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Weak approximation of SDEs

Throughout this paper, objective is to approximate :

V0 := E
⇥

g(X
T

)
⇤

where X is solution of the SDE

dX

t

= µ(t,X
t

)dt + �(t,X
t

)dW
t

W is a Brownian motion
µ and � satisfy the Lipschitz bounded, ��1 bounded
more conditions on µ and � will pop up
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Standard method

1) discrete-time approximation
Euler : ⇡ := {0 = t0 < . . . < t

n

= T} with h := |⇡|, and

X

⇡
t

i

= X

⇡
t

i�1
+ µ(t

i

,X ⇡
t

i�1
)�t + �(t

i

,X ⇡
t

i�1
)�W

t

i

, i = 1, . . . , n

strong error of order
p
h, weak error of order h

Higher order discretization schemes... =) weak error ⇠ h

↵

2) Monte Carlo approximation : Let
n

X

⇡(i)

T

o

1iS

iid ⇠ X

⇡
T

,

V

h,S
0 :=

1
S

S

X

i=1

g

�

X

⇡(i)

T

�

Central limit theorem =) statistical error S� 1
2
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Avoiding discretization error

� = 0 =) ODE : in general, NO WAY to avoid discretization error

Beskos & Roberts : 1-dim homogeneous SDE with � > 0

Use Lamperti’s transformation to convert the SDE to

dY

t

= b(Y
t

)dt + dW

t

, Y = f (X ), f (x) :=

Z

x

0

d⇠

�(⇠)

Then V0 = E
⇥

g(X
T

)
⇤

= E
⇥

g � f �1(Y
T

)
⇤

, and by Girsanov :

V0 = E
⇥

Z g � f �1(W
T

)
⇤

with Z := e

R
T

0 b(W
t

)dW
t

� 1
2
R
T

0 b(W
t

)2dt

Rejection sampling technique to avoid discretization error for
simulation of Z
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More references

Exploiting further the rejection sampling technique

"�strong simulation of multi-dimensional SDEs

Chen & Huang, Beskos ’13, Peluchetti & Roberts ’12, Pollock,
Johansen & G. Roberts ’14, Bayer, Friz, Riedel & Schoenmakers
’13, Blanchet, Chen & Dong ’14
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Our algorithm in the case of constant diffusion � = I
d

(I)

• (N
t

) : Poisson process with intensity �, arrival times (⌧
i

)
i�1

• Set ⌧0 := 0, T
i

:= ⌧
i

^ T , and

�T

i

:= T

i

� T

i�1, �W

T

i

:= W

T

i

�W

T

i�1

• Consider the “Euler discretization along the arrival times ⌧
i

"

X̂

T

i

= X̂

T

i�1 + µ(T
i�1, X̂T

i�1)�T

i

+�W

T

i

,

for i = 1, . . . ,N
T

+ 1
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Our algorithm in the case of constant diffusion � = I
d

(II)

Define the exactly simulatable r.v.

⇠̂ := ��N

T

e

�T
⇥

g

�

X̂

T

�

� g

�

X̂

T

N

T

�

1I{N
T

>0}
⇤

N

T

Y

k=1

Ŵ1
k

where

Ŵ1
k

:=
�

µ(T
k

, X̂
T

k

)� µ(T
k�1, X̂T

k�1)
�

·
�W

T

k+1

�T

k+1
.

Theorem

Assume g Lipschitz. Then ⇠̂ 2 L2
and E

⇥

g(X
T

)
⇤

= E
⇥

⇠̂
⇤
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Varying drift versus varying volatility in 1-dim

European option valuation in the local volatility model

dX

t

=
0.8

1 + X

2
t

dW

t

Lamperti transformation leads to SDE with varying drift, unit vol

dY

t

=
0.8X

t

(1 + X

2
t

)2
dt + dW

t

• Comparison with Euler discretization with time steps 1/10, 1/50,
1/100, 1/400 =) agree with our exact discretization for 1/400
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




























    !      

Figure: V0(K ) quoted in implied volatility ⇥100 as a function of K . The
dots correspond to the standard deviation error.
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N � = 0.1 � = 0.2 Euler
12 0.32 0.34 0.30
14 0.16 0.17 0.15
16 0.08 0.09 0.08
18 0.05 0.04 0.04
20 0.02 0.02 0.02
22 0.01 0.02 0.01
24 0.01 0.01 0.00

Table: Standard deviation for an at-the-money call option with K = 1,
T = one year as a function of the Monte-Carlo paths 2N .
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A multi-dimensional example

Basket option E[
� 1
n

P

n

i=1 X
i

T

� K

�+
] in the model :

dX

i

t

X

i

t

=
1
2
dW

i

t

+ 0.1 (
q

X

i

t

� 1)dt dhW i ,W ji
t

= 0.5dt, i 6= j

Our method is compared to a (log)-Euler discretization scheme
with a time step 1/10, 1/50, 1/100 :

X

�
t+� = X

�
t

exp
✓

1
2
�W

t

+
⇣

0.1
✓

q

X

i

t

� 1
◆

� 1
8

⌘

�

◆

.

• � = 1/100 converges exactly to our exact scheme
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Figure: d = 1. V0(K ) quoted in implied volatility ⇥100 as a function of
K . The dots correspond to the standard deviation error.
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Figure: d = 4. V0(K ) quoted in implied volatility ⇥100 as a function of
K . The dots correspond to the standard deviation error.
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Objective of this talk

1 Why does it work ?

2 The case of non-constant diffusion coefficient

3 From regime switching diffusions to branching diffusions

=) forward Monte Carlo approximation of nonlinear partial
differential equations
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A regime switching diffusion

Let (µ̂, �̂) : (s, y , t, x) 2 [0,T ]⇥ Rd ⇥ [0,T ]⇥ Rd ! Rd ⇥ Sd be
Lipschitz in x , continuous in t, and define

X̂0 := X0, dX̂

t

= µ̂(⇥
t

, t, X̂
t

)dt + �̂(⇥
t

, t, X̂
t

)dW
t

with ⇥
t

:= (T
N

t

, X̂
T

N

t

). In other words,

X̂

T

k+1 = X̂

T

k

+

Z

T

k+1

T

k

µ̂
�

T

k

,X
T

k

, s, X̂
s

�

ds+

Z

T

k+1

T

k

�̂
�

T

k

,X
T

k

, s, X̂
s

�

dW

s

i.e. the coefficients of the diffusion change at each arrival time T

k
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First main idea

Define u(t, x) := E
t,x

⇥

g(X
T

)
⇤

, t  T , x 2 R

Proposition

Let � > 0, ✓ 2 [0,T )⇥ Rd

, (t, x) 2 [0,T )⇥ Rd

. Then

u(t, x) = e

�(T�t)E
t,x ,✓

h

1I{N
T

=0} g
�

X̂

T

�

+1I{N
T

>0}
1
�
�f • (Du,D2

u)
�

T1, X̂
T1

�

i

where �f := (µ, a)� (µ̂, â)
�

✓, .
�

, (x ,A) • (y ,B) := x · y + Tr[AB]

Here a := 1
2�

2, â := 1
2 �̂

2
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Sketch of proof of the lemma

The function ũ := e

��(T�t)E
t,x

⇥

g(X
T

)
⇤

solves

�@
t

ũ � µ · Dũ � a : D2
ũ + �ũ = 0 and ũ(T , .) = g

Equivalently, with � := (µ� µ̂) · Dũ + (a� â) : D2
ũ,

�@
t

ũ � µ̂ · Dũ � â : D2
ũ + �ũ = � and ũ(T , .) = g

By the Feynman-Kac representation :

u(0,X0) = e

�TE
h

e

��T
g(X̂

T

) +

Z

T

0
e

��t�(t, X̂
t

)dt
i

= e

�TE
h

g(X̂
T

)1I{⌧�T} +
1
�
�(⌧, X̂⌧ )1I{⌧<T}

i

where ⌧ is an independent Expo(�)
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Second main idea : Monte Carlo automatic differentiation

Assumption

For all ✓ 2 [0,T )⇥ Rd

, and (t, x) 2 [0,T )⇥ Rd

, there is a pair of

random functions

�

Ŵ1
✓ (·), Ŵ2

✓ (·)
�

, called Malliavin weights,

depending only on (t, x ,T t

1 , (Ws

�W

t

)
sT1) s.t.

D

i E
t,x ,✓

⇥

�
�

T1, X̂
T1

�⇤

= E
t,x ,✓

h

�
�

T1, X̂
T1

�

Ŵ i

i

i = 1, 2, for all bounded � : [0,T ]⇥ Rd ! R

This assumption corresponds to
likelihood ratio method for Greeks, Broadie & Glasserman
El Worthy formula, see Fouriné, Lasry, Lions, Lebuchoux & NT
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Back to the constant diffusion case � = I
d

Recall that our algorithm in this case uses the Euler scheme
sampled at the arrival times of the Poisson process (N

t

)
t�0. Then

@
x

E
t,x ,✓

⇥

�
�

T1, X̂
T1

�⇤

= @
x

E
⇥

�
�

T1, x + µ(⇥0)T1 +�W

T1

�⇤

= @
x

E
Z

�(T1, y)
e

�1
2T1

|y�x+µ(⇥0)T1|2

(2⇡T1)�d/2 dy

= E
Z

�
�

T1, y
�

y � x + µ(⇥0)T1

T1

e

�1
2T1

|y�x+µ(⇥0)T1|2

(2⇡T1)�d/2 dy

= E
t,x ,✓

h

�
⇣

T1, X̂
T1

��W

T1

T1

i

and, similarly,

@2
xx

E
t,x ,✓

⇥

�
�

T1, X̂
T1

�⇤

= E
t,x ,✓

h

�
�

T1, X̂
T1

�(�W

T1)
2 � T1

(T1)2

i
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Combining automatic differentiation with first main idea

Recall from the Proposition that u(t, x) := E
t,x

⇥

g(X
T

)
⇤

satisfies

u(t, x) = E
t,x ,✓

h

e

�(T1�t)
⇣

1I{N
T

=0} g
�

X̂

T

�

+1I{N
T

>0}
�f

T1

�
• (Du,D2

u)
�

T1, X̂
T1

�

⌘i

= E
t,x ,✓

h

e

�(T1�t)
⇣

1I{N
T

=0} g
�

X̂

T

�

+1I{N
T

=1}
�f

T1

�
• (Ŵ1, Ŵ2)g

�

X̂

T

�

+1I{N
T

>1}
�f

T2

�2 • (Du,D2
u)
�

T2, X̂
T2

�

⌘i

by the assumption. And so on...
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Back to unit diffusion : square integrability lost... in general

Iterating as above, and passing to limits, we would arrive at

E[⇠] where ⇠ := ��N

T

e

�T
g

�

X̂

T

�

N

T

Y

k=1

Ŵ1
k

where, in the case of unit diffusion :

Ŵ1
k

:=
⇥

µ(T
k

, X̂
T

k

)� µ̂(T
k�1, X̂T

k�1)
⇤

·
�W

T

k+1

�T

k+1

However �W

T1
�T1

⇠ (�T1)�1/2 and
�

�T1|N
T

= 1
�

is Unif[0,T ], so

in general, ⇠ 2 L1, but ⇠ 62 L2 !
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Recovering square integrability in the unit diffusion case

Choose µ̂(s, x , t, y) := µ(s, x , s, x) (Euler !), leads to

⇠ := ��N

T

e

�T
g

�

X̂

T

�

Q

N

T

k=1 Ŵ1
k

where, by the Lipschitz property of µ :

Ŵ1
k

=
⇥

µ(T
k

, X̂
T

k

)�µ(T
k�1, X̂T

k�1)
⇤

·
�W

T

k+1

�T

k+1
⇠ (�T

k

)1/2(�T

k+1)
�1/2

It remains to deal with the last term Ŵ1
N

T

. For this, we notice that

E[⇠] = E[⇠̂], where ⇠̂ := ��N

T

e

�T
⇥

g

�

X̂

T

�

� g

�

X̂

T

N

T

�

1I{N
T

>0}
⇤

Q

N

T

k=1 Ŵ1
k

so that ⇠̂ 2 L2 by the Lipschitz assumption on g
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Driftless one-dimensional diffusion

We now consider the one-dimansional SDE

dX

t

= �(t,X
t

)dW
t

Iterating the Proposition and the Assumption, we arrive to the r.v.

⇠̂ := ��N

T

e

�T
g

�

X̂

T

�

N

T

Y

k=1

Ŵ2
k

where, denoting a := 1
2�

2 and â := 1
2 �̂

2 :

Ŵ1
k

:=
⇥

a(T
k

, X̂
T

k

)� â(T
k�1, X̂T

k�1)
⇤

·
�

�W

T

k+1

�2 ��T

k+1

(�T

k+1)2

Situation is worse : (�W

T1 )
2��T1

(�T1)2
⇠ (�T1)�1 and

�

�T1|N
T

= 1
�

is Unif[0,T ] !

in general, ⇠̂ is not integrable ! unless good choice of â
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Choice of the regime switching diffusion

Let

µ̂(·) ⌘ 0 and �̂(s, y , t, x) := �(s, y) + @
x

�(s, y)(x � y).

Then X̂ is defined by

dX̂

t

=
⇣

c

k

1 + c

k

2 X̂t

⌘

dW

t

on each [T
k

,T
k+1]

where

c

k

1 := �(T
k

, X̂
T

k

)� @
x

�(T
k

, X̂
T

k

)X̂
T

k

, c

k

2 := @
x

�(T
k

, X̂
T

k

)

=) Explicit solution...
=) Explicit and simulatable Malliavin weight...

Nizar Touzi Exact discretization of SDEs



A flavor of our exact discretization algorithm
Main results

From regime-changed SDEs to branching diffusions

Regime switching and automatic differentiation
The constant diffusion case
The local volatility case

Exact simulation of local volatility SDE : first try

⇠ := ��N

T

e

�T
⇥

g(X̂
T

)� g(X̂
T

N

T

)1I{N
T

>0}
⇤

N

T

Y

k=1

Ŵ2
k

where the weight is

Ŵ2
k

=
a(⇥

k

)� â(⇥
k�1,⇥k

)

2a(⇥
k

)

⇣

�@
x

�(⇥
k

)
�W

T

k+1

�T

k+1
+
�W

2
T

k+1
��T

k+1

�T

2
k+1

⌘

Theorem

Assume in addition @
x

� Lip in x . Then ⇠̂ 2 L1
and V0 = E[ ⇠̂ ]

But square integrability fails, in general !
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Exact simulation of local volatility SDE : restoring square
integrability

Use the technique of antithetic variables :
define X̂

�
T

exactly as X̂

T

, except that
the sign of the last increment of Brownian motion �W

T

introduce the corresponding r.v. ⇠̌

Finally define

⇠ := 1
2(⇠̂ + ⇠̌)

Theorem

Suppose in addition g 2 C

2
b

. Then ⇠ 2 L2
and V0 = E

⇥

⇠
⇤
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Choice of the intensity � of the Poisson process

• In the constant diffusion case, we compute directly that

E[⇠̂2]  F (�) := Ce

��T+L

0
T/�

with explicit L0

• The computation effort is proportional to N

T

• A reasonable criterion for the choice of � > 0 is then :

min
�>0

F (�)

E[N
T

]
=) �⇤ :=

q

L

0 + T

2/4 +
T

2
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Limitations

• Multidimensional driftess SDE : reduces to

dX̂

t

= (A+ hB , X̂
t

i)dW
t

where A 2 S
d

, B 2 L(Rd , S
d

)

Exact simulation is not available !

• 1-dim SDE with varying drift and volatility : reduces to

dX̂

t

= (b0 + b1X̂t

)dt + (�0 + �1X̂t

)dW
t

Exact simulation is not available !
Moreover, volatility may vanish... Malliavin integration by parts fails
But we can still use Lamperti’s transformation
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A first class of Nonlinear Path-Dependent PDEs

Let p
k

� 0 with
P

n

k=0 pk = 1, and consider the equation :

@
t

v +
1
2
@2
!!v + �

⇣

n

X

k=0

p

k

v

k � v

⌘

= 0, v

T

= ⇠

Define the branching Brownian motion :
Start from one particle driven by a Brownian motion
T1 independent exponential distribution with parameter �
if T1 < T , the first particle dies out and is replaced by k

independent particles with probability p

k

V

T

: Number of living particles at time T

Z

i

. : path of particle i

Then (Watanabe, McKean)

v(0,X0) = E
h

V

T

Y

i=1

⇠(Z i

. )
i
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Path-Dependent KPP equation

Let (a
k

)0in

, and consider the equation :

@
t

v +
1
2
@2
!!v + �

⇣

n

X

k=0

a

k

v

k � v

⌘

= 0, v

T

= ⇠

Define the branching Brownian motion with probabilities
(p

k

)0kn

. Then

v(0,X0) = E
h

V

T

Y

i=1

�

a

i

p

i

⌘`
i

⇠(Z i

. )
i

, `
i

= # arrivals for i

• Possible extension to include random drift and random diffusion
• For an analytic nonlinearity R(v) =

P1
i=0 akv

k , approximation by
substitution R

n

(v) :=
P

n

i=0 akv
k to R(v)
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Monte Carlo approximation of nonlinear PDEs

• Purely forward Monte Carlo scheme for KPP equation. Compare
with Longstaff-Schwartz backward repeated regression algorithm

• Work in progress : semilinear PDEs

@
t

v +
1
2
@2
!!v + �

⇣

n

X

k=0

a

k

v

i

k (@!v)
j

k � v

⌘

= 0, v

T

= ⇠

... key ingredient : automatic differentiation

• Fully nonlinear PDEs... (e.g. HJB equations)

Nizar Touzi Exact discretization of SDEs



A flavor of our exact discretization algorithm
Main results

From regime-changed SDEs to branching diffusions

Figure: Happy Birthday Steve
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