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PART ONE: A CLASSICAL SETTING

DISTRIBUTION OF THE TIME-TO-EXPLOSION FOR
LINEAR DIFFUSIONS



I.1: STOCHASTIC DIFFERENTIAL EQUATION

dX () = s(X (1)) [dW(t) + b(X(t))dt] , X(0)=¢ec1T

The state-space is an open subinterval Z = ({,r) CR
of the real line. Here W (.) is standard Brownian motion,
and b:Z —-R, s:Z — R\ {0} are measurable functions.

Standing Assumption: The function 1/s2(-) and the local
mean /over/variance (or “signal-to-noise ratio”) function

L b0 _ b()s()
=50 T 20

are locally integrable over 7.




Under these conditions, there exists a weak solution of the
above SDE, defined up until the so-called “explosion time”

S:=1lim 1S8,, Sp=inf{t>0:X({) & (ln,rn)}

n—oo

for ¢p 1l ¢, o T r. This solution is unique in distribution.
(ENGELBERT & SCHMIDT 1984, 1991.)

We know that P(S = o) = 1 holds under the familiar
linear growth conditions of the ITO theory, when Z =R.



More generally, fixing a reference point ¢ € 7 and introducing
the “"FELLER function”

v(z) = /x /Cyexp (—Q/ny(u)du> ;(; dy, zeT,

we have: P(S =o0) =1 if and only if

v(l+) = v(r—) = oo.
This is the classical FELLER test for explosions.

QUESTION (posed to us by Marc YOR):

. If this condition fails and P(S < o) > 0,
what can we say about the distribution function
P(S<T), 0<T < oo of the explosion time?



I.2: A GENERALIZED GIRSANOV / McKEAN IDENTITY

Let us consider the diffusion in natural scale

dX°(t) = s(X°(t))dW°(t), X(0)=¢€7T

with explosion time S9; clearly, Q(8° =o0) =1 if ZT=R.
Here W°(.) is Brownian motion under another probability
measure Q (possibly on a different probability space).

Suppose that the mean/variance function §(-) is locally square-
integrable on 71, and define the exponential Q—local martingale

L(-: X°) ‘= exp {/O'b(XO(t))dWO(t) _ %/O bQ(XO(t))dt}

— exp {/O HXO(1)) dXO(t) — %/O bQ(XO(t))dt} on [0,S°).



Then for T € (0,c0) and bounded, Bpr—measurable hy : Q2 - R,

EX | hp(X) - 1gsopy| = EQ| L(T; X°) hp(X°) - 1igonry | -

A couple of early lessons from this identity. Suppose X (-) is
non-explosive: P(S =) = 1.
Then

]EP[hT(X)} - E@[L(T; X°) hp(XO) - 1{50>T}} .

In particular, the exponential process L(-; X©°) l{so~ .} is then a
true Q—martingale; and for every T € (0,00) we have

1 0]
EP(L(T;X)) — @(5 >T)




= L(T; X°) - -15co Y
§0 |y = HEX A

. Please also note that, always under P(S = oc0) = 1, the expo-
nential process

L(,?X) = eXD{—/O' (X (2)) dX (1) +%/O bQ(X(t))dt}

— exp{—/o'b(X(t))dW(w —%/O bQ(X(t))dt}

is a strictly positive P—local martingale (and supermartingale).

. It is a true P—martingale, if and only if we have, in addition,
Q(S° =) = 1.



When §(-) is actually continuous and continuously differen-
tiable on Z, the above expression gives

°(T)
Pe(s > 1) = B e ([ ) az = [ VOXO)ar) 1oy

where

V() = 2@ (2@ + 1)

. And in a totally “symmetrical’ fashion:

(1)
Q(S° > T) = Ep[exp<_/£x ! f(z)dz—l—/OTV(X(t))dt> 5ot




I.3: RESULTS: We have the following, general results.

PROPOSITION 1: Positivity, Full Support. The function

[0,00) xT > (T,8) —> U(T,&) = P(S>T) € (0,1]

is (strictly positive and) continuous;
as well as strictly decreasing in T (x* x), when P¢(S < o00) > 0.

(***) Last result — strict decrease — needs the

local square-integrability of 1/s2(-) on T

(with the possible exception of finitely many points).
This assumption guarantees that “the diffusion can
reach far away points fast, with positive probability” .

. It has been removed very recently, in work of
Cameron BRUGGEMAN and Johannes RUF.



PROPOSITION 2: The continuous function U(-,-) of
[0,00) X T > (T,&) — U(T,&) = Pe(S>T) € (0,1]

is dominated by every nonnegative, classical (super)solution
of the Cauchy problem

s2(z) 82U
2  0z2
UO+,z) =1, x € T.

8_2/{(7_’33) - (1,z) + b(x)s(x) a—u(T,az), T>0, el
ot ox

. Please note that this characterization is impervious to the
boundary behavior of the diffusion X (-) at the endpoints of its
state-space 7 = (4, r) .



PROPOSITION 3: Minimality. Suppose that both functions
s(-), b(-) are locally Holder-continuous on T.

Then U(-,-) solves this Cauchy problem, and is its smallest
nonnegative classical (super)solution.

. And if U(-,-) =1 (i.e., if our SDE is non-explosive), then the
above Cauchy problem has a unique bounded classical solution,
namely, U(-,-) =1.

RECENT WORK: Important generalizations of these results in
the viscosity and generalized solution framework, when the func-
tions s(-), b(-) are simply continuous, have been carried out —
and in several dimensions — by Ms. Yinghui WANG (2014).



PROPOSITION 4: A Generalized FELLER Test.
T he following conditions are equivalent:

(i) The diffusion X (-) has no explosions, i.e., P(§ =oc0) = 1;
(ii) v(/+) = v(r—) = oo hold for the “Feller test” function;
(iii) The truncated exponential Q-supermartingale

£ x) = exp [ o(x2@)awo(0) = 5 [ 62 (X)) 1o

is a true Q-martingale.

. If the functions s(-) and b(-) are locally Holder-continuous on
Z, then the conditions (i)—(iii) are equivalent to:

(iv) The smallest nonnegative classical solution of the above
Cauchy problem is U(-,-) = 1;

(iv)! The unique bounded classical solution of the Cauchy prob-
lem is U(-,-) =1.



I1.4: AN EXAMPLE: Bessel Process in dimension § € (1,2).

dx(t) = 25X(t)

The solution of this equation does not explode to infinity, but
reaches the origin in finite time: P(S < o0) = 1. We have

dt + dW (), X(0) =¢ €7 =(0,00).

1/2 —v V2 —1/4
@) ==, V() ="—3;
for v =1-—(6/2). With
X)) =&+ W), S° = inf{t>0:X°t) =0},

the representation

°(T)
Pes > 1) = 5% exp (7 1) ds— [ VX)) Loy




gives

P(S>T) = EV

(XO(T)> —2v
&

XO(T) v+1/2
( ¢ )

exp

1/4—V
< / (Xo(t))2> 1{3">T}]

Here QY is the probability measure under which the auxiliary
diffusion X°(-) =&+ W(-) is Bessel process in dimension

2u+2=4—-90> 2.



With the modified Bessel function of the second type

_ (u/2)v+2n
Iv(u) := Z ntfiln+v+1)

neNqg

this gives

P(S>T) = —£‘ ex p<2§2>/wx1_”exp(;T> V(f:) T .

. Algebraic manipulation leads now to a simple proof of

"(5r)

U(T,¢) = IP’£<S>T) - ]P’<05<%>

a result of Ronald GETOOR (1979), where

N 1 u r—1
H(w) = Tu)/o t*~Lexp(—t) dt.



e [ he resulting function

£2/(2T)
U(T,¢) = Pg (S>T) — I‘(ly)/o 8 V"L exp(—t) dt

is the smallest nonnegative classical solution of the Cauchy prob-
lem

1 92U 5 —1 ouU

ou

UO+,§) =1, eI,

. Many more such (one-dimensional) examples are possible;
a small parlor game.



PART TWO: A MORE ELABORATE SETTING

OPTIMAL ARBITRAGE RELATIVE TO THE MARKET
PORTFOLIO



II.1: PRELIMINARIES

Filtered probability space (2, F,P), F = {F(t)}o<icoo - Vector
() = (X10), -+, Xn(-)) of strictly positive and continuous
semimartingales; these represent the capitalizations of assets in
a large equity market, say n = 8,000.

. T hen
X)) =X1()+-+ Xn()

IS the total capitalization, and

X)) X ()

70 =05 e () =

the corresponding relative market weights.



The vector Z(-) = (Z1(-), -, Zn(-)) of these weights is a
semimartingale with values in the interior A° of the simplex

n
A = {(Zla"' 7271),6 [071}n : ZZZ:]'}'
i=1
= A\ A° will be the boundary of A.
We shall denote (21, ---,2n) =: 2.

I1.2: PORTFOLIO =#(:) = (m1(-),---,m()) is an F—progr.
measurable process, such that (7;/X;)(:) € L(X;), i=1,--- ,n.

We call this portfolio strict, if Y}  m()=1.
We denote the resulting collections by II (resp., Ilg, ).

Here m;(t) stands for the proportion of wealth V™ (t) that gets
invested at time ¢ > 0 in the it" asset, for each i = 1,---,n.



Dynamics of wealth corresponding to portfolio =(-) is
multiplicative in the initial wealth, and is given by
dV7T(t) " d.X;(t)
=Y mt) s,
VT (t) =1 X;(t)
Scaling: If we start instead with initial capital v > 0, then the
corresponding wealth is v V7(.).

VT(0) = 1%.

. A strict portfolio will be called “long-only”, if

() >0,---, m() >0.

The most conspicuous strict long-only portfolio is the Market
Portfolio Z(:) = (Z1(-),---,Zn(-)) itself. This takes values
in A%, and generates wealth proportional to the total market
capitalization at all times:

Ve() = X(-)/X(0).



I1.3: ARBITRAGE

Given a horizon T € (0,00) and two portfolios «(-) and p(-), we
say that «(.) is arbitrage relative to p(-) over [0,T], if

P(V”(T) > VP(T)) —1 and IP(VW(T) > VP(T)) >0.

e When in fact IP(V”(T) > VP(T)) — 1, we call such relative
arbitrage strong.

e We recover the ‘“classical” notion of arbitrage (relative to
cash) by taking p(-) =0, thus VP(-) =1.



¥ We shall be interested in performance with respect to the
market, so we consider for any given portfolio #«(-) € I1

V() _ dY7™(¢t) n dZ;(t)
vEG T Mt Sagy T 2 O

=1

Y7() =

its relative performance. Equivalently, write

dY™(t) & dZ;(t) " | |
veay = 2 M0 gy = X Vi %),

1=1

with the portfolio proportions expressed as
i (t) = Z;(t) W;(t), i=1,---,n

The process W(-) = (W1(-),---,Wn(-)) in this scheme of things
“‘generates” the portfolio process «(-) = (m1(-), -+ ,m(-))".



I1.4: RELATIVE ARBITRAGE FUNCTION

The smallest amount of relative initial wealth required at t =0,
in order to attain at time ¢t = T relative wealth of (at least) 1
with respect to the market, P—a.s.:

U(T,z) :=inf {q c (0,1] : 3x() eIl s.t. ]P(q V() > 1) = 1}.

. Equivalently, 1/U(T,z) gives the maximal relative amount by
which the market portfolio can be outperformed over [0,T].

We have: O0<U(T,z)<1.

We shall try to characterize this function.



The strict inequality U(7,z) > 0 is a consequence of conditions
to be imposed below. These amount to NUIP (No Unbounded
Increasing Profits): “Absence of Egregious Arbitrages”.

e When U(T,z) =1, it is not possible strongly to outperform
(“beat”) the market strongly over [0,T].

e When U(T,z) < 1, there exists for every ¢q € [U(T,z),1) a
portfolio 74(:) € II such that ¢Y ™ (T) > 1, i.e.,
4
Ve (1) > t > 1, holds P—a.s.
VZ(T) ~ ¢
Strong arbitrage relative to the market portfolio Z(-) exists then
over the time-horizon [0,T].

¥ In order to be able to say something about this function
U(-,-), weneed a “Model”: I.e., some specification of dynamics.



I.5: MARKET WEIGHT “MODEL”

Hybrid MARKOV/ITO—proceSS dynamics for the A°—valued rel-
ative market weights Z(.) = (Zl(-), cee Zn(-)), of the form

dZ(t) = 5(2(15)) (dW(t) + 9(t) dt) , Z(0) =z € A°.

Here W(-) is an n—dimensional P—Brownian motion; the relative
drift process 9(-) is F—progressively measurable and satisfies

[ o |fat<oo, P-as

for every T € (0,00) .



Whereas s(-) = (5;,(-))1<iv<n IS @ matrix-valued function with
s;, « A — R continuous,

mn
Zsi,j(-)EO, v=1--,n.
1=1

. We shall assume that the corresponding covariance matrix
a(z) = s(z)s'(z), z € A
has rank n—1,V ze& A°%;

as well as rank k£ — 1 in the interior ©° of every
sub-simplex ® C I in k dimensions, k=1,--- ,n—1.

e The quantity U(T,z) is a number in the interval (0,1].
So it is the probability of some event.

Which event? Under what probability measure?

We shall try to answer these questions.



11.6: NUMERAIRE PORTFOLIO, LOG-OPTIMALITY

Recall the relative portfolio dynamics in the form

dY™(®) _ <~ 9% _ 5w .
%0 = Z; (1) Z:.() Z;l \UZ (t) dZ;(t)

where we are expressing the portfolio proportions as

m(t) = OV (@),  i=1,,n.

The market portfolio () = Z(-) is generated by \U(W)(.) =1.



Recall

dZ(t) = s(2()) (AW (t) +9(t) dt), Z(0) =z € A°.

e Now, for any two portfolios =(-), v(-) with corresponding
scaled relative weights \IJ,EW)(-) and \U,g”)(-) as above, simple
calculus gives

Y™ () Y™ () - y / 5
d (yv@)) — (Y’/(t)> RIO=TQIOY [dZ(t)—a(Z(t))\U( >(t)dt] |

Thus, the finite-variation part of this expression vanishes, IFF
the portfolio v(-) has scaled relative weights that satisfy
the “perfect balance” condition

(s(Z2(:)) v () = 9().



With v(-) = vF(.) selected this way, namely
(s(Z(:)) v () = 9() :

. For any given portfolio «(-) € II, the ratio

YT() YY) = VT V()

IS a positive local martingale — thus also a supermartingale.

e \We say that this portfolio v¥'(:) has the “numéraire property”,
and that the ratio 1/Y’/P(-) = VZ(-)/VVP(-) is a “deflator”
in this market.

No arbitrage relative to a portfolio with the numeéraire
property is possible, over ANY finite time-horizon.



. And if 9(-) =0, i.e.,

dZ(t) = 5(2(15)) dW (¢)

then the market portfolio Z(-) ITSELF has the numéraire
property.

Because then we can take W () =1, thus v(:) = Z(.).

¥ Indeed: “You cannot beat the market” portfolio, when it has
the numeéraire property.

But this property is (very) special.



Relative Log-Optimality of the numéraire portfolio v*(-):

For every portfolio w(-) € IT and time-horizon T € (0,00),
we have

EpllogY”(T)] < EP[IogY’/P(T)] - %EP/OTHﬁ(t)Hth.

Recall:

V()
VZ()

Y7T() = YV () =

keep track of the relative performance of =(-) (resp., vF'(-)) with
respect to the market.



. T he “deflator” process

Y%m % = oo~ [V aww —%/O [o) " at |,

i.e., the performance VZ(-)/V’/P(-) of the market relative to the

numéraire portfolio VP(-), is a strictly positive P—local martin-
gale and a supermartingale.

. We need not assume — and are not assuming — a priori,
that this local martingale is a true martingale.

But we ARE assuming that it is strictly positive. This is guar-
anteed by the assumption that, for every T € (0, 00),

T 2
/O l9()|"dt < 0 holds P —a.s.




Thanks to this assumption there is in this model, as we shall see,
No Unbounded Increasing Profit.

“No Arbitrage of the First Kind",
“No Egregious Arbitrage’,
“No Scalable Arbitrage”.



11.7: U(-,-) AND THE FOLLMER “EXIT MEASURE”

Under “canonical” conditions on the filtered space (£2,F), F =
{F(t)}o<t<co ., there exists a probability measure Q, under which

Wo() = W() +/O'z9<t> dt

is Brownian motion (the so-called FOLLMER exit measure;
I learned all I know about this from some beautiful notes of my
student Gordan ZITKOVIC dated Thu. September 27, 2001.)

. And the performance of the numéraire portfolio I/P(°) relative
to the market, i.e., the reciprocal

V()

VI, = YY) = L() = exp{/ & (t) dWO(t) ——/ Hﬁ(t)” dt}



of our deflator process, is a Q—martingale; indeed,

IP’(A)z/AL(T)d@, Ae F(T): v T e (0,00).

e Whereas the market-weight process Z(-) is a Q—martingale
and Markov process, with values in A and “purely diffusive”
Q—dynamics

dZ(t) = S(Z(t)) dWO(t), Z(0) =z € A°.

Thus, the market portfolio Z(-) has the numéraire property un-
der the exit measure Q

z() =90).



e If we consider the first time (“explosion’, or rather implosion)

S = inf{tzo : Z(t)er}

Z(-) reaches the boundary I' of the unit simplex A, the arbitrage
function is represented in the already familiar form

UT2) = EPZ[ L(T)

] = Q,(S>T),

(T,2z) € (0,00) x A°.

The relative arbitrage function U(T,z) emerges as the probability
under the FOLLMER measure, that Z(-) has not reached the
boundary I of the simplex by time t = 'T", when started at initial
configuration z. Tail-distribution of the “explosion” time.



e Please think of the passage from the original measure P to the
FOLLMER measure Q, as a Girsanov-like change of probability
that “removes the drift” in the dynamics

dZ(t) = 5(2(75)) (dW(t) + () dt),

when all we can say about the exponential (“deflator”) process

1 1

= exp{— | @ aw () - % A HW”HQ‘“} ~ Y

is that it is a local martingale under P (strict, when U(T,z) < 1).



The process L(-) can in principle reach the origin
with positive Q—probability, so this is in general
not an equivalent change of measure:

We have P < Q, but not necessarily Q < P.

. Nonetheless, the process Z(-) of market weights
iIs a Q—martingale with values in the unit simplex — and
now with the possibility of reaching its faces.

(Thus, we can think of the FOLLMER measure Q as
an Ersatz “martingale measure” for the model under
consideration.)



I1.8: U(.,-) AS SMALLEST SUPERSOLUTION

Under regularity conditions on the covariance structure a(-) and
on the relative drift 9(-), the arbitrage function U(.,-) is of class
Cc12 on (0,00) x A°, and satisfies there the equation

1 n n
DTU(sz) = — E E aij(z) D?-U(T,Z),
2 Z & J
=1 )=

or
DU = %Tr(a DQU) .

Further, U(-,-) is also the smallest nonnegative supersolution
of this equation, subject to

U(O+,)=1.



e Please note that this equation
1 2
DU = ETr(a D2U)
involves only the covariance structure of the assets.

. The only rdle the relative drift ¥(-) plays in this context, is to
keep the market weight process Z(-) in the interior of the unit
simplex, P—a.e. (Once again, this characterization is completely
impervious to boundary conditions on the faces of the simplex.)

With Knightian uncertainty about the covariance a(-) and
the relative drift 9(-), this equation becomes fully nonlinear (of
HJB-PUCCI type), as in the work of Terry LYONS (1995).

. Great generalizations of these results, in the context of viscos-
ity solutions of the fully nonlinear PDE's, appear in very recent
work by Ms. Yinghui WANG (2015).



I1.9: CONDITIONING, CLASS i

Let us consider the collection ‘B of probability measures P < Q
with P(Z(t) e A°, VO<t<T)=1. (Our original measure P
belongs to this collection.) We single out an element of B via

P,(A) == Q(A|S>T), Ae F(T). (1)

This is the conditioning of the FOLLMER measure Q on the set
{Z(-) has not reached the boundary of the simplex by time T'}.

Elementary computations give, Q—a.s.:

d P, _ U@ —t,2(t) _ Y@ o<
dQ |z U(T,z) 7Y v (o) -




d Py
dQ

_ U(T—t,2(1)) _Y®
F(t) U(T, z) =T Y (0) -

with the Q—martingale
Y(t) :=U(T —t,2(t)) 1ysapy = qYT(t) for q=U(T,z),

and with the functionally-generated portfolio in Ilg,:

7:(t) = Z;(t) - D, log U(T - t,Z(t)) . (2)

e T his portfolio has the numéraire property under the condi-
tioning P, of the FOLLMER measure:

7() = ().



Whenever U(T,z) < 1, this portfolio implements the best
achievable arbitrage under the original probability measure P;
that is,

VA(T) 1

= > 1 holds P — a.s.
VZ(T) U(T,z)

11.10: A RECIPE

We can characterize the portfolio 7(-) of (2) that implements
the optimal arbitrage over a given time-horizon [0,7] as follows,
given the market weight covariance structure under the original
probability measure P (and nothing else...):



o FIRST, find a probability measure Q under which the market
weights are martingales, as in

dZ(t) = 5(2@)) dWe(t), Z(0) =z € A°,
and compute the function U(T,z) = Qz(S >1T).

o SECONDLY, construct the measure Py by conditioning Q on
the event {S>T} asin Py(A) = Q(A|S>T), AeF(T).

e FIINALLY, construct the portfolio w(-) that maximizes ex-
pected log-return (equiv., has the numéraire property) under Py .

This portfolio is generated by the vector process of log-derivatives,
I.e., IS given by the recipe

7:(t) = Z:(t) - D;0g U(T—t,Z(t)), i=1,---.n.



I11.12: MINIMAL ENERGY AND ENTROPY
With

Hr(P|Q) = EP[mg ((d P/d @)\F(T))] — %]EP/OTHQS‘P(t)Hth

we have the “minimum entropy and energy’” properties

log (1/U(T,z)) = Hp(Pyx|Q) = IPrgﬂeigl3 Hp(P|Q)

1

= S &% [ oR o ar = min 25 [ 070 ar.

We call P, “minimal energy” measure in ‘1.

Has relative risk process 9%*(-) that keeps the market weights
strictly positive throughout [0,T] by expending minimal energy.



This minimal entropy function

H(r,z) := log (1/U(T,2)) = Hp(Ps|Q)

solves the HJB equation for this problem

DoH(r.7) = % Tr(a(z) D2H(r,2))

+ min [(D’H(T,Z))ls(z) 0+ % H@HQ]

which is of course a semilinear equation

DoH(r.7) = %Tr(a(z) D1(r,7)) - %(DH(T, 2))'s(2)(DH(r,2)).



I1I.13: A STOCHASTIC GAME

The pair (Px,7w(-)) of (1), (2) is a saddle point in B x II for the
zero-sum stochastic game with value

l0g (1/U(T,z)) — EP*[ log Y%(T)] -

= min max EP[ log YW(T)] = max_ min EP[ log YW(T)]?
PeP n()ell w(-)ell PP

and for every (P,n(-)) € B x II we have the saddle

EP[ log Y%(T)] > EP*[ log Y%(T)] —

= 109 (1/U(T,2)) > EP*[mg YW(T)].



I11.14: A SUFFICIENT CONDITION AND A TOY MODEL

It can be shown that a sufficient condition for U(T,z) <1 is
that there exist a real constant A > 0 for which

n

S (aiigz)> >h, VYV zeA°. (3)

1=1 <

The weighted relative variance of log-returns in (3) is a mea-
sure of the market’s “intrinsic” (or “average relative” ) variance;
condition (3) posits a positive lower bound on this quantity as
sufficient for U(71,z) < 1.

. Under the condition (3), very simple long-only portfolios can be
designed, that lead to arbitrage over sufficiently long horizons.



For instance, given any real number T > (2logn)/h, there is
c > 0 sufficiently large, so that the portfolio

() = 2= 109 Zi(0)) .

T_17Zi(t)(c—log Z;(1))

is strong arbitrage relative to the market portfolio Z(-) over the
time-horizon [0, T].

OPEN QUESTION: Is arbitrage relative to the market
possible under condition (3) over arbitrary time-horizons 7

(A few additional examples exist, under different structural con-
ditions, and with the equally-weighted portfolio playing a very

important réle. Would be nice to have more of them ... .)

. Very recent development: Counterexample by Johannes RUF.



I1.15: A CONCRETE TOY-EXAMPLE

A concrete example where the condition

i ii(2) > h V z e A°

i=1 %

of (3) is satisfied concerns the “Volatility-Stabilized” Model

dlog X;(t) = (R/Zi(t)> dt + (1/\/Zi(t) )dWi(t), i=1,---.,n

with constant x > 1/2, or equivalently for the market weights

02,(t) = w(1 — n Z(O)dt 4 \Z:(0) aWi(t) — Zi(8) 3 \/Z,(8) Wi (1)
k=1

= r(1—nZ;(t))dt +/Z;(t) /1 - Z;(t) aWF (1)



The variances in this last diffusion equation

dZ;(t) = r(1 —nZ;(t))dt + /Z;(£) \/1 — Z;(£) dW7 (1)

(in which the Wi#(-), i=1,---,n are correlated BM’'s)
are of WRIGHT-FISHER type

a;(z) = z(1—z),

sO the condition

n
> W s b,V ozen

of (3) holds as equality, in fact with h=n—-1> 1.



. Here, and indeed in any setting of the form

dlog X;(t) = B;(t) dt + (1/\/22-(75) )dWi(t), i=1,---.n,

the market CAN be outperformed over arbitrary time horizons
(A. BANNER & D. FERNHOLZ (2008), R. PICKOVA (2014)).

e In this case, one can “‘compute” the relative arbitrage function

— gP cltien EP| ¢ —(n=D)(yT+W(T))
v = | gy | /

because S. PAL (2011) has computed the joint distribution of
the weights Z1(T),---,Z,(T) fairly explicitly (Dirichlet). Here

1
Y= KN — —.

2



e Under the FOLLMER measure Q, each weight Z;(-) is a
WRIGHT-FISHER diffusion in natural scale, and reaches an end-
point of (0,1) in finite expected time S, = inf{t > 0: Z,(t) = 0} :

dZ;(t) = w(1—nZ®))dt 4+ /Z;(t) /1 - Z;(t) W (1)

= \/Zi(t) /1 — Z;(t) dWP(2) .

For us, of course, the time of interest is

S = min §;.
1<i<n

Eventually all but one of the Z;(-)'s “perish”, and one of them
emerges as the survivor.
Think of a catalytic reaction involving n compounds with

nucleation/condensation (very recent work of C.LANDIM et al.,
May 2015); or of a gladiatorial fight in the Colosseum.
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