Problem.

1. Use the definition of the derivative to find $\frac{d}{d x} f(x)$ given $f(x)=\sqrt{1+2 x}$.
2. Find the equation of line tangent to $f(x)=x^{2}+x$ at $x=2$

Solution.

1.

$$
\begin{aligned}
\frac{d}{d x} f(x)=\lim _{h \rightarrow 0}\left(\frac{\sqrt{1+2(x+h)}-\sqrt{1+2 x}}{h}\right) & =\lim _{h \rightarrow 0}\left(\frac{\sqrt{1+2(x+h)}-\sqrt{1+2 x}}{h} \cdot \frac{\sqrt{1+2(x+h)}+\sqrt{1+2 x}}{\sqrt{1+2(x+h)}+\sqrt{1+2 x}}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{1+2(x+h)-1-2 x}{h(\sqrt{1+2(x+h)}+\sqrt{1+2 x})}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{1+2 x+2 h-1-2 x}{h(\sqrt{1+2(x+h)}+\sqrt{1+2 x})}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{2 h}{h(\sqrt{1+2(x+h)}+\sqrt{1+2 x})}\right) \\
& =\lim _{h \rightarrow 0}\left(\frac{2}{\sqrt{1+2(x+h)}+\sqrt{1+2 x}}\right) \\
& =\frac{2}{\sqrt{1+2 x}+\sqrt{1+2 x}} \\
& =\frac{1}{\sqrt{1+2 x}}
\end{aligned}
$$

2. First we need to take the derivative. We will use the power rule and we determine that

$$
f^{\prime}(x)=2 x+1
$$

Plugging in $x=2$ we see that $f^{\prime}(2)=5$. The function value at 2 is given by $f(2)=(2)^{2}+2=6$. Recall point slope form of a line, ie. if m is the slope, and $\left(x_{1}, y_{1}\right)$ is a point, then the equation of the line is given by

$$
y-y_{1}=m\left(x-x_{1}\right)
$$

Therefore, we can see the equation of the tangent line is

$$
y-6=5(x-2)
$$

Or, written a bit differently

$$
y=5 x-4
$$

