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First:

Congratulations to Steve!
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Motivation/Problem (1)

For this occasion, an old-school problem seemed in order.
Sometimes, a problem that appears to be a little old in the tooth still
has some surprises left.

We will show how applying modern computational finance methods
(MSCF-style) can improve the efficiency of American option pricing
algorithms by at least 4 orders of magnitude.

The method we will discuss, can produce better precision than a 1M x
1M (!!) modern finite difference grid (12+ hours of work), in about 1/10
seconds.

And it can calculate in the order of 100,000 prices at the same
precision as a 10,000-step binomial tree.

Without cheating: no parallel processing, no caching, ..
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Motivation/Problem (2)

The application we have in mind is real-time risk management
exchange-traded options in the US and Asia, where pricing/quotation
standards all revolve around Black-Scholes modeling.

Our approach is to apply careful optimization on integral equation(s)
for the American exercise boundary, a method that has often been
neglected in favor of the more popular tree, lattice, and Monte Carlo
methods (not to mention method of lines, convolution methods, and
more).

Our primary application is options on futures, but we also discuss
options on underlyings with discrete dividends.

Reference paper (ALO): Andersen, L., M. Lake, and D. Offengenden,
“High Performance American Option Pricing,” ssrn.com
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Setup (1)

First, for reference consider an underlying security with value S(t)

with “classical” dynamics:

dS(t)/S(t) = (r − q) dt+ σ dW (t),

where r, q,σ are constants. (Can handle time-dependence, but makes
notation annoying)

Introduce a K-strike, T -maturity American put option, paying
(K − S(ν))+ if exercised time ν ∈ [0, T ]. American call can be found
by put-call symmetry.

Well-known that the optimal strategy is to exercise when S(t) ≤ S∗
T (t)

for some deterministic, T indexed exercise boundary S∗
T , satisfying

S∗
T (t) =







K, t = T,

Kmin(1, r/q), t = T − .
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Setup (2)

For time-homogenous arguments (as here) common to write
S∗
T (t) = B(T − t) = B(τ)

If also V (T − t, S) is the time t price of the American put for S(t) = S ,
then for S > B,

Vτ − (r − q)VS −
1

2
S2σ2VSS + rV = 0, V (0, S) = (K − S)+ , (1)

subject to the value match condition

V (τ, B(τ)) = K −B(τ) (2)

and the smooth pasting condition

VS(τ, B(τ)) = −1. (3)
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Setup (3)

Differentiating with respect to τ and using the smooth pasting
condition:

Vτ (τ, B(τ)) = 0. (4)

And using the PDE shows that

VSS(τ, B(τ)) =
2 (rK − qB(τ))

B(τ)2σ2
. (5)
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Pricing given Boundary

From the basic PDE and (2)-(3), it has classically been shown that the
American put price must satisfy (S ≤ B)

V (τ, S) = v (τ, S) +

∫ τ

0
rKe−r(τ−u)Φ (−d− (τ − u, S/B(u))) du

−
∫ τ

0
qSe−q(τ−u)Φ (−d+ (τ − u, S/B(u))) du (6)

Where Φ is the Gaussian CDF, and

d± (s, x) =
lnx+ s

(

r − q ± 1
2σ

2
)

σ
√
s

and v(τ, S) is the European put price (Black-Scholes formula).
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Location of Boundary (1)

To use the integral pricing expression (6), we need to locate the
optimal exercise boundary B.

We have several possibilities here. The most obvious equation (most
common in Finance) arises when one sets S = B(τ) in (6):

K −B(τ) = v (τ, B(τ)) +

∫ τ

0
rKe−r(τ−u)Φ (−d− (τ − u,B(τ)/B(u))) du

−
∫ τ

0
qB(τ)e−q(τ−u)Φ (−d+ (τ − u,B(τ)/B(u))) du. (7)

We may, however, also use the smooth pasting equation (3) or the
equations for VSS or for Vτ to derive alternative equations.

The numerical solution of all these boundary equations is traditionally
done using a direct quadrature method, on an equidistant grid.
Numerous reference works in this area.
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Location of Boundary (2)

A few recent papers suggest that to use a fixed point iteration, rather
than direct quadrature. Here we write

B(τ) = Ke−(r−q)τ N(τ, B)

D(τ, B)

where N and D are functionals.

This suggests an algorithm where we iterate, starting from a guess,

B(j)(τ) = Ke−(r−q)τ N(τ, B(j−1))

D(τ, B(j−1))
, j = 1, 2, . . . ,m.

Rewriting basic equations (such as 7) for the exercise boundary into
fixed-point format can be done numerous ways, but only a few ones
define efficient contraction mappings.
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Location of Boundary (3)

N and D depend on which boundary formulation we use. For the
smooth pasting boundary equation, we get fixed point system A:

N (τ, B) =
φ (d

−
(τ, B(τ)/K))

σ
√

τ
+ r

∫

τ

0

eru

σ
√

τ − u
φ (d

−
(τ − u,B(τ)/B(u))) du,

D(τ, B) =
φ (d+(τ, B(τ)/K))

σ
√

τ
+ Φ (d+(τ, B(τ)/K))

+ q

(
∫

τ

0

equΦ (d+ (τ − u,B(τ)/B(u))) du+

∫

τ

0

equ

σ
√

τ − u
φ (d+ (τ − u,B(τ)/B(u)))

)

.

The value match integral equation leads to fixed point system B:

N (τ, B) = Φ (d
−
(τ, B(τ)/K)) + r

∫

τ

0

eru (Φ (d
−
(τ − u,B(τ)/B(u)))) du,

D (τ, B) = Φ (d+(τ, B(τ)/K)) + q

∫

τ

0

equ (Φ (d+ (τ − u,B(τ)/B(u)))) du.
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Collocation & Interpolation (1)

ALO shows how to run the fixed point iteration in a modern manner,
using a relaxed Jacobi-Newton iteration.

But the fixed point systems cannot practically be solved for all τ
simultaneously, so we need a way to discretize the system.

A common approach involves discretizing τ to a grid, {τi}ni=1 and
enforcing the fixed point condition at these points only. Other points
on the B(τ) curve are found by polynomial interpolation; integrals can
be resolved by (say) Gauss-Legendre integration.

This is known as the collocation method.

ALO shows how this method is very effective, if done right.
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Collocation & Interpolation (2)

WRONG: a) interpolate on B directly; b) use an equidistant grid; .

RIGHT: a) interpolate on a transformed function H(
√
τ) = lnB(τ)/X,

X = Kmin(1, r/q); and b) Use Chebyshev spacing in
√
τ domain.

Justification and full boundary algorithm is given in (excruciating)
detail in ALO.

Let m: number of iterations; n: number of collocation points; l:
number of Gauss-Legendre points in the numerical integration. Then
computational cost is of order

c1 · lmn2 + c2 · lmn

where first term is from interpolation and second from integration.
c2 % c1.
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Sample Tests + Speed (1)

Precision test. Use high number of collocation and integration nodes
to a high-precision estimate (for benchmark purposes).
Method Dimensions American Premium Error Timing (sec)
FP-A (l = 1024,m = 16, n = 32) 0.10695270275 - 1.40E-01
PDE 100 x 100 0.10279251763 4.16E-03 3.10E-03
PDE 500 x 500 0.10672868802 3.94E-03 9.50E-03
PDE 1,000 x 1,000 0.10689130239 1.63E-04 3.07E-02
PDE 5,000 x 5,000 0.10694949491 5.82E-05 7.83E-01
PDE 10,000 x 10,000 0.10695176844 2.27E-06 3.40E+00
PDE 50,000 x 50,000 0.10695264506 8.77E-07 9.27E+01
PDE 100,000 x 100,000 0.10695268484 3.98E-08 4.17E+02
PDE 250,000 x 250,000 0.10695271369 2.88E-08 2.87E+03
PDE 500,000 x 500,000 0.10695270841 5.28E-09 1.14E+04

Table 1: S = K = 100, r = 1 = 5%, T = 1, σ = 0.25. 3.33GHz PC.

Additional tests show the result for FP-A in table is accurate to about
12 digits. Would theoretically need a 10Mx10M PDE solver for this.
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Sample Tests + Speed (2)

Speed test. 1,675 different options, T ∈ [0, 3].
Bin 100 Bin 1,000 Bin 10,000

RMSE 2.1E-02 2.0E-03 2.1E-04
RRMSE 3.2E-03 2.7E-04 3.0E-05

Options/sec 12,900 800 ?

Algo FP-A, various combinations of l,m, n. No caching, single CPU.
(m,n): (1,4) (2,4) (1,6) (2,6) (3,6) (4,6) (2,10) (3,10) (4,10)

l=5 RMSE 3.1E-04 3.1E-04 8.3E-05 4.4E-05 5.6E-05 5.7E-05 5.2E-05 6.4E-05 6.6E-05
RRMSE 2.0E-05 1.8E-05 3.0E-06 1.5E-06 1.7E-06 1.7E-06 1.6E-06 1.8E-06 1.9E-06

Options/sec 79,700 61,200 61,200 45,500 36,000 29,900 29,300 22,600 18,500
l=7 RMSE 3.4E-04 3.3E-04 8.4E-05 1.5E-05 1.3E-05 1.4E-05 7.3E-06 1.6E-05 1.8E-05

RRMSE 2.0E-05 1.9E-05 2.6E-06 6.6E-07 6.8E-07 6.4E-07 3.6E-07 5.3E-07 5.6E-07
Options/sec 74,500 55,300 57,200 39,500 30,900 25,500 25,500 19,200 15,400

l=15 RMSE 3.5E-04 3.4E-04 8.9E-05 2.3E-05 1.3E-05 1.2E-05 1.6E-05 4.2E-06 3.0E-06
RRMSE 2.0E-05 1.9E-05 2.6E-06 7.6E-07 6.5E-07 6.5E-07 4.8E-07 3.7E-07 3.5E-07

Options/sec 56,300 37,500 41,250 26,300 19,300 15,200 15,500 11,100 8,700
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More on tests

We also ran tests against other methods, including the related
fixed-point methods in Kim et al (2013) and Cortazar et al (2013).

We are always far better than any convergent method

Robustness tested on 10,000’s of options (see ALO)

For the case r = q, fixed point system A is about 5-10 times more
efficient that fixed point system B.

For otther configurations, FP-A and FP-B are about equal – but FP-A
is more robust, especially for convection-dominated dynamics.
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Boundary Asymptotes

Boundary Asymptotes r = 5%, µ = 0, σ = 0.25%, K = 130.

Neither short nor long-dated asymptotes have wide range. Short
asymptote ceases to exist after 2.8 years.
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Setup with Dividends (1)

Now extend the process for S(t) to the RCLL process

dS(t) = µS(t) dt+ σS(t) dW (t)−
d

∑

i=1

Di · 1ti=t

..where {ti}di=1 is a set of discrete dividend dates.

Note that we, unlike existing literature, do NOT force µ = r. This
ensures that we can model the fact that repo rates for stocks (as
observed in forward prices, say) often differ from (OIS) discount rates.

Also, it allows us to use a mixed discrete-continuous dividends model.
But it is a fair bit of a complication..
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Setup with Dividends (2)

Here we focus on the proportional specification

Di = ciS(ti−).

This is convenient for several reasons, including the fact that there are
no problem with crossing of zero + forward stock prices are easy to
compute:

F (t, u) = E (S(u)|S(t)) = S(t)eµ(u−t)G(t, u)

..where
G(t, u) !

∏

ti∈(t,u]

(1− ci).
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American Put

Even with discrete dividends, there is again an optimal boundary
S∗
T (t), below which the American put option should be exercised.
Note: we don’t shift to B(T − t) and τ = T − t notation here, since the
problem is no longer time-stationary.

Above the exercise boundary and away from the dividend dates, the
put option price P (t, S) satisfies the usual Black-Scholes PDE:

∂P

∂t
+ µS

∂P

∂S
+

1

2
σ2S2 ∂

2P

∂S2
= rP, t /∈ {ti}di=1, S > S∗

T (t),

Across each dividend date, the put option does not lose exercise
value (see below), wherefore we may impose the simple jump-type
continuity condition P (ti−, S(ti−)) = P (ti+, S(ti+)) , i.e.

P (ti−, S) = P (ti+, S(1− ci)) , i = 1, 2, . . . , d.
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Boundary (1)

To characterize the boundary, we have as before value match and
smooth pasting

P (t, S∗
T (t)) = K − S∗

T (t),

∂P (t, S)

∂S
|S=S∗

T (t) = −1, t /∈ {ti}di=1.

To further characterize the boundary, consider that it can never be
optimal to exercise the option just prior to a dividend date, wherefore
Lemma 1. The American put exercise boundary S∗

T (t) satisfies

S∗
T (ti−) = 0, i = 1, . . . , d, (8)

and

S∗
T (T−) =







Kmin
(

1, r
r−µ

)

, r > µ,

K r ≤ µ
(9)
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Boundary (2)

We can also use carry arguments to prove:
Lemma 2. For i = 1, . . . , d define

t∗i =







max
(

ti +
ln(1−ci)

µ
, ti−1

)

, µ > 0,

ti−1, µ ≤ 0,

where necessarily t∗i ∈ [ti−1, ti). For t ∈ [ti−1, ti) we then have

S∗
T (t) ≤







K 1−e−r(ti−t)

1−e(µ−r)(ti−t)(1−ci)
, t ∈ (t∗i , ti),

K, t ∈ [ti−1, t∗i ].
. (10)

In particular, (8) holds for t ↑ ti.

The upper bound is a very good proxy for the boundary close to
dividend dates
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Boundary Shape

Boundary shape for American Put w. 3 Proportional Dividends
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American Put Option Price (1)

We need an equation for the American put option price, given the
boundary. Here it is:
Proposition 1. Let p (t, S) be the time t price of a European put option with
maturity T and strikeK . For the dividend-paying stock S(t), the American put
option price P is given by

P (t, S) = p(t, S) + rK

∫ T

t

e−r(u−t)
E

(

1{S(u)<S∗

T (u)}|S(t) = S
)

du

− (r − µ)

∫ T

t

e−r(u−t)
Et

(

1{S(u)<S∗

T (u)}S(u)|S(t) = S
)

du, (11)

for all S ≥ S∗
T (t).

The result is a generalization of Goetsche and Vellekoep (Math.
Finance, 2011) to cover the (practically important) case µ (= r.
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American Put Option Price (2)

Proposition holds for a large class of dividends. For the proportional
dividend type, we have explicitly (with q ! r − µ):

P (t, S) = p(t, S) + rK

∫ T

t

e−r(u−t)Φ (−d−(S/S
∗
T (u); t, u)) du

− qS

∫ T

t

e−q(u−t)G(t, u)Φ (−d+(S/S
∗
T (u); t, u)) du, (12)

for S ≥ S∗
T (t).

Here we have redefined

d±(z; t, T ) =
ln z + µ(T − t) + lnG(t, T )± 1

2σ
2(T − t)

σ
√
T − t

.
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American Put Option Price (3)

Proof of Proposition is instructional, so we can give a sketch:

Define H(t) = e−rtP (t, S(t)). When S is below the boundary,
H(t) = e−rt(K − S(t)) and

dH(t) = −e−rtdS(t)− re−rt (K − S(t)) dt, S(t) < S∗
T (t).

When S is above boundary, H is a martingale and (by BS equation)

dH(t) = σe−rtS(t)
∂P

∂S
dW (t)

Right AT the boundary, there would normally (by Tanaka’s rule) be a
local time contribution to dH, but due to smooth pasting, it vanishes.

And crossing dividend dates add no terms to dH.

Collecting, integrating to find H(T )−H(t) + forming time t

expectations pops out the result.
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Boundary Fixed Point Formulation (1)

By setting S = S∗
T (t) in (12), we get an integral equation for S∗

T (t):

K−S∗
T (t) = p (t, S∗

T (t))+rK

∫ T

t

e−r(u−t)Φ (−d−(S
∗
T (t)/S

∗
T (u); t, u)) du

− qS∗
T (t)

∫ T

t

e−q(u−t)G(t, u)Φ (−d+(S
∗
T (t)/S

∗
T (u); t, u)) du.

We can, after some work, arrange this for a fixed-point iteration

S∗
T (t) = K

NT (t, S∗
T )

DT (t, S∗
T )

(13)

where

NT (t, S
∗
T ) = e−r(T−t)Φ (d−(S

∗
T (t)/K; t, T ))

+ r

∫ T−

t

e−r(u−t)Φ (d−(S
∗
T (t)/S

∗
T (u); t, u)) du
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Boundary Fixed Point Formulation (2)

..and

DT (t, S
∗
T ) = e−q(T−t)G(t, T )Φ(d+(S

∗
T (t)/K; t, T ))

+ q

∫ T−

t

e−q(u−t)G(t, u)Φ (d+(S
∗
T (t)/S

∗
T (u); t, u)) du

−
∑

ti∈[t,T )

e−q(ti−t) (G(t, ti)−G(t, ti−1)) .
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Numerical Algorithm

The fixed point system can be executed using a variation of the
algorithm in ALO.

In particular, given Lemma 2’s “periodic” constraint S∗
T (ti−) = 0,

i = 1, . . . , d, it makes sense to break the problem into d sub-problems,
one per dividend period, and use ALO algorithm backwards to time 0
from time td.

While Chebyshev spacing is still needed for the collocation scheme,
we generally do not need to be as careful with boundary
transformations for t < td.

With d dividends, the effort of the scheme is (better than) d+ 1 times
that of the regular scheme. For single stocks, d is normally 4
times/year.
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American Call Options (1)

Unlike the case for smooth dividends, there are no obvious parity
results to extract American call prices from puts.

American Calls, in fact, are very different from puts, and there are
situations where the exercise boundary is completely degenerate,
except for a few points.

In this case, the American option price integral changes from being an
integral in time along the boundary, to being (a convolution) of
integrals in asset space.

For instance, in the case where µ ≥ r, it is easy to see that the only
possible exercise dates are at ti−, i = 1, . . . , d, just before each
dividend.
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American Call Options (2)

In this case, we can introduce an exercise boundary (above which to
exercise) as

S∗
T (t) =















∞, t /∈ {ti} ∪ T

Bi, t ∈ {ti}

K, t = T

That is, the American option effectively becomes a Bermudan one.

For the American call option, continuity is not necessarily preserved
as time passes through an exercise date – so no continuity condition
similar to that of a put holds.

Indeed, if S(ti−) ≥ Bi, there will be a loss of exercise value as time
moves from ti− to ti+.
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American Call – Jump Condition

We can capture this as

C (ti−, S) =







C (ti+, S(1− ci)) , S < Bi,

S −K, S ≥ Bi.

Or equivalently

C (ti−, S) = max (C (ti+, S(1− ci)) , S −K) .

When we attempt to repeat the proof of the American put valuation
formula, these jump conditions add a new type of term to the formulas.
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American Call Valuation Formulas (1)

The same basic method now leads to
Proposition 2. Let c (t, S) be the time t price of a European call option with
maturity T and strikeK . Assume that µ ≥ r. For the dividend-paying stock S(t),
the American call option price is given by

C(t, S) = c (t, S)+
∑

ti>t

e−r(ti−t)
E
(

1S(ti−)≥Bi
C(ti+, S(ti+))|S(t) = S

)

−
∑

ti>t

e−r(ti−t)
E
(

1S(ti−)≥Bi
(S(ti−)−K) |S(t) = S

)

. (14)

Here, an irritating fact is the dependence on C (ti+, S(1− ci)), which
is not known explicitly.
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American Call Valuation Formulas (2)

For the location of Bi, we may write

C (ti+, Bi(1− ci)) = Bi −K

which also depends on C (ti+, S(1− ci)).

In practice, we need to rely on a lattice/integration method on the {ti}
grid, such as Fast Gauss Transform, to uncover C (ti+, S(1− ci)). We
are forced to move closer to traditional methods for American options.

We note, however, that the representation in Proposition gives a static
hedge for the American Call, but that is another story...
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American Call Valuation Formulas (3)

The case where µ < r becomes a hybrid: the exercise strategy will
come into existence between the exercise dates, and the valuation
expression will contain elements of “vertical” (asset) integration
around discrete dividend dates; and “horizontal” (time) integration
around discrete dividend dates.

We omit the equations; they are easy (but lengthy) extensions of the
case µ ≥ r.

The topology of the resulting exercise boundary can be complicated,
depending on the size of r − µ.

Still outstanding question: why are calls so difficult?
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