


Duality, Deltas, and Derivatives Pricing

Peter Carr and Greg Pelts

NYU/MS/GS/Blackrock

Steve Shreve’s 65th Birthday, June 4, 2015

Peter Carr and Greg Pelts (NYU/MS/GS) Duality, Deltas, and Derivatives Pricing 6/04/2015 1 / 34



Disclaimer for Duality, Deltas, and Derivatives Pricing

The views represented herein are the authors own views and do not necessarily
represent the views of Morgan Stanley or its affiliates and are not a product of
Morgan Stanley Research.
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Convex Duality and Mathematical Finance

I believe that convex duality was introduced into mathematical finance in
the paper Karatzas, 1., Lehoczsky, J.P., SHREVE, S. E. and Xu, G. L.
(1991). Martingale and duality methods for utility maximization in an
incomplete market. SIAM J. Control Optimization 29 702-730.

Since then it has been used extensively in the control context, by many of
the people in this room.

In this talk, we explore an application of convex duality in the traditional
option pricing context. Since option payoffs are convex in both their
underlying and their strike price, it is somewhat surprising that this work has
not been explored previously to my knowledge (references are welcome).
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The Option Quoting Problem

Option prices are subject to no arbitrage constraints of two types:

1 fixed strike and maturity
2 varying strike or maturity

Feeding a positive implied variance rate to Black Scholes formulas eliminates
the first type of arbitrage, but not the second.

For example, if a positive term structure of implied variance rates is fed to
the Black Scholes formula for a call, then each generated call price in the
term structure is above intrinsic value and below the spot price of its
underlying.

However, if the positive term structure of implied variances declines too fast
in term, then a calendar spread arbitrage is generated.
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No Arbitrage Restrictions on Implied Variance Surfaces

Ruling out all calendar spread arbitrages implies that the term structure of
implied variance rates cannot decline too fast in term at each strike.

Similarly, ruling out all vertical spread arbitrages implies that the strike
structure of implied variance rates cannot rise or fall too fast in strike at
each maturity.

Similarly, ruling out all butterfly spread arbitrages implies that implied
variance rates cannot be too concave in strike at each maturity.

Might there be an alternative to an implied variance rate surface for which
no arbitrage just requires positivity?
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Alternatives to Quoting Implied Variance Rate

There at least three simple alternatives to quoting an implied variance rate:

1 Dupire Risk 1994: quote one positive function of strike and maturity to
generate an arbitrage-free implied vol surface

2 Schweitzer Wissel F&S 2008: quote one positive function of just
moneyness to generate an arbitrage-free implied vol smile

3 This paper: quote one positive function of just moneyness to generate
an arbitrage-free implied vol smile or quote one positive function of just
moneyness and one positive function of just term to generate an
arbitrage-free implied vol surface.

In the second case, our positive function of just term controls the level of
ATM implied vol at each term, while our second positive function of just
moneyness controls the implied vol skew across all terms.
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Standing Assumptions

For convenience, we adopt a currency options perspective, but our results
apply to other underlyings.

We assume zero interest rates, but our results easily extend to deterministic
interest rates in the usual way.

We assume no default by FX option issuers. However, countries can default
or hyper-inflate, sending the value of their currency in any other currency
from some positive number to zero. Negative currency values are disallowed.

The analysis presented here is purely static, i.e. calendar time is frozen at
zero. The currencies need only trade at pricing time t = 0 and at option
maturity date T ≥ 0. However, we have developed dynamic versions for a
continuous time interval [0,T ].

The only problem to be solved is to quote some alternative to option prices
or implied variance rates. Eliminating all arbitrages should require
non-negativity of our alternative, but no other constraint.
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Pricing Currency, Paid Currency, Received Currency

The pricing currency is defined as the currency in which an FX option’s
premium is denominated.

When an FX option is exercised, the long position pays a fixed amount of
one currency and receives a fixed amount of another currency.

The pricing currency can be either the paid currency (call), the received
currency (put), or neither (exchange option).

We develop a notation that covers all 3 cases.
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Intrinsic Value of an Option

Start by picking a pricing currency.

Let N+ denote the spot price in the specified pricing currency of the
contract received in the optional exchange.

Let N− denote the spot price in the same pricing currency of the contract
delivered.

The intrinsic value of the option contract is (N+ − N−)+.

We do an example on the next slide.
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Example of Option Intrinsic Value

For example, suppose the pricing currency is dollars.

Suppose an option allows the long party to exchange 2 pounds for 3 Euros.

Suppose 2 pounds costs 3 dollars ($1.50 per pound). Then N− = 3 dollars.

Suppose 3 Euros costs 4 dollars ($1.33 per Euro). Then N+ = 4 dollars.

The intrinsic value of the option contract is (N+−N−)+ = ($4− $3)+ = $1.

If the pricing currency is pounds instead, then the long party has 3 calls,
each allowing the exchange of 2/3 of a pound for one Euro.

If the pricing currency is Euros instead, then the long party has 2 puts, each
allowing the exchange of one pound for 3/2 Euros.
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Intrinsic Values of Various Option Contracts

The intrinsic value of an option depends on the pricing currency.

Given that some pricing currency has been selected, different option
contracts have different intrinsic value representations:

1 Call: (S − K )+ or Put: (K − S)+

2 Exchange Option: (n+S+ − n−S−)+

3 FX Option: (N+ − N−)+

We use only the last representation.

Peter Carr and Greg Pelts (NYU/MS/GS) Duality, Deltas, and Derivatives Pricing 6/04/2015 11 / 34



Option Pricing Function

Notice that the intrinsic value of the option contract, (N+ − N−)+, depends
on the values N+ - and N− of the two currencies in some pricing currency,
but is independent of the option maturity date T .

In contrast, the option premium P depends not only on the values N+ and
N−, but it also depends on the option maturity date T ≥ 0.

There are many no-arbitrage constraints on the option pricing function
P(N+,N−,T ) : R+ × R+ × R+ 7→ R+.

The main goal of this talk is to present an unconstrained non-negative
alternative to P(N+,N−,T ), which respects all of these no arbitrage
constraints.
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Linear Homogeneity of our Option Pricing Function

For each fixed T > 0, consider our option pricing function
P(N+,N−,T ) : R+ × R+ × R+ 7→ R+ as a function of its first two
arguments.

In our static setting, simultaneously dilating N+ and N− by the same
positive scale factor λ > 0 causes the option price to dilate accordingly:

P(λN+, λN−,T ) = λP(N+,N−,T ), ∀λ ≥ 0.

This is a consequence of linear pricing. We are not assuming that returns
are independent of price or equivalently that the market dynamics are sticky
delta. Recall we are not in a dynamic setting.
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Implications of Linear Homogeneity

The linear homogeneity of our option pricing function
P(N+,N−,T ) : R+ × R+ × R+ 7→ R+ in N+ and N− implies the following
Euler representation:

P(N+,N−,T ) = N+P1(N+,N−,T ) + N−P2(N+,N−,T ),

where the dimensionless quantities P1 and P2 are first partial derivatives of
P w.r.t. N+ and N− respectively.

Each partial derivative can be interpreted up to sign as a probability of the
option finishing in-the-money:

P1(N+,N−,T ) = Q+{N+T > N−T} ≡ ∆+

−P2(N+,N−,T ) = Q−{N+T > N−T} ≡ ∆−.

We refer to ∆+ and ∆− as option deltas, but in our static setting, they arise
due to changing contractual specifications, rather than changing market
prices. In some model types, e.g. sticky delta, ∆+ is the delta due to spot
price change when the pricing currency is the received currency.
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Convex Duality

Recall that P(N+,N−,T ) = N+P1(N+,N−,T ) + N−P2(N+,N−,T ).

Since N− > 0, we can solve the Euler representation for −P2(N+,N−,T ):

−P2(N+,N−,T ) =
N+

N−
P1(N+,N−,T )− P(N+,N−,T )

N−
.

Let P̂(R,T ) ≡ P(N+,N−,T )
N−

, R ≡ N+

N−
. Since P(N+,N−,T ) = N−P̂(R,T ),

diff’g w.r.t. N+ ⇒ P1(N+,N−,T ) = P̂1(R,T ). Substituting in:

−P2(N+,N−,T ) = RP̂1(R,T )− P̂(R,T ).

If the RHS is written as a function of ∆+ ≡ P1(N+,N−,T ) = P̂1(R,T ),
then it becomes the Legendre transform of the convex function P̂(R,T ). We
denote the LHS by −P2(N+,N−,T ) = D−(∆+,T ) : [0, 1]× R+ 7→ [0, 1].
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Distortion Function

Recall that ∆− = Q−{N+T > N−T} = −P2(N+,N−,T ) = D−(∆+,T ) =:

RP̂1(R,T )−P̂(R,T ) =
sup
R>0

[
R∆+ − P̂(R,T )

]
where ∆+ = Q+{N+T > N−T}.

For each T > 0, D− is an increasing function of ∆+ mapping [0, 1] to [0, 1],
0 to 0, and 1 to 1, and so D−(·,T ) is a distortion function.

It follows that if one can somehow specify a convex distortion function
∆− = D−(∆+,T ) directly at each T > 0, one can also generate the convex
function linking the normalized option price P̂(R,T ) = P(N+,N−,T )/N−
to the ratio R ≡ N+/N− of its underlyings at each T > 0:

P̂(R,T ) =
sup

∆+∈[0,1] [R∆+ −D−(∆+,T )] = R∆+(R,T )−D−(∆+(R,T ),T ),

where ∆+(R,T ) is the inverse of the increasing function ∂D−
∂∆+

(∆+,T ) = R.

The convexity of ∆− in ∆+ implies the convexity of P̂ in R and hence the
convexity of P in N+ and N−. As a result, the option pricing function
produced would be free of butterfly spread arbitrage.
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Arbitrage-free Distortion Function

The last slide showed that butterfly spread arbitrage can be avoided by
specifying a convex distortion function: convexity of the distortion function
∆− = D−(∆+,T ) in ∆+ leads to convexity of the normalized option price
P̂(R,T ) = P(N+,N−,T )/N− in the ratio R ≡ N+/N− of its underlyings at
each T > 0.

To also avoid calendar spread arbitrage, the normalized option price P̂ must
be increasing in T at each price ratio R ≥ 0. We show that this is
equivalent to D− decreasing in T at each ∆+ ∈ [0, 1]. This is just a
consequence of the order reversing property of convex conjugates.

We say that a distortion function D−(∆+,T ) is arbitrage-free if it is both
convex in ∆+ ∈ [0, 1] and decreasing in T ≥ 0 with D(∆+, 0) = ∆+.

How can we specify an arbitrage-free distortion function?
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Distortion Function in the Black Scholes Model

The Black Scholes model is arbitrage-free. Hence, we can generate an
example of an arbitrage-free distortion function by looking at say the put’s
distortion function in this model.

In the Black Scholes model, lnRT is normally distributed under both
measures. For the put, ∆− = N(−d1), ∆+ = N(−d2), and the distortion

function is ∆− = N(N−1(∆+)−
√
σ2T ), for σ > 0.

This type of distortion function is called a Wang transform.

One can easily check that ∆− is convex in ∆+ ∈ [0, 1] and is decreasing in
T ≥ 0, so this distortion function is arbitrage-free as expected.
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Black Scholes Distortion F’n ∆− = N(N−1(∆+)−
√
σ2T )

At σ2T = 0, ∆− = ∆+.

At any σ2T > 0, ∆− is
increasing in ∆+, maps
[0, 1] to [0, 1], 0 to 0, and
1 to 1, and hence is a
distortion function.

This distortion function is
convex in ∆+ ∈ [0, 1] for
each T > 0, and
decreasing in T > 0 for
each ∆+ ∈ [0, 1], so it is
arbitrage-free.

Can we generalize this
arbitrage-free distortion
function to some
non-Black Scholes models?
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Understanding OTC FX Option Quoting

Recall that for a put in the Black Scholes model, the distortion function is
the Wang transform ∆− = N(N−1(∆+)−

√
σ2T ), where σ2 is a positive

constant independent of ∆+ and T .

To leave the Black Scholes world, one can make σ2 be a positive function of
∆+ and/or T , as is done in OTC FX options markets.

However, an overly concave dependence of σ2 > 0 on ∆+ ∈ [0, 1] can
produce cross-strike arbitrage, while an overly increasing dependence of
σ2 > 0 on T > 0 can produce cross-maturity arbitrage.

Even if the positive implied variance surface σ2(∆+,T ) is arbitrage-free, one
may not be able to produce option prices as a function of N+ and N−.

Is there another way to generalize the top equation, stay arbitrage-free, and
be able to relate option prices to N+, N−, and T?
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Constant Self-quanto Shift

Recall again that for a put in the Black Scholes model, the distortion
function is the Wang transform ∆− = N(N−1(∆+)−

√
σ2T ), where σ2 > 0

is independent of ∆+ and T .

In the Black Scholes model, −d2 is a natural moneyness measure under Q+

measure since −d2 = 0 corresponds to EQ+ lnST = lnK . Switching the
measure from Q+ to Q− shifts the natural moneyness measure down to
−d1 = −d2 −

√
σ2T since −d1 = 0 corresponds to EQ− lnST = lnK .

Outside Black Scholes, we will construct moneyness variables z+ and z−
which differ by a constant at each fixed maturity and which correspond to
−d2 and −d1 respectively.

If Ω is a CDF of some random variable ZT ∈ R, then
∆− = Ω(Ω−1(∆+)− τ(T )), with τ(T ) ≥ 0, is a distortion function, which
generalizes the Wang Transform.

We know that the derivative of ∆− w.r.t. ∆+ is R ≥ 0. To ensure that ∆−
is convex w.r.t. ∆+, we need to restrict Ω so that R is increasing in ∆+.
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Sufficient Condition for Convexity

Recall that ∆− = Ω(Ω−1(∆+)− τ(T )), τ(T ) ≥ 0, is a distortion function
whenever Ω(z−) is a CDF of some random variable ZT ∈ R.

Also recall that this distortion function will be convex in ∆+ if its derivative
∂∆−
∂∆+

= R is increasing in ∆+.

R will be increasing in ∆+ if R and ∆+ are both increasing functions of
some third variable z− ∈ R at each T ≥ 0.

Guessing that z− = Ω−1(∆−), the top equation implies that
∆+ = Ω(z− + τ(T )), so ∆+ is indeed increasing in z− ∈ R at each T ≥ 0.

Differentiating ∆− w.r.t. ∆+ implies that R = Ω′(z−)
Ω′(z+) where

z+ ≡ z− + τ(T ).

We show that a sufficient condition for R to be increasing in z− at each
T ≥ 0 is that the PDF Ω′(z−) is log concave in z−.

In this case, R is increasing in ∆+ and hence ∆− is convex w.r.t. ∆+.
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Sufficient Conditions for No Arbitrage

The last slide showed that ∆− = Ω(Ω−1(∆+)− τ(T )), τ(T ) ≥ 0, is a
convex distortion function if Ω′(z−), z− ∈ R, is a log concave PDF.

The convexity of ∆− in ∆+ leads to the convexity of the normalized option
price P̂(R,T ) = P(N+,N−,T )/N− in R. This leads to convexity of the
option premium P in the currency values N+ and N− at each T > 0, so
there is no butterfly spread arbitrage.

If in addition, τ(T ) is increasing in T with τ(0) = 0, then ∆− is decreasing
in T ≥ 0 at each ∆+ ∈ [0, 1]. This leads to P̂ and P being increasing in
T ≥ 0, so there is no calendar spread arbitrage either.

All of the other no arbitrage constraints on the option premium are captured
by the fact that our function linking ∆− to ∆+ at each T ≥ 0 is a distortion
function, i.e. an increasing function mapping [0, 1] to [0, 1], 0 to 0, and 1 to
1.
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Two Positive Functions Suffice

The last slide showed that so long as the PDF Ω′(z−) is log concave in
z− ∈ R and τ(T ) is increasing in T ≥ 0 with τ(0) = 0, then the generalized
Wang Transform ∆− = Ω(Ω−1(∆+)− τ(T )), τ(T ) ≥ 0, is an arbitrage-free
distortion function.

The log concavity of Ω′(z−) in z− is equivalent to the convexity of
h(z−) = − ln Ω′(z−) in z−. To generate a convex function h(z−) : R 7→ R,
pick a positive function p(z−) : R 7→ R+, and integrate it twice in z− ∈ R.

Similarly, to generate an increasing function τ(T ) : R+ 7→ R+s.t.τ(0) = 0,
pick a positive function q(T ) : R+ 7→ R+, and integrate it once in T ≥ 0.

If the positive function p(z−) is chosen to be a positive constant p0 > 0,
then double integration leads to a quadratic function h(z−), so the log
concave PDF Ω′(z−) = e−h(z−) is Gaussian. Furthermore, lnRT is linear in
ZT , so it is also Gaussian. Hence, flat p(z−) implies Black Scholes as does
flat implied variance. However, positive p(z) implies no cross-strike
arbitrage, while positive implied variance can produce vertical and/or
butterfly spread arbitrage.
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PDF with Bounded Support, Default and Hyperinflation

We call z− moneyness, while x = lnR = ln(N+/N−) is a log price relative.
They are increasing in each other and mathematically related by:

x = lnR = ln

(
Ω′(z−)

Ω′(z− + τ)

)
= h(z− + τ)− h(z−),

where recall h(z−) ≡ − ln Ω′(z−) must be convex in z− ∈ R.

Our new language for quoting options can accomodate a view that either or
both currencies could hyper-inflate (at different times).

If N+ goes to zero, then the ratio R ≡ N+/N− also goes to zero. As a
result, x = lnR goes to negative infinity.

If N− goes to zero, then the ratio R ≡ N+/N− goes to positive infinity. As a
result, x = lnR also goes to positive infinity.
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PDF with Bounded Support, Default and Hyperinflation

z± ∈ (zmin, zmax) under Q± measure. x < 0 =⇒ N− < N+.
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PDF with Bounded Support, Default and Hyperinflation

z± ∈ (zmin, zmax) under Q± measure. x → −∞: N− is about to crash.
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PDF with Bounded Support, Default and Hyperinflation

The hyperinflation event N−T = 0 can’t be seen under Q−-measure, but:

Q+ {N−T = 0} =

∫ zmin+τ

zmin

e−h(z)dz > 0.
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PDF with Bounded Support, Default and Hyperinflation

z± ∈ (zmin, zmax) under Q± measure. x > 0 =⇒ N− > N+.
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PDF with Bounded Support, Default and Hyperinflation

z± ∈ (zmin, zmax) under Q± measure. x → +∞ =⇒ N+ is about to crash.
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PDF with Bounded Support, Default and Hyperinflation

The hyperinflation event N+T = 0 can’t be seen under Q+-measure, but:

Q− {N+T = 0} =

∫ zmax

zmax−τ

e−h(z)dz > 0.
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Multi-Cross Extension

Underlyings Ni (i = 1, . . . , n) are
associated with n − 1-dimensional
vectors zi linked via constant shifts.

PDFi (zi ) = e−h(zi ), where h is a
multi-dimensional convex function.

xij = h(zj)− h(zi ) is the log return
of Ni relative to Nj .
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Multi-Cross Extension

Underlyings Ni (i = 1, . . . , n) are
associated with n − 1-dimensional
vectors zi linked via constant shifts.

PDFi (zi ) = e−h(zi ), where h is a
multi-dimensional convex function.

The event that N1 hyperinflates
can’t be seen by the Q1 measure.
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Multi-Cross Extension

Underlyings Ni (i = 1, . . . , n) are
associated with n − 1-dimensional
vectors zi linked via constant shifts.

PDFi (zi ) = e−h(zi ), where h is a
multi-dimensional convex function.

The event N1T = N3T = 0 can only
be priced under the Q2 measure.
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Roles of our Two Positive Functions

Recall that our specification ∆− = Ω(Ω−1(∆+)− τ(T )) is a convex
distortion function decreasing in T provided Ω′(z) is log concave and
τ ′(T ) ≥ 0 with τ(0) = 0.

Also recall that our model is perfectly specified by a positive function
q(T ),T ≥ 0 whose integral is τ(T ) and a positive function p(z−), z− ∈ R,
which determines the log concave PDF Ω′(z−).

Our positive function q(T ) controls the level of ATM implied vol at each
maturity T , while p(z−)− p(0) controls the skew (i.e. departure from
flatness) of implied volatility across moneyness.

This separation of roles implies that the skew determined at one maturity is
the same as the skew generated at another. This can be helpful when data
is scarce, e.g. for predicting a term structure of default probabilities from
short-term deep OTM put prices and from long-term credit default swap
rates.
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Summary and Extensions

Convex duality was used to convert the option quotation problem into the
problem of specifying a convex distortion function which is decreasing across
maturities, i.e. an arbitrage-free distortion function.

We examined the Black Scholes distortion function (AKA Wang Transform)
and provided an arbitrage-free generalization called the constant quanto
shift parametrization.

Just as there is a cottage industry in generating formulas for implied vol
surfaces, future research can investigate different or more general
specifications of arbitrage-free distortion functions.

We have examined whether our constant quanto shift parametrization can
hold across different calendar times. We found that it can. This suggests
the possibility of evolving either or both of our two positive functions as
stochastic processes, HJM-style.

As always, further work is needed...
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Disclaimer

The information herein has been prepared solely for informational purposes and is
not an offer to buy or sell or a solicitation of an offer to buy or sell any security or
instrument or to participate in any trading strategy. Any such offer would be
made only after a prospective participant had completed its own independent
investigation of the securities, instruments or transactions and received all
information it required to make its own investment decision, including, where
applicable, a review of any offering circular or memorandum describing such
security or instrument, which would contain material information not contained
herein and to which prospective participants are referred. No representation or
warranty can be given with respect to the accuracy or completeness of the
information herein, or that a ny future offer of securities, instruments or
transactions will conform to the terms hereof. Morgan Stanley and its affiliates
disclaim any and all liability relating to this information. Morgan Stanley, its
affiliates and others associated with it may have positions in, and may effect
transactions in, securities and instruments of issuers mentioned herein and may
also perform or seek to perform investment banking services for the issuers of
such securities and instruments.
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Disclaimer (Con’d)

The information herein may contain general, summary discussions of certain tax,
regulatory, accounting and/or legal issues relevant to the proposed transaction.
Any such discussion is necessarily generic and may not be applicable to, or
complete for, any particular recipient’s specific facts and circumstances. Morgan
Stanley is not offering and does not purport to offer tax, regulatory, accounting or
legal advice and this information should not be relied upon as such. Prior to
entering into any proposed transaction, recipients should determine, in
consultation with their own legal, tax, regulatory and accounting advisors, the
economic risks and merits, as well as the legal, tax, regulatory and accounting
characteristics and consequences, of the transaction.
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Disclaimer (Con’d)

Notwithstanding any other express or implied agreement, arrangement, or
understanding to the contrary, Morgan Stanley and each recipient hereof are
deemed to agree that both Morgan Stanley and such recipient (and their
respective employees, representatives, and other agents) may disclose to any and
all persons, without limitation of any kind, the U.S. federal income tax treatment
of the securities, instruments or transactions described herein and any fact
relating to the structure of the securities, instruments or transactions that may be
relevant to understanding such tax treatment, and all materials of any kind
(including opinions or other tax analyses) that are provided to such person
relating to such tax treatment and tax structure, except to the extent
confidentiality is reasonably necessary to comply with securities laws (including,
where applicable, confidentiality regarding the identity of an issuer of securities or
its affiliates, agents and advisors).
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Disclaimer (Con’d)
The projections or other estimates in these materials (if any), including estimates
of returns or performance, are forward-looking statements based upon certain
assumptions and are preliminary in nature. Any assumptions used in any such
projection or estimate that were provided by a recipient are noted herein. Actual
results are difficult to predict and may depend upon events outside the issuers or
Morgan Stanley’s control. Actual events may differ from those assumed and
changes to any assumptions may have a material impact on any projections or
estimates. Other events not taken into account may occur and may significantly
affect the analysis. Certain assumptions may have been made for modeling
purposes only to simplify the presentation and/or calculation of any projections or
estimates, and Morgan Stanley does not represent that any such assumptions will
reflect actual future events. Accordingly, there can be no assurance that
estimated returns or projections will be realized or that actual returns or
performance results will not be materially different than those estimated herein.
Any such estimated returns and projections should be viewed as hypothetical.
Recipients should conduct their own analysis, using such assumptions as they
deem appropriate, and should fully consider other available information in making
a decision regarding these securities, instruments or transactions. Past
performance is not necessarily indicative of future results. Price and availability
are subject to change without notice.
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Disclaimer (Con’d)

The offer or sale of securities, instruments or transactions may be restricted by
law. Additionally, transfers of any such securities, instruments or transactions
may be limited by law or the terms thereof. Unless specifically noted herein,
neither Morgan Stanley nor any issuer of securities or instruments has taken or
will take any action in any jurisdiction that would permit a public offering of
securities or instruments, or possession or distribution of any offering material in
relation thereto, in any country or jurisdiction where action for such purpose is
required. Recipients are required to inform themselves of and comply with any
legal or contractual restrictions on their purchase, holding, sale, exercise of rights
or performance of obligations under any transaction. Morgan Stanley does not
undertake or have any responsibility to notify you of any changes to the attached
information. With respect to any recipient in the U.K., the information herein has
been issued by Morgan Stanley & Co. International Limited, regulated by the
U.K. Financial Services Authority. THIS COMMUNICATION IS DIRECTED IN
THE UK TO THOSE PERSONS WHO ARE MARKET COUNTER PARTIES OR
INTERMEDIATE CUSTOMERS (AS DEFINED IN THE UK FINANCIAL
SERVICES AUTHORITYS RULES). ADDITIONAL INFORMATION IS
AVAILABLE UPON REQUEST.
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