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Thoughts about Steve Shreve

It has been my great good fortune to have Steve Shreve as a

colleague for≈ 35 years. He is:

• A distinguished mathematician and a wonderful research

collaborator

• An outstanding teacher-educator

• A great colleague and resource who is willing to engage on

others’ problems

• A devoted advisor and mentor

• Attains the highest standards of integrity and ethics.
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Background: 1

• Traditional queueing theory focuses on:

– Stability of the system

– The efficiency of the use of the service facility (e.g. the

fraction of time it is busy) and

– The experience of the customers (e.g. their waiting time or

the length of the queue they join).

• There is a special category of queueing systems called

real-time queues. Here, the tasks requiring service have

deadlines by which the service must be completed. These

systems have special performance metrics that focus on the

fraction of tasks whose deadline was met.
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Background: 2

• When tasks have deadlines and they must share a processing

resource, then traditional queueing disciplines like FIFOor

processor sharing should not be used since they pay no

attention to deadlines. Deadline-sensitive scheduling policies

like earliest deadline firstmust be used.

• There are a number of examples of real-time systems in which

tasks have timing requirements. They especially occur in fairly

autonomous systems with weight and power constraints, e.g.

Mars rover, GPS satellites, autonomous aircraft, submarines,

etc. in which one needs to minimize the number of computer

systems on board and use them as efficiently as possible.
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Background: 3

• The first widely recognized work on such systems was a 1973

paper by Lui and Layland in theJACM, written when C.L. Liu

was a summer student at the Jet Propulsion Lab (JPL).

• In this work, a single computer was used to process a set of

periodic tasks (to model worst case conditions). The question

was to characterize the set of tasks that could be processed

with no deadline being missed over[0,∞).

• Formalizing this: assume there aren periodic tasks, each with

a worst case computation time,Ci, a period,Ti, a (relative)

deadlineDi and an initial arrival time,Ii. Thus, jobs from such

a task would arrive atIi, Ii + Ti, Ii + 2Ti, etc. All Ci units of

work arriving atIi + kTi must be completed byIi + (k + 1)Ii.
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Background: 4

• LL considered two broad classes of scheduling policies (queue

disciplines): fixed priority and dynamic priority. Under fixed

priority, each of then tasks would be assigned a unique

priority, and anytime a higher priority task arrived while a

lower priority task was being processed, the higher priority

task would preempt (at no cost in time).

• LL asked the question: for all values ofn,

{(Ii, Ci, Ti), 1 ≤ i ≤ n}, what is the optimal scheduling

policy (among fixed or dynamic classes), and given the optimal

policy, how can it be determined whether or not a scheduling

policy can satisfy the deadline requirements for all tasks over

[0,∞).
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Background: 5

For fixed priority scheduling algorithms of periodic tasks,LL

proved:

• The optimal scheduling algorithm is therate monotonic

scheduling algorithm. For this algorithm, ifTi < Tj , then task

i is given higher priority than task j, independent ofCi, Cj

• The worst case phasing is theCritical Instant, that is

Ij = 0, 1 ≤ j ≤ n.

• If U = U1 + . . . + Un < n(21/n − 1), then all deadlines will

be met (we say the task set is schedulable).

• limn→∞ n(21/n − 1) = log(2) = .693.
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Background: 6

For dynamic scheduling algorithms, LL proved thatearliest

deadline firstwas optimal. Other scheduling algorithms also can be

used successfully (e.g. least slack first).

• LL proved that any task set for whichU = U1 + . . . + Un ≤ 1

will guarantee that all task deadlines can be met using the

earliest deadline first algorithm.
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Background: 7

• These results for the periodic task set case withhard deadlines

has been greatly generalized and includes such factors as:

– Deadlines different from periods

– Context switching times

– Precedence constraints among tasks

– Task synchronization (i.e. some tasks need special

resources like a communication bus and cannot be

interrupted while using that resources by another task

needing that resource, even if it has higher priority).

June 1, 2015 Shreve Conference 10



Real-Time Queues'

&

$

%

Background: 8

• For all deadlines to be met, LL assumed a deterministic

environment, e.g. worst case execution times and interarrival

times, and sufficiently long deadlines.

• There are applications that exhibit substantial variability either

in terms of resource requirements or arrival times or both.

• In such applications, the worst case utilization (considering the

minimum interarrival time and the maximum computation

time) can be much larger than the average case utilization.

June 1, 2015 Shreve Conference 11



Real-Time Queues'

&

$

%

Background: 9

• Deadlines can be guaranteed, but the effective resource

utilization can be very low, especially if there is a large

difference between the worst-case utilization and the

average-case utilization.

• Moreover, hard deadlines may be an unnecessarily restrictive

constraint on the system. Many applications can miss some

deadlines and still meet user requirements, provided that the

missed deadlines do not occur over a short period of time,

resulting in a “blackout” of service.
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The Dilemma

We want to create a theory that:

• permits the stochastic behavior associated with queueing

models,

• takes individual task timing requirements into account.

Such models will have so much detail that they will be unworkable

analytically, and we will be back to simulation.

Fortunately, some ideas inheavy traffic queueing theorycan help,

since timing requirements will be met in light-moderate traffic.
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M/M/1 Queue, ρ = .6, 5000 Events
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M/M/1 Queue, ρ = .95, 5000 Events
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Heavy Traffic Limit

The GI/G/1 queueing system, in heavy traffic (ρ = 1 − γ√
n

), with

time scaled byn and space scaled by
√

n both the queue length and

the workload processes converge asn → ∞ to a

Drifted, Reflected Brownian motion.

The parameters of this process depend only upon the mean and

variance of the arrival and service processes. The drift is−γ and

the variance (Peterson)
∑K

k=1 λkm
2
k(C

2
Ak

+ C2
Sk

).

This theory extends to the network case.
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Real-Time Queueing Theory - RTQT

• Heavy traffic queueing theory offers a method to determine

standard queueing performance measures using only moment

assumptions concerning the basic arrival and service processes.

• But, what does this have to do with real-time systems in which

we need to determine the ability of the system to meet task

timing requirements?

• We need to introduce a dynamic variable for each task in the

system, itslead-time = time until deadline.

• This becomes a high-dimensional system, but perhaps it

simplifies in heavy-traffic.
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Workload Measures
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Real-Time Queueing: Assumptions

For the one flow, one node case:

• Renewal process arrivals,(Fa,
1
λ , σa).

• Independent service times,(Fs,
1
µ , σs).

• Tasks have independent random deadlines with cdfG.

• Arrivals, services, deadlines are independent.

Let ρ = λ
µ , θ = 2(1 − ρ)µ/(ρ(C2

a + C2
s ))
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Real-Time Queueing: The Ideas 1

If there areQ(t) tasks in the queue at time t, then the lead-time

vector is(L1(t), . . . , LQ(t)(t)) which changes with time.

A simple RT queueing system has state

{(Q(t), (L1(t), . . . , LQ(t)(t))), t ≥ 0}. Such a high dimensional

process is difficult to analyze, even in simple circumstances.

We study these models in heavy traffic (traffic intensity near1).

The key idea is to separate into two components:{Q(t), t ≥ 0} and

{(L1, . . . , LQ(t)), t ≥ 0} given{Q(t), t ≥ 0}.
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Real-Time Queueing: The Ideas 2

In heavy traffic (λ(n) = λ(1 − γ√
n
), µ(n) = λ, ρ(n) = 1 − γ√

n
),

• the scaled queue length,{Q(nt)√
n

, t ≥ 0} and the scaled

workload,{W (nt)√
n

, t ≥ 0}, converge to drifted, reflected

Brownian motion processes.

• the lead-time profile converge to deterministic function ofthe

queue length (or the workload)

The deterministic function depends upon:

– The initial task deadline probability distribution.

– The scheduling policy.
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Real-Time Queueing: The Ideas 3

• Using the deterministic approximation, each queue length (or

workload value) has an associate a lead-time profile.

• Lateness occurs when the left edge of the profile reaches 0.

• The left edge of the profile reaches 0 at a computable queue

length (or workload value). Thus, the event of task latenessis

associated with the queue length (or workload) being longer

than a certain critical value.

• So we can express the probability of lateness (and other

performance measures) in terms of the queue length (or

workload) distribution, which can be computed from Brownian

motion facts.
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VRTQT Demonstration

Developed by Jeffery Hansen of the CMU Software Engineering

Institute

June 1, 2015 Shreve Conference 26



Real-Time Queues'

&

$

%

Processor Sharing: Exp. Deadlines
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Processor Sharing: Exp. Deadlines
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Heavy Traffic Analysis: 1

• Queue length process,Q(n)(t),

• Workload process,W (n)(t),

• Lead-time measure,Q(n)(t)(B),

Number of customers in queue at t having lead-times inB at t.

• Workload measure,W(n)(t)(B),

Work at t from customers in queue having lead-times inB at t.

• Frontier,

F (t) ≈ largest lead-time of any customer ever in service.
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Heavy Traffic Analysis: 2

• Ŵ (n)(t) = W (n)(nt)√
n

⇒ W ∗,

a reflected Brownian motion with drift−γ.

• Q̂(n)(t) = Q(n)(nt)√
n

⇒ µW ∗,

• Limiting scaled frontier process,F ∗(t) = H−1(W ∗(t)) where

H(y) =

∫ ∞

y
(1 − G(u))du.
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Heavy Traffic Analysis: 3

• Ŵ∗(t)(B) =
∫
B∩[F ∗(t),∞)(1 − G(u))du.

• Q̂∗(t)(B) = µŴ∗(t)(B).

Then

• Ŵ(n) ⇒ Ŵ∗.

• Q̂(n) ⇒ Q̂∗.
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Task Lead-Time Profile: EDF

For M/M/1 (and GI/G/1) queueing systems using the EDF

scheduling algorithm, the instantaneous lead-time profile, given in

the form of a p.d.f. is

f(x) = (1−G(x))
W (t) , F (t) ≤ x < ∞

whereG is the c.d.f. of the task deadline distribution,W (t) is the

current queue length andF (t) is the frontier, where

W (t) =
∫ ∞
F (t)(1 − G(x))dx.
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Calculating Lateness: 1

• The workload process behaves like a drifted, reflected

Brownian motion. Hence it has an exponential(θ) equilibrium

distribution, whereθ involves the first two moments of the

interarrival and service distribution.

• Recall that we determine the frontier,F (t), through the

equation:

W (t) =

∫ ∞

F (t)
(1 − G(x))dx.
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Calculating Lateness: 2

• Lateness is associated withF (t) ≤ 0, or equivalently

W (t) ≥
∫ ∞

0
(1 − G(x))dx = E(D).

• Consequently,

P (Lateness) = P (W (t) ≥ E(D)) = e−θE(D),

or

log(P (Lateness)) = −θE(D).
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EDF Lateness Probabilities
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Extensions

• Determining the accuracy of the approximations

• Allowing customer reneging or if a customer is going to be late

and counted as a deadline miss, then it is best to never serve it

at all

• Feed-forward queueing networks

• Acyclic queueing networks
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