Exact discretization of SDEs

Nizar Touzi Ecole Polytechnique, Paris

Joint work with Pierre Henry-Labordère and Xiaolu Tan

Steve's 65th Birthday

Carnegie Mellon University, June 2, 2015

A flavor of our exact discretization algorithm Main results From regime-changed SDEs to branching diffusions Standard approximation methods Our algorithm in the case of constant diffusion Numerical examples

Outline

1 A flavor of our exact discretization algorithm

- Standard approximation methods
- Our algorithm in the case of constant diffusion
- Numerical examples

2 Main results

- Regime switching and automatic differentiation
- The constant diffusion case
- The local volatility case

Is From regime-changed SDEs to branching diffusions

イロト イヨト イヨト イヨト

Standard approximation methods Our algorithm in the case of constant diffusion Numerical examples

(D) (A) (A) (A)

Weak approximation of SDEs

Throughout this paper, objective is to approximate :

 $V_0 := \mathbb{E}[g(X_T)]$

where X is solution of the SDE

$$dX_t = \mu(t, X_t)dt + \sigma(t, X_t)dW_t$$

- W is a Brownian motion
- μ and σ satisfy the Lipschitz bounded, σ^{-1} bounded
- more conditions on μ and σ will pop up

Standard approximation methods Our algorithm in the case of constant diffusion Numerical examples

Standard method

1) discrete-time approximation

• Euler :
$$\pi := \{0 = t_0 < \ldots < t_n = T\}$$
 with $h := |\pi|$, and

$$X_{t_i}^{\pi} = X_{t_{i-1}}^{\pi} + \mu(t_i, X_{t_{i-1}}^{\pi}) \Delta t + \sigma(t_i, X_{t_{i-1}}^{\pi}) \Delta W_{t_i}, \quad i = 1, \dots, n$$

strong error of order \sqrt{h} , weak error of order h

- Higher order discretization schemes... \Longrightarrow weak error $\sim h^{lpha}$
- 2) Monte Carlo approximation : Let $\left\{X_{\mathcal{T}}^{\pi^{(i)}}\right\}_{1 \leq i \leq S}$ iid $\sim X_{\mathcal{T}}^{\pi}$,

$$V_0^{h,S} := \frac{1}{S} \sum_{i=1}^{S} g(X_T^{\pi^{(i)}})$$

Central limit theorem \implies statistical error $S^{-\frac{1}{2}}$

A flavor of our exact discretization algorithm Main results From regime-changed SDEs to branching diffusions Standard approximati Our algorithm in the Numerical examples

Standard approximation methods Our algorithm in the case of constant diffusion Numerical examples

・ロン ・四と ・ヨン ・ヨン

Avoiding discretization error

 $\sigma={\rm 0}\Longrightarrow {\rm ODE}$: in general, NO WAY to avoid discretization error

Beskos & Roberts : 1-dim homogeneous SDE with $\sigma > 0$

• Use Lamperti's transformation to convert the SDE to

$$dY_t = b(Y_t)dt + dW_t, \quad Y = f(X), \quad f(x) := \int_0^x \frac{d\xi}{\sigma(\xi)}$$

• Then $V_0 = \mathbb{E}[g(X_T)] = \mathbb{E}[g \circ f^{-1}(Y_T)]$, and by Girsanov :

 $V_0 = \mathbb{E} \left[Z \ g \circ f^{-1}(W_T) \right] \quad \text{with} \quad Z := e^{\int_0^T b(W_t) dW_t - \frac{1}{2} \int_0^T b(W_t)^2 dt}$

• Rejection sampling technique to avoid discretization error for simulation of Z

More references

Standard approximation methods Our algorithm in the case of constant diffusion Numerical examples

Exploiting further the rejection sampling technique

ε -strong simulation of multi-dimensional SDEs

Chen & Huang, Beskos '13, Peluchetti & Roberts '12, Pollock, Johansen & G. Roberts '14, Bayer, Friz, Riedel & Schoenmakers '13, Blanchet, Chen & Dong '14

Standard approximation methods Our algorithm in the case of constant diffusion Numerical examples

Our algorithm in the case of constant diffusion $\sigma = I_d$ (I)

• (N_t) : Poisson process with intensity β , arrival times $(\tau_i)_{i\geq 1}$

• Set
$$au_0 := 0$$
, $T_i := au_i \wedge T$, and

$$\Delta T_i := T_i - T_{i-1}, \qquad \Delta W_{T_i} := W_{T_i} - W_{T_{i-1}}$$

• Consider the "Euler discretization along the arrival times τ_i "

$$\hat{X}_{T_i} = \hat{X}_{T_{i-1}} + \mu(T_{i-1}, \hat{X}_{T_{i-1}}) \Delta T_i + \Delta W_{T_i},$$

for $i = 1, \dots, N_T + 1$

Standard approximation methods Our algorithm in the case of constant diffusion Numerical examples

.

イロト イポト イヨト イヨト

ÉCOLE POLYTECHNIQU

Our algorithm in the case of constant diffusion $\sigma = I_d$ (II)

Define the exactly simulatable r.v.

$$\hat{\xi} := \beta^{-N_T} e^{\beta T} \left[g(\hat{X}_T) - g(\hat{X}_{T_{N_T}}) \mathbb{1}_{\{N_T > 0\}} \right] \prod_{k=1}^{N_T} \hat{\mathcal{W}}_k^1$$

where

$$\hat{\mathcal{W}}_{k}^{1} := \left(\mu(T_{k}, \hat{X}_{T_{k}}) - \mu(T_{k-1}, \hat{X}_{T_{k-1}}) \right) \cdot \frac{\Delta W_{T_{k+1}}}{\Delta T_{k+1}}$$

Theorem

Assume g Lipschitz. Then
$$\hat{\xi} \in \mathbb{L}^2$$
 and $\mathbb{E}[g(X_T)] = \mathbb{E}[|\hat{\xi}|]$

Standard approximation methods Our algorithm in the case of constant diffusion Numerical examples

(D) (A) (A) (A)

Varying drift versus varying volatility in 1-dim

European option valuation in the local volatility model

$$dX_t = \frac{0.8}{1+X_t^2}dW_t$$

Lamperti transformation leads to SDE with varying drift, unit vol

$$dY_t = \frac{0.8X_t}{(1+X_t^2)^2} dt + dW_t$$

• Comparison with Euler discretization with time steps 1/10, 1/50, 1/100, 1/400 \implies agree with our exact discretization for 1/400

A flavor of our exact discretization algorithm	Standard approximation methods
Main results	Our algorithm in the case of constant diffusion
From regime-changed SDEs to branching diffusions	Numerical examples

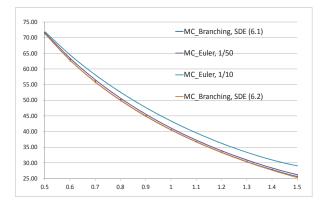


Figure: $V_0(K)$ quoted in implied volatility $\times 100$ as a function of K. The dots correspond to the standard deviation error.

ÉCOLE POLYTECHNIQUE

★ E ► < E ►</p>

A flavor of our exact discretization algorithm	Standard approximation methods
Main results	Our algorithm in the case of constant diffusion
From regime-changed SDEs to branching diffusions	Numerical examples

N	$\beta = 0.1$	$\beta = 0.2$	Euler
12	0.32	0.34	0.30
14	0.16	0.17	0.15
16	0.08	0.09	0.08
18	0.05	0.04	0.04
20	0.02	0.02	0.02
22	0.01	0.02	0.01
24	0.01	0.01	0.00

Table: Standard deviation for an at-the-money call option with K = 1, T = one year as a function of the Monte-Carlo paths 2^N .

・ロン ・四と ・ヨン ・ヨン

ÉCOLE POLYTECHNIQUE A flavor of our exact discretization algorithm Main results From regime-changed SDEs to branching diffusions Standard approximation methods Our algorithm in the case of constant diffusion Numerical examples

A multi-dimensional example

Basket option
$$\mathbb{E}[\left(rac{1}{n}\sum_{i=1}^{n}X_{T}^{i}-\mathcal{K}
ight)^{+}]$$
 in the model :

$$\frac{dX_t^i}{X_t^i} = \frac{1}{2} dW_t^i + 0.1 \left(\sqrt{X_t^i} - 1\right) dt \quad d\langle W^i, W^j \rangle_t = 0.5 dt, \quad i \neq j$$

Our method is compared to a (log)-Euler discretization scheme with a time step 1/10, 1/50, 1/100 :

$$X_{t+\Delta}^{\Delta} = X_t^{\Delta} \exp\left(\frac{1}{2}\Delta W_t + \left(0.1 \left(\sqrt{X_t^i} - 1\right) - \frac{1}{8}\right)\Delta\right).$$

 $\bullet \; \Delta = 1/100$ converges exactly to our exact scheme

イロト イポト イヨト イヨト

A flavor of our exact discretization algorithm	Standard approximation methods
Main results	Our algorithm in the case of constant diffusion
From regime-changed SDEs to branching diffusions	Numerical examples

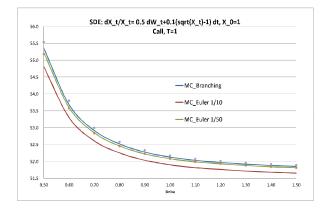


Figure: d = 1. $V_0(K)$ quoted in implied volatility ×100 as a function of K. The dots correspond to the standard deviation error.

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

ÉCOLE POLYTECHNIQUE

Standard approximation methods Our algorithm in the case of constant diffusion Numerical examples

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

ÉCOLE POLYTECHNIQUE

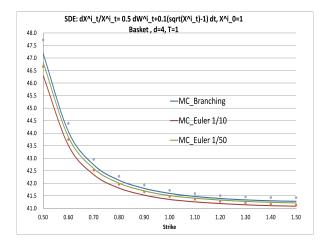


Figure: d = 4. $V_0(K)$ quoted in implied volatility ×100 as a function of K. The dots correspond to the standard deviation error.

A flavor of our exact discretization algorithm Main results From regime-changed SDEs to branching diffusions Standard approximation methods Our algorithm in the case of constant diffusion Numerical examples

Objective of this talk

- Why does it work?
- 2 The case of non-constant diffusion coefficient
- **③** From regime switching diffusions to branching diffusions

 \Longrightarrow forward Monte Carlo approximation of nonlinear partial differential equations

- 4 回 2 - 4 三 2 - 4 三 2

A flavor of our exact discretization algorithm	Regime switching and automatic differentiation
Main results From regime-changed SDEs to branching diffusions	The constant diffusion case The local volatility case
	-

Outline

A flavor of our exact discretization algorithm

- Standard approximation methods
- Our algorithm in the case of constant diffusion
- Numerical examples

2 Main results

- Regime switching and automatic differentiation
- The constant diffusion case
- The local volatility case

Is From regime-changed SDEs to branching diffusions

• • = • • = •

Regime switching and automatic differentiation The constant diffusion case The local volatility case

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

A regime switching diffusion

Let $(\hat{\mu}, \hat{\sigma}) : (s, y, t, x) \in [0, T] \times \mathbb{R}^d \times [0, T] \times \mathbb{R}^d \to \mathbb{R}^d \times \mathbb{S}^d$ be Lipschitz in x, continuous in t, and define

$$\hat{X}_0 := X_0, \ d\hat{X}_t = \hat{\mu}(\Theta_t, t, \hat{X}_t)dt + \hat{\sigma}(\Theta_t, t, \hat{X}_t)dW_t$$

with $\Theta_t := (\mathcal{T}_{N_t}, \hat{X}_{\mathcal{T}_{N_t}})$. In other words,

$$\hat{X}_{T_{k+1}} = \hat{X}_{T_k} + \int_{T_k}^{T_{k+1}} \hat{\mu}(T_k, X_{T_k}, s, \hat{X}_s) ds + \int_{T_k}^{T_{k+1}} \hat{\sigma}(T_k, X_{T_k}, s, \hat{X}_s) dW_s$$

i.e. the coefficients of the diffusion change at each arrival time T_k

Regime switching and automatic differentiation The constant diffusion case The local volatility case

æ

First main idea

Define
$$u(t,x) := \mathbb{E}_{t,x}[g(X_T)]$$
, $t \leq T$, $x \in \mathbb{R}$

Proposition

Let
$$\beta > 0$$
, $\theta \in [0, T) \times \mathbb{R}^d$, $(t, x) \in [0, T) \times \mathbb{R}^d$. Then

$$u(t,x) = e^{\beta(T-t)} \mathbb{E}_{t,x,\theta} \Big[\mathbb{1}_{\{N_T=0\}} g(\hat{X}_T) \\ + \mathbb{1}_{\{N_T>0\}} \frac{1}{\beta} \Delta f \bullet (Du, D^2u) (T_1, \hat{X}_{T_1}) \Big]$$

where
$$\Delta f := (\mu, a) - (\hat{\mu}, \hat{a})(\theta, .)$$
, $(x, A) \bullet (y, B) := x \cdot y + Tr[AB]$

Here
$$a := \frac{1}{2}\sigma^2$$
, $\hat{a} := \frac{1}{2}\hat{\sigma}^2$

Regime switching and automatic differentiation The constant diffusion case The local volatility case

Sketch of proof of the lemma

The function
$$\tilde{u} := e^{-\beta(T-t)} \mathbb{E}_{t,\times} [g(X_T)]$$
 solves

$$-\partial_t \tilde{u} - \mu \cdot D\tilde{u} - a: D^2\tilde{u} + \beta\tilde{u} = 0$$
 and $\tilde{u}(T, .) = g$

Equivalently, with $\phi := (\mu - \hat{\mu}) \cdot D\tilde{u} + (a - \hat{a}) : D^2\tilde{u}$,

$$-\partial_t \tilde{u} - \hat{\mu} \cdot D\tilde{u} - \hat{a} : D^2 \tilde{u} + \beta \tilde{u} = \phi \text{ and } \tilde{u}(T, .) = g$$

By the Feynman-Kac representation :

$$u(0, X_0) = e^{\beta T} \mathbb{E} \Big[e^{-\beta T} g(\hat{X}_T) + \int_0^T e^{-\beta t} \phi(t, \hat{X}_t) dt \Big]$$

$$= e^{\beta T} \mathbb{E} \Big[g(\hat{X}_T) \mathbb{1}_{\{\tau \ge T\}} + \frac{1}{\beta} \phi(\tau, \hat{X}_\tau) \mathbb{1}_{\{\tau < T\}} \Big]$$

where τ is an independent $\text{Expo}(\beta)$

Regime switching and automatic differentiation The constant diffusion case The local volatility case

イロト イポト イヨト イヨト

Second main idea : Monte Carlo automatic differentiation

Assumption

For all $\theta \in [0, T) \times \mathbb{R}^d$, and $(t, x) \in [0, T) \times \mathbb{R}^d$, there is a pair of random functions $(\hat{\mathcal{W}}^1_{\theta}(\cdot), \hat{\mathcal{W}}^2_{\theta}(\cdot))$, called Malliavin weights, depending only on $(t, x, T_1^t, (W_s - W_t)_{s \leq T_1})$ s.t.

$$\mathbf{D}^{i} \mathbb{E}_{t,x,\theta} \big[\phi \big(\mathbf{T}_{1}, \hat{X}_{\mathbf{T}_{1}} \big) \big] = \mathbb{E}_{t,x,\theta} \Big[\phi \big(\mathbf{T}_{1}, \hat{X}_{\mathbf{T}_{1}} \big) \, \hat{\mathcal{W}}^{i} \Big]$$

i = 1, 2, for all bounded $\phi : [0, T] \times \mathbb{R}^d \to \mathbb{R}$

This assumption corresponds to

- likelihood ratio method for Greeks, Broadie & Glasserman
- El Worthy formula, see Fouriné, Lasry, Lions, Lebuchoux & NT

Regime switching and automatic differentiation The constant diffusion case The local volatility case

Back to the constant diffusion case $\sigma = I_d$

Recall that our algorithm in this case uses the Euler scheme sampled at the arrival times of the Poisson process $(N_t)_{t>0}$. Then

$$\begin{aligned} \partial_{\mathbf{x}} \mathbb{E}_{t,\mathbf{x},\theta} \Big[\phi \big(T_1, \hat{X}_{T_1} \big) \Big] &= \partial_{\mathbf{x}} \mathbb{E} \Big[\phi \big(T_1, \mathbf{x} + \mu(\Theta_0) T_1 + \Delta W_{T_1} \big) \Big] \\ &= \partial_{\mathbf{x}} \mathbb{E} \int \phi \big(T_1, \mathbf{y} \big) \frac{e^{\frac{-1}{2T_1} |\mathbf{y} - \mathbf{x} + \mu(\Theta_0) T_1|^2}}{(2\pi T_1)^{-d/2}} dy \\ &= \mathbb{E} \int \phi \big(T_1, \mathbf{y} \big) \frac{\mathbf{y} - \mathbf{x} + \mu(\Theta_0) T_1}{T_1} \frac{e^{\frac{-1}{2T_1} |\mathbf{y} - \mathbf{x} + \mu(\Theta_0) T_1|^2}}{(2\pi T_1)^{-d/2}} dy \\ &= \mathbb{E}_{t,\mathbf{x},\theta} \Big[\phi \Big(T_1, \hat{X}_{T_1} \Big) \frac{\Delta W_{T_1}}{T_1} \Big] \end{aligned}$$

and, similarly,

$$\partial_{xx}^{2} \mathbb{E}_{t,x,\theta} \left[\phi \left(T_{1}, \hat{X}_{T_{1}} \right) \right] = \mathbb{E}_{t,x,\theta} \left[\phi \left(T_{1}, \hat{X}_{T_{1}} \right) \frac{(\Delta W_{T_{1}})^{2} - T_{1}}{(T_{1})^{2}} \right]$$

Regime switching and automatic differentiation The constant diffusion case The local volatility case

Combining automatic differentiation with first main idea

Recall from the Proposition that $u(t,x) := \mathbb{E}_{t,x}[g(X_T)]$ satisfies

$$\begin{split} u(t,x) &= \mathbb{E}_{t,x,\theta} \Big[e^{\beta(T_1-t)} \Big(\mathbb{1}_{\{N_T=0\}} g(\hat{X}_T) \\ &+ \mathbb{1}_{\{N_T>0\}} \frac{\Delta f_{T_1}}{\beta} \bullet (Du, D^2 u) (T_1, \hat{X}_{T_1}) \Big) \Big] \\ &= \mathbb{E}_{t,x,\theta} \Big[e^{\beta(T_1-t)} \Big(\mathbb{1}_{\{N_T=0\}} g(\hat{X}_T) \\ &+ \mathbb{1}_{\{N_T=1\}} \frac{\Delta f_{T_1}}{\beta} \bullet (\hat{\mathcal{W}}^1, \hat{\mathcal{W}}^2) g(\hat{X}_T) \\ &+ \mathbb{1}_{\{N_T>1\}} \frac{\Delta f_{T_2}}{\beta^2} \bullet (Du, D^2 u) (T_2, \hat{X}_{T_2}) \Big) \Big] \end{split}$$

by the assumption. And so on...

A flavor of our exact discretization algorithm Main results From regime-changed SDEs to branching diffusions Regime switching and automatic differentiation The constant diffusion case The local volatility case

Back to unit diffusion : square integrability lost... in general

Iterating as above, and passing to limits, we would arrive at

$$\mathbb{E}[\xi] \quad \text{where} \quad \xi := \beta^{-N_T} e^{\beta T} g(\hat{X}_T) \prod_{k=1}^{N_T} \hat{\mathcal{W}}_k^1$$

where, in the case of unit diffusion :

$$\hat{\mathcal{W}}_k^1 := \left[\mu(T_k, \hat{X}_{T_k}) - \hat{\mu}(T_{k-1}, \hat{X}_{T_{k-1}}) \right] \cdot \frac{\Delta W_{T_{k+1}}}{\Delta T_{k+1}}$$

However $\frac{\Delta W_{T_1}}{\Delta T_1} \sim (\Delta T_1)^{-1/2}$ and $(\Delta T_1 | N_T = 1)$ is Unif[0, T], so in general, $\xi \in \mathbb{L}^1$, but $\xi \notin \mathbb{L}^2$!

・ロン ・四と ・ヨン ・ヨン

A flavor of our exact discretization algorithm Main results From regime-changed SDEs to branching diffusions Regime switching and automatic differentiation The constant diffusion case The local volatility case

Recovering square integrability in the unit diffusion case

Choose $\hat{\mu}(s, x, t, y) := \mu(s, x, s, x)$ (Euler!), leads to

$$\xi := \beta^{-N_T} e^{\beta T} g(\hat{X}_T) \prod_{k=1}^{N_T} \hat{\mathcal{W}}_k^1$$

where, by the Lipschitz property of $\boldsymbol{\mu}$:

$$\hat{\mathcal{W}}_{k}^{1} = \left[\mu(T_{k}, \hat{X}_{T_{k}}) - \mu(T_{k-1}, \hat{X}_{T_{k-1}})\right] \frac{\Delta W_{T_{k+1}}}{\Delta T_{k+1}} \sim (\Delta T_{k})^{1/2} (\Delta T_{k+1})^{-1/2}$$

It remains to deal with the last term $\hat{\mathcal{W}}^1_{N_{\mathcal{T}}}$. For this, we notice that

 $\mathbb{E}[\xi] = \mathbb{E}[\hat{\xi}], \text{ where } \hat{\xi} := \beta^{-N_T} e^{\beta T} \left[g(\hat{X}_T) - g(\hat{X}_{T_{N_T}}) \mathbb{1}_{\{N_T > 0\}} \right] \prod_{k=1}^{N_T} \hat{\mathcal{W}}_k^1$

so that $\hat{\xi} \in \mathbb{L}^2$ by the Lipschitz assumption on g

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・

A flavor of our exact discretization algorithm Main results From regime-changed SDEs to branching diffusions From regime-changed SDEs to branching diffusions

Driftless one-dimensional diffusion

We now consider the one-dimansional SDE

$$dX_t = \sigma(t, X_t) dW_t$$

Iterating the Proposition and the Assumption, we arrive to the r.v.

$$\hat{\xi} := \beta^{-N_T} e^{\beta T} g(\hat{X}_T) \prod_{k=1}^{N_T} \hat{\mathcal{W}}_k^2$$

where, denoting $a:=rac{1}{2}\sigma^2$ and $\hat{a}:=rac{1}{2}\hat{\sigma}^2$:

$$\hat{\mathcal{W}}_{k}^{1} := \left[a(T_{k}, \hat{X}_{T_{k}}) - \hat{a}(T_{k-1}, \hat{X}_{T_{k-1}}) \right] \cdot \frac{\left(\Delta W_{T_{k+1}} \right)^{2} - \Delta T_{k+1}}{(\Delta T_{k+1})^{2}}$$

Situation is worse : $\frac{(\Delta W_{T_1})^2 - \Delta T_1}{(\Delta T_1)^2} \sim (\Delta T_1)^{-1}$ and $(\Delta T_1 | N_T = 1)$ is Unif[0, T]!

in general, $\hat{\xi}$ is not integrable! unless good choice of \hat{a}

~

A flavor of our exact discretization algorithm Main results From regime-changed SDEs to branching diffusions Regime switching and automatic differentiation The constant diffusion case The local volatility case

Choice of the regime switching diffusion

Let

$$\hat{\mu}(\cdot) \equiv 0$$
 and $\hat{\sigma}(s, y, t, x) := \sigma(s, y) + \partial_x \sigma(s, y)(x - y).$

Then \hat{X} is defined by

$$d\hat{X}_t = \left(c_1^k + c_2^k \hat{X}_t\right) dW_t$$
 on each $[T_k, T_{k+1}]$

where

$$c_1^k := \sigma(T_k, \hat{X}_{T_k}) - \partial_x \sigma(T_k, \hat{X}_{T_k}) \hat{X}_{T_k}, \ \ c_2^k := \partial_x \sigma(T_k, \hat{X}_{T_k})$$

 \implies Explicit solution...

 \implies Explicit and simulatable Malliavin weight...

Regime switching and automatic differentiation The constant diffusion case The local volatility case

(D) (A) (A) (A)

Exact simulation of local volatility SDE : first try

$$\xi := \beta^{-N_T} e^{\beta^T} \left[g(\hat{X}_T) - g(\hat{X}_{T_{N_T}}) \mathbb{1}_{\{N_T > 0\}} \right] \prod_{k=1}^{N_T} \hat{\mathcal{W}}_k^2$$

where the weight is

$$\hat{\mathcal{W}}_{k}^{2} = \frac{a(\Theta_{k}) - \hat{a}(\Theta_{k-1}, \Theta_{k})}{2a(\Theta_{k})} \Big(-\partial_{x}\sigma(\Theta_{k}) \frac{\Delta W_{T_{k+1}}}{\Delta T_{k+1}} + \frac{\Delta W_{T_{k+1}}^{2} - \Delta T_{k+1}}{\Delta T_{k+1}^{2}} \Big)$$

Theorem

Assume in addition
$$\partial_x \sigma$$
 Lip in x. Then $\hat{\xi} \in \mathbb{L}^1$ and $V_0 = \mathbb{E}[|\hat{\xi}|]$

But square integrability fails, in general !

Regime switching and automatic differentiation The constant diffusion case The local volatility case

イロト イヨト イヨト イヨト

Exact simulation of local volatility SDE : restoring square integrability

Use the technique of antithetic variables :

- define \hat{X}_{T}^{-} exactly as \hat{X}_{T} , except that
- the sign of the last increment of Brownian motion ΔW_T
- introduce the corresponding r.v. $\check{\xi}$

Finally define

$$\overline{\xi} := \frac{1}{2}(\hat{\xi} + \check{\xi})$$

Theorem

Suppose in addition $g \in C_b^2$. Then $\overline{\xi} \in \mathbb{L}^2$ and $V_0 = \mathbb{E}[\overline{\xi}]$

Regime switching and automatic differentiation The constant diffusion case The local volatility case

イロト イヨト イヨト イヨト

Choice of the intensity β of the Poisson process

• In the constant diffusion case, we compute directly that

$$\mathbb{E}[\hat{\xi}^2] \leq F(\beta) := C e^{-\beta T + L'T/\beta}$$

with explicit L'

- The computation effort is proportional to N_T
- A reasonable criterion for the choice of $\beta > 0$ is then :

$$\min_{\beta>0} \frac{F(\beta)}{\mathbb{E}[N_T]} \implies \beta^* := \sqrt{L' + T^2/4} + \frac{T}{2}$$

A flavor of our exact discretization algorithm	Regime switching and automatic differentiation
Main results	The constant diffusion case
From regime-changed SDEs to branching diffusions	The local volatility case

Limitations

• Multidimensional driftess SDE : reduces to

$$d\hat{X}_t = (A + \langle B, \hat{X}_t
angle) dW_t$$
 where $A \in \mathbb{S}_d, \ B \in \mathcal{L}(\mathbb{R}^d, \mathbb{S}_d)$

Exact simulation is not available!

• 1-dim SDE with varying drift and volatility : reduces to

$$d\hat{X}_t = (b_0 + b_1\hat{X}_t)dt + (\sigma_0 + \sigma_1\hat{X}_t)dW_t$$

Exact simulation is not available!

Moreover, volatility may vanish... Malliavin integration by parts fails But we can still use Lamperti's transformation

Outline

A flavor of our exact discretization algorithm

- Standard approximation methods
- Our algorithm in the case of constant diffusion
- Numerical examples

2 Main results

- Regime switching and automatic differentiation
- The constant diffusion case
- The local volatility case

3 From regime-changed SDEs to branching diffusions

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

A first class of Nonlinear Path-Dependent PDEs

Let $p_k \ge 0$ with $\sum_{k=0}^n p_k = 1$, and consider the equation :

$$\partial_t \mathbf{v} + \frac{1}{2} \partial_{\omega\omega}^2 \mathbf{v} + \beta \Big(\sum_{k=0}^n p_k \mathbf{v}^k - \mathbf{v} \Big) = 0, \quad \mathbf{v}_T = \xi$$

Define the branching Brownian motion :

- Start from one particle driven by a Brownian motion
- \mathcal{T}_1 independent exponential distribution with parameter β
- if T₁ < T, the first particle dies out and is replaced by k independent particles with probability p_k
- V_T : Number of living particles at time T
- $Z_{.}^{i}$: path of particle *i*

Then (Watanabe, McKean)

$$v(0, X_0) = \mathbb{E}\left[\prod_{i=1}^{V_T} \xi(Z^i)\right]$$
Nizer Touzi
Exact discretization of SDEs

Path-Dependent KPP equation

Let $(a_k)_{0 \le i \le n}$, and consider the equation :

$$\partial_t \mathbf{v} + \frac{1}{2} \partial^2_{\omega\omega} \mathbf{v} + \beta \Big(\sum_{k=0}^n a_k \mathbf{v}^k - \mathbf{v} \Big) = 0, \quad \mathbf{v}_T = \xi$$

Define the branching Brownian motion with probabilities $(p_k)_{0 \le k \le n}$. Then

$$v(0, X_0) = \mathbb{E}\Big[\prod_{i=1}^{V_T} \big(\frac{a_i}{p_i}\big)^{\ell_i} \xi(Z_{\cdot}^i)\Big], \quad \ell_i = \# \text{ arrivals for } i$$

• Possible extension to include random drift and random diffusion • For an analytic nonlinearity $R(v) = \sum_{i=0}^{\infty} a_k v^k$, approximation by substitution $R_n(v) := \sum_{i=0}^{n} a_k v^k$ to R(v)

・ロト ・部ト ・ヨト ・ヨト

Monte Carlo approximation of nonlinear PDEs

- Purely forward Monte Carlo scheme for KPP equation. Compare with Longstaff-Schwartz backward repeated regression algorithm
- Work in progress : semilinear PDEs

$$\partial_t v + \frac{1}{2} \partial_{\omega\omega}^2 v + \beta \Big(\sum_{k=0}^n a_k v^{i_k} (\partial_\omega v)^{j_k} - v \Big) = 0, \quad v_T = \xi$$

... key ingredient : automatic differentiation

• Fully nonlinear PDEs... (e.g. HJB equations)

Figure: Happy Birthday Steve

