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Steve’s advice

“Always work on the easiest problem you cannot solve.”



Stochastic finance economies

Agents, Filtration, Preferences, Endowments, Assets



Discrete-time theory

I Walras 1874,

I Arrow-Debreu ’54, McKenzie ’59,

I Radner ’72 extends the classical Arrow-Debreu model.

I Hart ’75 gives a non-existence example.

I Duffie-Shafer ’85, ’86 show that an equilibrium exists
for generic endowments

I Cass, Drèze, Geanakoplos, Magill, Mas-Colel,
Polemarchis, Stieglitz, and others



Continuous-time theory

Complete Markets

I Merton ’73

I Duffie-Zame ’89, Araujo-Monteiro ’89,

I Karatzas-Lakner-Lehoczky-Shreve ’91,
Karatzas-Lehoczky-Shreve ’90, ’91

Incomplete markets

I Basak, Cheridito, Christensen, Choi, Cuoco, He,
Horst, Kupper, Larsen, Munk, Zhao, Ž



An incomplete, short-lived-asset model



Our model

Setup {Ft}t∈[0,T ] generated by two independent BMs B and W

Price dSλt = λt dt+ σt dBt + 0 dWt ( WLOG σt ≡ 1! )

Agents U i(x) = − exp(−x/δi), Ei ∈ L0(FT ), i = 1, . . . , I

Demand π̂λ,i := argmaxπ∈Aλ E
[
U i
( ∫ T

0 πu dS
λ
u + Ei

)]
.

Goal Is there an equilibrium market price of risk λ? That is,

does there exist a process λ such that

the clearing condition
∑I

i=1 π̂
λ,i = 0 holds.
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A BSDE characterization

Set αi = δi/(
∑

j δ
j), Gi = Ei/δi and define the aggregator

A[x] =
∑

i α
ixi, for x = (xi)i.

Denote by bmo the set of all µ ∈ P2 such that µ ·B ∈ BMO.

Theorem. If Gi ∈ L∞, for all i, then a process λ ∈ bmo is an
equilibrium if and only if it admits a representation

λ = A[µ],

for some solution (µ,ν,Y ) ∈ bmo×bmo×S∞ of the following
nonlinear (quadratic) and fully-coupled BSDE system: dY i

t = µit dBt + νit dWt +
(
1
2(νit)

2 − 1
2A[µ]2t +A[µ]µit

)
dt,

Y i
T = Gi, i = 1, . . . , I,

where µ = (µi)i, ν = (νi)i and Y = (Y i)i.
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Nonlinear Systems of BSDEs

I [Darling 95], [Blache 05, 06]: Harmonic maps.

I [Tang 03]: Riccati systems,

I [Tevzadze 08]: existence when terminal condition is small.

I [Delarue 02], [Cheridito-Nam 14]: generator f + z g, where
both f and g are Lipschitz.

I [Hu-Tang 14]: diagonally quadratic, small-time existence.

Applications:

I [Bensoussan-Frehse 90], [El Karoui-Hamadène 03]:
stochastic differential games.

I [Frei-dos Reis 11], [Frei 14]: relative performance.

I Counter example: bounded terminal condition, no solution.

I [Cheridito-Horst-Kupper-Pirvu 12]: equilibrium pricing.

I [Kramkov-Pulido 14]: large investor problem.
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Existence and uniqueness “with cheating”

Theorem 0a. An equilibrium exists and is unique if (Gi)i is an
(unconstrained) Pareto-optimal allocation. Then λ ≡ 0.

Note: in the exponential case, G is Pareto-optimal if and only if

Gi −Gj = cij ∈ R, for all i, j.

Definition. (Gi)i is in the Pareto domain of attraction of
pre-Pareto if there exists an equilibrium λ ∈ bmo such that the
allocation

G̃i = Gi + 1
δi
π̂λ,G

i · SλT , i = 1, . . . , I, is Pareto optimal.

Obviously . . .

Theorem 0b. An equilibrium exists if (Gi)i is pre-Pareto.

However, . . .
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Existence and Uniqueness “with Cheating” II

Proposition. The following statements are equivalent:

1. (Gi)i is in the Pareto domain of attraction.

2. There exists an equilibrium λ ∈ bmo such that

Q̂λ,i = Q̂λ,j , for all i, j,

where Q̂λ,i, i = 1, . . . , I denote the dual optimizers.

3. For λ, ν defined by

exp(−
∑

i α
iGi) ∝ E(−λ ·B − ν ·W )T ,

there exist (yi)i ∈ RI and (ϕi)i ∈ bmoI such that

Gi −Gj = yi − yj + (ϕi − ϕj) ·Bλ
T , for all i, j.

In each of those cases, λ as above is the unique equilibrium.
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Spaces

I bmo2(P̃) - ||(m,n)||2
bmo2(P̃) = ||m||2

bmo(P̃) + ||n||2
bmo(P̃).

I EBMO - “Exponential” or “Entropic” BMO: the set of all
G ∈ L0 such that

e−G ∝ E(−mG ·B − nG ·W )T ,

for some pair (mG, nG) ∈ bmo2.

Note that:

I G ∈ EBMO iff

dXt = mt dBt + nt dWt + 1
2(m2

t + n2t ) dt, XT = G,

admits a (necessarily unique) solution (m,n) ∈ bmo×bmo.

I L∞ ⊆ EBMO ⊆ ∪ε>0 e
−(1+ε)L

I L∞ embeds continuously into EBMO (under any bmo2(P̃)).
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The general “smallness” result

For an allocation (Gi)i, with Gi ∈ EBMO, we define the
distance to Pareto optimality H((Gi)i) by

H((Gi)i) = inf
G∈EBMO

max
i

∣∣∣∣∣∣(mGi −mG, nGi − nG)
∣∣∣∣∣∣
bmo2(PG)

,

where dPG/dP ∝ e−G.

Note: Similar to Debreu’s notion of “coefficient of resource utilization”

Theorem. Assume that (Gi)+ ∈ L∞, (Gi) ∈ EBMO for all i. If

H((Gi)i) <
3
2 −
√

2

then an equilibrium λ ∈ bmo exists and is unique.

Note: A similar result with “distance-to-Pareto” replaced by “distance-

-to-pre-Pareto” holds (mutadis mutandis). A different proof technique.
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Corollaries

Corollary 1. A unique equilibrium λ ∈ bmo exists if

1
δi
||Ei||L∞ is sufficiently small for each i.

Corollary 2. A unique equilibrium λ ∈ bmo exists if

T is sufficiently small,

provided all Ei have bounded Malliavin derivatives
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Corollaries

Define the endowment heterogeneity index χE ∈ [0, 1] by

χE = max
i,j

||Ei − Ej ||L∞

||Ei||L∞ + ||Ej ||L∞
.

Corollary 3. A unique equilibrium λ ∈ bmo exists if

there are sufficiently many sufficiently heterogeneous agents,

i.e., if I ≥ I(||
∑

iE
i||L∞ ,mini δ

i, χE).

THANK YOU, and HAPPY BIRTHDAY, STEVE.
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