Risk Measures, Orlicz Spaces and Mackey Topology

Conference in Honour of Steve Shreve

Pittsburgh CMU, June 5, 2015

Department of Mathematics Prof.em.dr. Freddy Delbaen, ETH and UNIZH

Outline

- 1 Why
- 2 Joint Work with
- **3** Some Generalities on Risk Measures
- 4 Work of Cheridito-Li

Department of Mathematics Prof.em.dr. Freddy Delbaen, ETH and UNIZH

5 General Questions for convex functions on dual spaces

Department of Mathematics Prof.em.dr. Freddy Delbaen, ETH and UNIZH

1 Why

Happy Birthday (50 years + some months)

Department of Mathematics Prof.em.dr. Freddy Delbaen, ETH and UNIZH

2 Joint Work with

Teemu Pennanen (London)

3 Some Generalities on Risk Measures

$(\Omega, \mathcal{F}, \mathbb{P})$ atomless probability space

 $L^{\infty}(\Omega, \mathcal{F}, \mathbb{P})$ or L^{∞} , space of bounded random variables, modulo equality a.s.

 $L^1(\Omega, \mathcal{F}, \mathbb{P})$ or L^1 space of integrable random variables modulo equality a.s.

The duality (L^1, L^∞) plays a central role. The Mackey topology on L^{∞} is the finest locally convex topology such that L^1 remains the dual space. It is also the topology of uniform convergence on weakly compact sets of L^1 . The Dunford-Pettis Theorem says that relatively weakly compact sets in L^1 are precisely the sets that are uniformly integrable.

Because of the "de la Vallée-Poussin Theorem" it is also the initial topology of the imbeddings

$$L^{\infty}
ightarrow L^{\Phi}$$
,

where L^{Φ} is the Orlicz space

 $\{\xi \mid \text{ there is } \lambda > 0 \text{ with } \mathbb{E}[\Phi(\lambda|\xi|)] < \infty\},$

equipped with the Luxemburg norm:

$$\|\xi\|_{\Phi} = \inf \left\{ \lambda > \mathbf{0} \mid \mathbb{E} \left[\Phi \left(\frac{|\xi|}{\lambda} \right) \right] \leq \mathbf{1} \right\}.$$

 $\Phi : \mathbb{R}_+ \to \mathbb{R}_+$ is a convex function with $\Phi(0) = 0$ and $\lim_{x\to+\infty} \frac{\Phi(x)}{x} = \infty$. Most of the time we use strictly increasing functions Φ . L^{Φ} is not always the closure of L^{∞} . The closure of L^{∞} is called the Orlicz heart and is equal to:

 $L^{(\Phi)} = \{\xi \mid \text{ for all } \lambda > 0 \text{ we have } \mathbb{E}[\Phi(\lambda|\xi|)] < \infty\},$ Clearly $L^{(\Phi)} \subset L^{\Phi}$.

- A monetary utility function is defined as a function $u: L^{\infty} \to \mathbb{R}$ such that
 - u(0) = 0 and $\xi \ge 0$ implies $u(\xi) \ge 0$
 - *u* is concave
 - for all $a \in \mathbb{R}$, $u(\xi + a) = u(\xi) + a$
 - if $\sup_n \|\xi_n\|_{\infty} < \infty$ and $\xi_n \to \xi$ in probability, then $u(\xi) \ge \limsup u(\xi_n)$ (Fatou property).

Using the Krein-Smulian-Banach-Dieudonné Theorem we get that the set

$$\mathcal{A} = \{ \xi \mid u(\xi) \ge \mathbf{0} \}$$

is convex and Mackey closed in L^{∞} . It is of course weak^{*} closed as well.

Using convex duality theory we can describe the function *u* using its Fenchel-Legendre conjugate, denoted *c* (Föllmer-Schied).

This is defined on the set, \mathcal{P} , of all probabilities absolutely continuous with respect to \mathbb{P} . We have

- $c: \mathcal{P} \to \overline{\mathbb{R}_+}$
- c is convex and lower semi continuous

•
$$\inf_{\mathbb{Q}\in\mathcal{P}} c(\mathbb{Q}) = 0$$

•
$$C(\mathbb{Q}) = \sup_{\xi \in \mathcal{A}} \mathbb{E}_{\mathbb{Q}}[-\xi]$$

• $u(\xi) = \inf_{\mathbb{Q} \in \mathcal{P}} (\mathbb{E}_{\mathbb{Q}}[\xi] + c(\mathbb{Q}))$

The sets $\{\mathbb{Q} \mid c(\mathbb{Q}) \leq m\}$ are convex and closed in L^1 .

The stronger property: if $\sup_n ||\xi_n||_{\infty} < \infty$ and $\xi_n \rightarrow \xi$ in probability, then $u(\xi) = \lim u(\xi_n)$ is called the Lebesgue property and is equivalent to: for all $0 \le m < \infty$:

$$\{\mathbb{Q} \mid \boldsymbol{c}(\mathbb{Q}) \leq \boldsymbol{m}\},\$$

is weakly compact. This is the link to Orlicz spaces.

4 Work of Cheridito-Li

If *u* satisfies the Lebesgue property then there is an Orlicz space, L^{Φ} , such that *u* can be extended to $L^{(\Phi)}$ and $u: L^{(\Phi)} \to \mathbb{R}$ is continuous. If we replace Φ by $\Psi(x) = \Phi(x^2)$, then we have $L^{\Psi} \to L^{(\Phi)}$ and hence we can extend *u* to an Orlicz space.

There is a natural Riesz space, $L^{(u)}$, on which *u* can be defined and on which *u* is locally Lipschitz. This space contains an Orlicz heart $L^{(\Phi)}$.

The Mackey topology on closed balls of L^{∞} is the convergence in probability (this result goes back to Grothendieck). The above result can be phrased as follows: If *u* is continuous on closed balls for the Mackey topology, then it is continuous on L^{∞} for the Mackey topology.

How general is this result?

5 General Questions for convex functions on dual spaces

E is a Banach space and E^* is its topological dual. The main interest is the Mackey topology $\tau(E^*, E)$.

- When is the Mackey topology metrisable on bounded sets of *E**
- Is Mackey sequential continuity the same as Mackey continuity. This question must be restricted to bounded sets.

- Let *f* be a convex function *f*: *E*^{*} → ℝ, when does Mackey continuity on bounded sets implies Mackey continuity on *E*^{*}?
- The Banach-Dieudonné-Krein-Smulian theorem immediately implies that *f* is lower semi continuous for the weak* topology on E^* . So we must only look for the upper semi continuity of *f*. It also implies that there is a function $g: E \to \overline{\mathbb{R}}$, convex and proper such that $f = g^*$.

The first question was solved by Schlüchtermann and Wheeler (1988). The Mackey topology on bounded sets of E^* is metrisable if and only if the space E is strongly weakly compactly generated (SWCG). This means that there is a weakly compact set K such that for each weakly compact set $L \subset E$ and every $\epsilon > 0$, there is a number *m* such that $L \subset mK + B_{\epsilon}$, where B_{ϵ} is the ball of radius ϵ in E. For $L^{\infty} = (L^{1})^{*}$ the Dunford-Pettis theorem tells us that L^1 is SWCG. Spaces such as c_0 , C[0, 1] are NOT SWCG.

Other spaces that are SWCG are: H^1 space of holomorphic functions (Hardy space), H^1 space of martingales, the Orlicz spaces L^{Φ} where Φ satisfies:

$$\lim_{x\to\infty}\frac{\Phi(x)}{x\Phi'(x)}=1.$$

In this case we have $K \subset L^{\Phi}$ is relatively weakly compact if and only if $\{\Phi(|\xi|) \mid \xi \in K\}$ is uniformly integrable. This applies to L^{Φ} with $\Phi(x) = (x + 1) \log(x + 1) - x$ (the $L \log L$ space).

The last question is more delicate to handle. We could show that a convex function $f: E^* \to \mathbb{R}$, that is Mackey continuous on bounded sets is also Mackey continuous on E^* .

The question on sequential continuity also has an answer (and counterexamples). If E is SWCG, then Mackey sequential continuity implies Mackey continuity.