

Continuous Time Finance and Mean-Variance in Post Retirement Planning

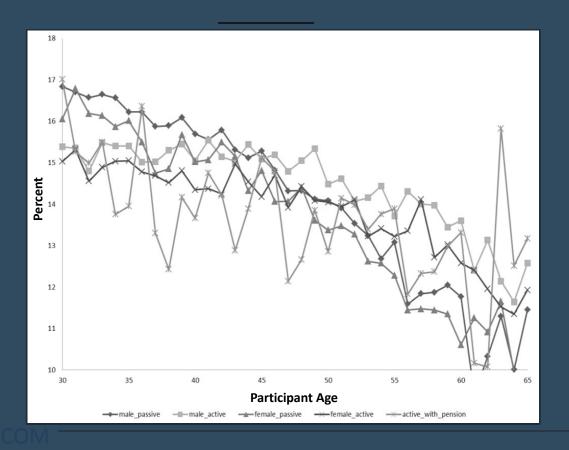
Presented at Conference in Honor of Steven's 65th Birthday

Ganlin Xu June 2015

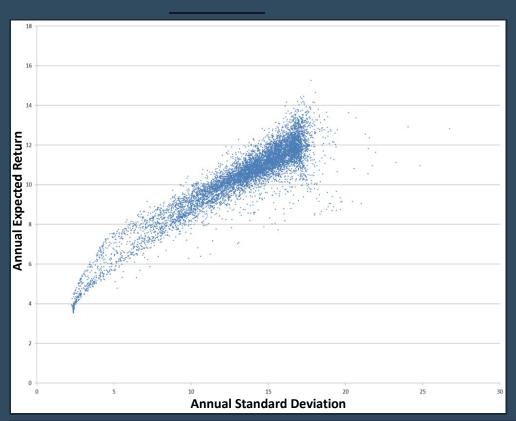
Introduction

"Society needs scientists willing to explain the content and consequence of their work to the public. These are modern Renaissance men and women...who understand science beyond a superficial level." ~ Steven

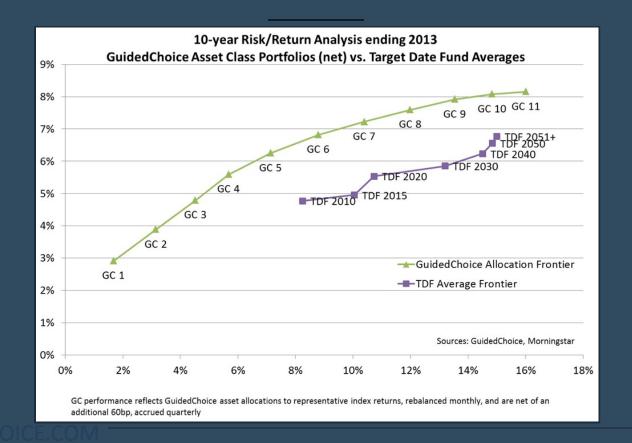
About GuidedChoice


- GuidedChoice mission: Financial freedom for all
- Provide confidence and peace of mind from real financial facts and reliable projections
- GuidedSavingssM GuidedChoiceIRASM GuidedSpendingSM

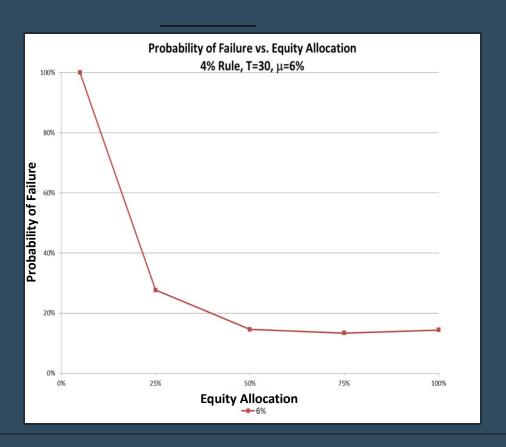
Current 401(k) Market


- \$ 5 trillion dollars
- 2 70 million participants

- Half of participants outsource their asset allocation to target date funds
- B Women tend to take less risk
- Those with supplemental pension plans invest more conservatively than those without
- Young participants are not taking enough risk
- E Naïve diversification


Total Risk Distribution

Mean-Variance Distribution: 1989-2013 Returns


Performance

Spending Problem: Practitioner's Solution

- 4% Rule: Withdraw constant dollars equal to
 4% initial wealth
- $dX_t = \mu \pi_t X_t dt C * dt + \sigma \pi_t X_t dw_t$
- Probability($X_{30} \le 0$) ≤ 0.06
- Historically with $\pi = 0.5$
- An acceptable and good solution

Other Market Condition

Spending Problem: Mathematician's Solution

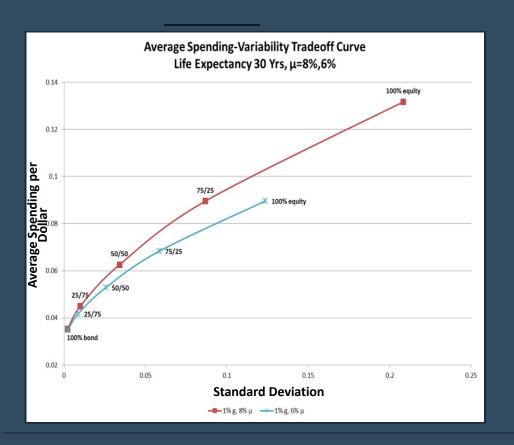
- $dp_t = p_t(\mu dt + \sigma dw_t)$
- $E \int_0^{\tau} e^{-\beta t} U(c_t) dt$
- $U(c) = \frac{c^{1-\gamma}}{1-\gamma}$
- $c_S^* = \frac{1}{A(s)} X_S$, $A(s) \stackrel{\text{def}}{=} \int_S^T e^{-k(\gamma)(T-t)} dt$
- $k(\gamma) = \frac{\beta}{\gamma} + r\left(1 \frac{1}{\gamma}\right) + 0.5 * \theta^2 * \frac{1}{\gamma} * (1 \frac{1}{\gamma})$
- $\pi_S^* = \frac{1}{\gamma} \frac{\mu r}{\sigma^2} = \frac{1}{\gamma} \frac{\widecheck{\mu}}{\sigma^2} = \frac{\theta}{\gamma \sigma}$ (Merton Line)

Practical Questions

What is my risk aversion parameter? What is my utility discount rate?

Typical question: If offered the choices listed below, which option would you select?

- Accept \$1M now
- Play a game where you have a 90% chance of winning \$2M and a 10% chance of winning nothing
- Play a game where you have a 50% chance of winning \$5M and a 50% chance of winning nothing


Experiment's Solution

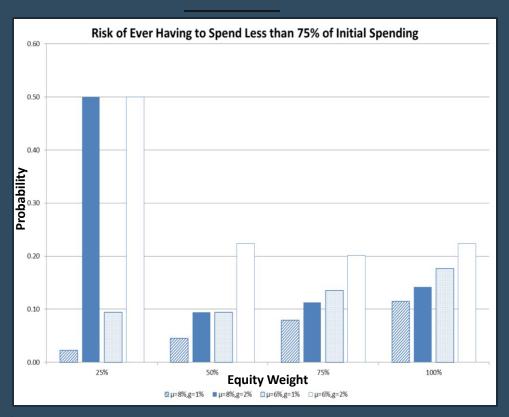
• For any annuitization rate/portfolio policy (g, T, π) ,

•
$$AF(t) \stackrel{\text{def}}{=} \frac{1}{\int_t^T e^{-g(T-s)} ds} = \frac{g}{1-e^{-g(T-t)}}$$

- $c_t = AF(t) * X_t$
- $c_t = x * AF(0) * e^{(\pi\mu g)t 0.5 * (\pi\sigma)^2 t + \pi\sigma W_t}$

Mean-Variance Analysis

Probability of Spending Less


•
$$P(c_t < \kappa * x * AF(0))$$

• =
$$P(e^{(\pi\mu-g)t-0.5*(\pi\sigma)^2t+\pi\sigma W_t}<\kappa)$$

• =1 -
$$\Phi\left(\frac{-\ln(\kappa) + (\pi\mu - g)t - 0.5 * (\pi\sigma)^2 t}{\pi\sigma\sqrt{t}}\right)$$

• $max_{t\geq 0}P(c_t < \kappa * x * AF(0))$

Probability of Spending Less

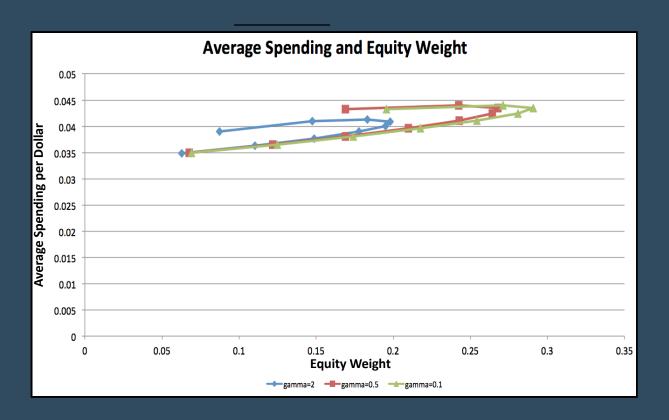
More Interesting Problem

- Budget constraints: $\underline{c} \le c_s \le \overline{c}$, $0 \le s \le T$
- No bankruptcy implies:

Initial Wealth x >= Present Value(\underline{c})

- Initial Wealth x >= Present Value(\overline{c})
- No analytical solution for $U(c) = \frac{c^{1-\gamma}}{1-\gamma}$

Portfolio Insurance and Profit-Taking


•
$$U(c) = -c * (\overline{c} - \underline{c})^{-\gamma} + \frac{(c-\underline{c})^{1-\gamma}}{1-\gamma}$$

•
$$I(y) = \underline{c} + (y + (\Delta c)^{-\gamma})^{-\frac{1}{\gamma}}, \forall y \ge 0$$

•
$$c_s = \underline{c} + (\Delta c)(\lambda(t, x) * \Delta c^{\gamma} * \zeta(t, s) + 1)^{-\frac{1}{\gamma}}$$

•
$$E \int_{t}^{T} \zeta(t,\tau) \left(\lambda(t,x)\zeta(t,\tau) + (\Delta c)^{-\gamma}\right)^{-\frac{1}{\gamma}} d\tau = x - \underline{c} * (T-t)$$

Selection of Risk Aversion Parameter

SPECIALS for You

GuidedSavingssm

\$19

Regularly \$99

Retirement more than a year away

GuidedSpendingsM

\$29

Regularly \$299

Currently retired, or within a year

Up to 90% off with promo code

Shreve65

Offer good through June 30, 2015 www.guidedchoice.com

GuidedChoice: An independent advisory firm delivering high-quality managed account services, investment advice, and planning tools to more than 6 million individuals nationwide since 1999.

Proven effective at every level.

The only complete advisory solution.

THANK YOU & Happy Birthday Steven!

