments
 - Uniqueness via Monotonicity or Strong Convexity
 - Strong Solution via extension of Yamada-Watanabe

Back to Control of McKean - Vlasov Dynamics

Say using Pontryaging Maximum Principle

DIFFERENTIABILITY AND CONVEXITY OF $\mu \hookrightarrow h(\mu)$

- Notions of differentiability for functions defined on spaces of measures from theory of optimal transportation, gradient flows, etc) studied by Ambrosio, De Giorgi, Otto, Villani, etc
- Tailored made notion (Lions' Collège de France Lectures, Cardaliaguet)

Lift a function $\mu \hookrightarrow h(\mu)$ to $L^2(\tilde{\Omega}, \tilde{\mathcal{F}}, \tilde{\mathbb{P}})$ into

$$X \hookrightarrow \tilde{h}(X) = h(\tilde{\mathbb{P}}_X)$$

and say

h is differentiable at μ if \tilde{h} is Fréchet differentiable at X whenever $\tilde{\mathbb{P}}_X = \mu$.

A function g on $\mathbb{R}^d \times \mathcal{P}_1(\mathbb{R}^d)$ is said to be **convex** if for every (x, μ) and (x', μ') in $\mathbb{R}^d \times \mathcal{P}_1(\mathbb{R}^d)$ we have

$$g(x',\mu') - g(x,\mu) - \partial_x g(x,\mu) \cdot (x'-x) - \tilde{\mathbb{E}}[\partial_\mu g(x,\tilde{X}) \cdot (\tilde{X}'-\tilde{X})] \ge 0$$

whenever $\tilde{\mathbb{P}}_{\tilde{\mathbf{X}}} = \mu$ and $\tilde{\mathbb{P}}_{\tilde{\mathbf{X}}'} = \mu'$

POTENTIAL GAMES

Start with Mean Field Game à la Lasry-Lions

$$\inf_{\alpha = (\alpha_t)_{0 \leq t \leq T}, \ dX_t = \alpha_t dt + \sigma dW_t} \mathbb{E}\bigg[\int_0^T \big[\frac{1}{2}|\alpha_t|^2 + f(t, X_t, \mu_t)\big] dt + g(X_T, \mu_T)\bigg]$$

such that f and g are differentiable w.r.t. x s.t. there exist differentiable functions F and G

$$\partial_x f(t, x, \mu) = \partial_\mu F(t, \mu)(x)$$
 and $\partial_x g(x, \mu) = \partial_\mu G(\mu)(x)$ (1)

Solving this **MFG** is equivalent to solving the **central planner** optimization problem

$$\inf_{\alpha = (\alpha_t)_{0 \leq t \leq T}, \ dX_t = \alpha_t dt + \sigma dW_t} \mathbb{E} \left[\int_0^T \left[\frac{1}{2} |\alpha_t|^2 + F(t, \mathcal{L}(X_t)) \right] dt + G(\mathcal{L}(X_T)) \right]$$

Special case of McKean-Vlasov optimal control

THE ADJOINT EQUATIONS

Lifted Hamiltonian

$$\tilde{H}(t, x, \tilde{X}, y, \alpha) = H(t, x, \mu, y, \alpha)$$

for any random variable \tilde{X} with distribution μ .

Given an admissible control $\alpha=(\alpha_t)_{0\leq t\leq T}$ and the corresponding controlled state process $\mathbf{X}^{\alpha}=(X_t^{\alpha})_{0\leq t\leq T}$, any couple $(Y_t,Z_t)_{0\leq t\leq T}$ satisfying:

$$\begin{cases} dY_{t} = -\partial_{x}H(t, X_{t}^{\alpha}, \mathbb{P}_{X_{t}^{\alpha}}, Y_{t}, \alpha_{t})dt + Z_{t}dW_{t} \\ -\mathbb{\tilde{E}}[\partial_{\mu}H(t, \tilde{X}_{t}, X, \tilde{Y}_{t}, \tilde{\alpha}_{t})]|_{X = X_{t}^{\alpha}}dt \\ Y_{T} = \partial_{x}g(X_{T}^{\alpha}, \mathbb{P}_{X_{T}^{\alpha}}) + \mathbb{\tilde{E}}[\partial_{\mu}g(x, \tilde{X}_{t})]|_{x = X_{T}^{\alpha}} \end{cases}$$

where $(\tilde{\alpha}, \tilde{X}, \tilde{Y}, \tilde{Z})$ is an independent copy of $(\alpha, X^{\alpha}, Y, Z)$, is called a set of **adjoint processes**

BSDE of Mean Field type according to Buckhdan-Li-Peng!!!

Extra terms in red are the ONLY difference between MFG and Control of McKean-Vlasov dynamics !!!

PONTRYAGIN MAXIMUM PRINCIPLE (SUFFICIENCY)

Assume

- 1. Coefficients continuously differentiable with bounded derivatives;
- 2. Terminal cost function *g* is convex;
- 3. α admissible control, X corresponding dynamics, (Y, Z) adjoint processes and

$$(\mathbf{x}, \mu, \alpha) \hookrightarrow H(\mathbf{t}, \mathbf{x}, \mu, \mathbf{Y}_{\mathbf{t}}, \mathbf{Z}_{\mathbf{t}}, \alpha)$$

is $dt \otimes d\mathbb{P}$ a.e. **convex**,

then, if moreover

$$H(t, X_t, \mathbb{P}_{X_t}, Y_t, Z_t, \alpha_t) = \inf_{\alpha \in A} H(t, X_t, \mathbb{P}_{X_t}, Y_t, \alpha),$$
 a.s

Then α is an optimal control, i.e.

$$J(\alpha) = \inf_{\overline{\alpha} \in \mathcal{A}} J(\overline{\alpha})$$

SCALAR INTERACTIONS

$$b(t, x, \mu, \alpha) = \tilde{b}(t, x, \langle \psi, \mu \rangle, \alpha) \quad \sigma(t, x, \mu, \alpha) = \tilde{\sigma}(t, x, \langle \phi, \mu \rangle, \alpha)$$

$$f(t, x, \mu, \alpha) = \tilde{f}(t, x, \langle \gamma, \mu \rangle, \alpha) \quad g(x, \mu) = \tilde{g}(x, \langle \zeta, \mu \rangle)$$

- ψ , ϕ , γ and ζ differentiable with at most quadratic growth at ∞ ,
- $ightharpoonup ilde{b}, \, ilde{\sigma} \, ext{ and } \, ilde{t} \, \, ext{differentiable in } (x,r) \in \mathbb{R}^d \times \mathbb{R} \, ext{ for } t, \alpha) \, ext{fixed}$
- \tilde{g} differentiable in $(x, r) \in \mathbb{R}^d \times \mathbb{R}$.

Recall that the adjoint process satisfies

$$Y_T = \partial_X g(X_T, \mathbb{P}_{X_T}) + \tilde{\mathbb{E}}[\partial_\mu g(\tilde{X}_T, \mathbb{P}_{\tilde{X}_T})(X_T)].$$

but since

$$\partial_{\mu} g(x,\mu)(x') = \partial_{r} \tilde{g}(x,\langle \zeta,\mu \rangle) \partial \zeta(x'),$$

the terminal condition reads

$$Y_T = \partial_x \tilde{g}(X_T, \mathbb{E}[\zeta(X_T)]) + \tilde{\mathbb{E}}[\partial_r \tilde{g}(\tilde{X}_T, \mathbb{E}[\zeta(X_T)])] \partial_\zeta(X_T)$$

Convexity in μ follows convexity of \tilde{g}

SCALAR INTERACTIONS (CONT.)

$$H(t, x, \mu, y, z, \alpha) = \tilde{b}(t, x, \langle \psi, \mu \rangle, \alpha) \cdot y + \tilde{\sigma}(t, x, \langle \phi, \mu \rangle, \alpha) \cdot z + \tilde{f}(t, x, \langle \gamma, \mu \rangle, \alpha).$$

$$\partial_{\mu} H(t, x, \mu, y, z, \alpha) \text{ can be identified wih}$$

$$\begin{split} \partial_{\mu} H(t, x, \mu, y, z, \alpha)(x') &= \left[\partial_{r} \tilde{b}(t, x, \langle \psi, \mu \rangle, \alpha) \cdot y \right] \partial \psi(x') \\ &+ \left[\partial_{r} \tilde{\sigma}(t, x, \langle \phi, \mu \rangle, \alpha) \cdot z \right] \partial \phi(x') \\ &+ \partial_{r} \tilde{t}(t, x, \langle \gamma, \mu \rangle, \alpha) \partial \gamma(x') \end{split}$$

and the adjoint equation rewrites:

$$\begin{split} dY_t &= -\bigg\{\partial_x \tilde{b}(t,X_t,\mathbb{E}[\psi(X_t)],\alpha_t) \cdot Y_t + \partial_x \tilde{\sigma}(t,X_t,\mathbb{E}[\phi(X_t)],\alpha_t) \cdot Z_t \\ &\quad + \partial_x \tilde{f}(t,X_t,\mathbb{E}[\gamma(X_t)],\alpha_t) \bigg\} dt + Z_t dW_t \\ &\quad - \bigg\{ \tilde{\mathbb{E}}\big[\partial_r \tilde{b}(t,\tilde{X}_t,\mathbb{E}[\psi(\tilde{X}_t)],\tilde{\alpha}_t) \cdot \tilde{Y}_t \big] \partial\psi(X_t) + \tilde{\mathbb{E}}\big[\partial_r \tilde{\sigma}(t,\tilde{X}_t,\mathbb{E}[\phi(\tilde{X}_t)],\tilde{\alpha}_t) \cdot \tilde{Z}_t \big] \partial\phi(X_t) \\ &\quad + \tilde{\mathbb{E}}\big[\partial_r \tilde{f}((t,\tilde{X}_t,\mathbb{E}[\gamma(\tilde{X}_t)],\tilde{\alpha}_t)) \big] \partial\gamma(X_t) \bigg\} dt \end{split}$$

SOLUTION OF THE MCKV CONTROL PROBLEM

Assume

- ▶ $b(t, x, \mu, \alpha) = b_0(t) \int_{\mathbb{R}^d} x d\mu(x) + b_1(t)x + b_2(t)\alpha$ with b_0 , b_1 and b_2 is $\mathbb{R}^{d \times d}$ -valued and are bounded.
- ▶ f and g as in MFG problem.

There exists a solution $(X_t, Y_t, Z_t)_0$ of the McKean-Vlasov FBSDE

$$\begin{cases} dX_t = b_0(t)\mathbb{E}(X_t)dt + b_1(t)X_tdt + b_2(t)\hat{\alpha}(t, X_t, \mathbb{P}_{X_t}, Y_t)dt + \sigma dW_t, \\ dY_t = -\partial_x H(t, X_t, \mathbb{P}_{X_t}, Y_t, \hat{\alpha}_t)dt \\ -\mathbb{E}[\partial_\mu \underline{H}(t, X_t', X_t, Y_t', \hat{\alpha}_t')]dt + Z_t dW_t. \end{cases}$$

with $Y_t = u(t, X_t, \mathbb{P}_{X_t})$ for a function

$$u: [0,T] \times \mathbb{R}^d \times \mathcal{P}_1(\mathbb{R}^d) \ni (t,x,\mu) \mapsto u(t,x,\mu)$$

uniformly of Lip-1 and with linear growth in x.

A FINITE PLAYER APPROXIMATE EQUILIBRIUM

For N independent Brownian motions (W^1,\ldots,W^N) and for a square integrable exchangeable process $\beta=(\beta^1,\ldots,\beta^N)$, consider the system

$$dX_t^i = \frac{1}{N}b_0(t)\sum_{i=1}^N X_t^i + b_1(t)X_t^i + b_2(t)\beta_t^i + \sigma dW_t^i, \quad X_0^i = \xi_0^i,$$

and define the common cost

$$J^{N}(\beta) = \mathbb{E}\left[\int_{0}^{T} f(s, X_{s}^{i}, \bar{\mu}_{s}^{N}, \beta_{s}^{i}) ds + g(X_{T}^{1}, \bar{\mu}_{T}^{N})\right], \quad \text{with } \bar{\mu}_{t}^{N} = \frac{1}{N} \sum_{i=1}^{N} \delta_{X_{t}^{i}}.$$

Then, there exists a sequence $(\epsilon_N)_{N\geq 1}$, $\epsilon_N \searrow 0$, s.t. for all $\beta=(\beta^1,\ldots,\beta^N)$,

$$J^{N}(\beta) \geq J^{N}(\alpha) - \epsilon_{N},$$

where, $\alpha = (\alpha^1, \dots, \alpha^N)$ with

$$\alpha_t^i = \hat{\alpha}(s, \tilde{X}_t^i, u(t, \tilde{X}_t^i), \mathbb{P}_{X_t})$$

where X and u are from the solution to the **controlled McKean Vlasov problem**, and $(\tilde{X}^1, \ldots, \tilde{X}^N)$ is the state of the system controlled by α , i.e.

$$d\tilde{X}_t^i = \frac{1}{N} \sum_{i=1}^N b_0(t) \tilde{X}_t^j + b_1(t) \tilde{X}_t^i + b_2(t) \hat{\alpha}(s, \tilde{X}_s^i, u(s, \tilde{X}_s^i), \mathbb{P}_{X_s}) + \sigma dW_t^i, \quad \tilde{X}_0^i = \xi_0^i.$$