Problem. Find two positive intergers where the sum of the first and four times the second is 1000 and the product is as large as possible.

Solution. The algebra is

$$
\begin{gathered}
P=x y \\
x+4 y=1000
\end{gathered}
$$

Thus, using the second equation, we can eliminate a variable from the first. Thus we are left with maximizing

$$
P=(1000-4 y) y=1000 y-4 y^{2}
$$

Taking the first derivative, we have

$$
P^{\prime}=1000-8 y
$$

Setting this equal to 0 , we see that $y=\frac{1000}{8}=125$. The x corresponding to this y is $x=500$. We now only need to show this is a local max. To see that, we can observe that the parabola $1000 y-4 y^{2}$ is opening down, which means it must be a max. A more systematic way, however, is to take the second derivative

$$
P^{\prime \prime}=-8
$$

Thus, this is concave down (looks like a frown) and must be a maximum.

