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ABSTRACT

Assuming the existence of a monster model, tameness and continuity of nonsplit-

ting in an abstract elementary class (AEC), we extend known superstability results:

let µ > LS(K) be a regular stability cardinal and let χ be the local character of

µ-nonsplitting. The following holds:

1. When µ-nonforking is restricted to (µ,≥ χ)-limit models ordered by universal

extensions, it enjoys invariance, monotonicity, uniqueness, existence, extension

and continuity. It also has local character χ. This generalizes Vasey’s result

[Vas18a, Corollary 13.16] which assumed µ-superstability to obtain same prop-

erties but with local character ℵ0.

2. There is λ ∈ [µ, h(µ)) such that if K is stable in every cardinal between µ and

λ, then K has µ-symmetry while µ-nonforking in (1) has symmetry. In this case

(a) K has the uniqueness of (µ,≥ χ)-limit models: if M1,M2 are both (µ,≥ χ)-

limit over some M0 ∈ Kµ, then M1
∼=M0 M2;

(b) any increasing chain of µ+-saturated models of length ≥ χ has a µ+-

saturated union. These generalize [VV17] and remove the symmetry as-

sumption in [BV15, Vas18b] .

Under (< µ)-tameness, the conclusions of (1), (2)(a)(b) are equivalent to K having

the χ-local character of µ-nonsplitting.

Grossberg and Vasey [GV17, Vas18b] gave eventual superstability criteria for tame

AECs with a monster model. We remove the high cardinal threshold and reduce

the cardinal jump between equivalent superstability criteria. We also add two new

superstability criteria to the list: a weaker version of solvability and the boundedness

of the U -rank.
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1 INTRODUCTION

Good frames in abstract elementary classes (AECs) were constructed in [She09, IV

Theorem 4.10], assuming categoricity and non-ZFC axioms. Later Boney and Grossberg

[BG17] built a good frame from coheir with the assumption of tameness and extension

property of coheir in ZFC. Vasey [Vas16c, Section 5] further developed on coheir and

[Vas16a] managed to construct a good frame at a high categoricity cardinal (categoricity

can be replaced by superstability and type locality, but the initial cardinal of the good

frame is still high).

Another approach to building a good frame is via nonsplitting. It is in general not

clear whether uniqueness or transitivity hold for nonsplitting (where models are ordered

by universal extensions). To resolve this problem, Vasey [Vas16b] constructed nonforking

from nonsplitting, which has nicer properties: assuming superstability in Kµ, tameness

and a monster model, nonforking gives rise to a good frame over the limit models in Kµ+

[VV17, Corollary 6.14]. Later it was found that uniqueness of nonforking also holds for

limit models in Kµ [Vas17a].

We will generalize the nonforking results by replacing the superstability assumption by

continuity of nonsplitting. A key observation is that the extension property of nonforking

still holds if we have continuity of nonsplitting and stability. This allows us to replicate

extension, uniqueness and transitivity properties. Since the assumption of continuity of

nonsplitting applies to universal extensions only, we only get continuity and local character

for universal extensions. Hence we can build an approximation of a good frame which

is over the skeleton (see Definition 2.4) of long enough limit models ordered by universal

extensions. We state the known result and our result for comparison:

Theorem 1.1. Let µ ≥ LS(K), K have a monster model, be µ-tame and stable in µ. Let

χ be the local character of µ-nonsplitting.
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1. [Vas18a, Corollary 13.16] If K is µ-superstable, then there exists a good frame over

the skeleton of limit models in Kµ ordered by ≤u, except for symmetry;

2. (Corollary 4.13) If µ is regular and K has continuity of µ-nonsplitting, then there

exists a good µ-frame over the skeleton of (µ,≥ χ)-limit models ordered by ≤u, except

for symmetry. The local character is χ in place of ℵ0.

We assumed that µ is regular to guarantee that χ ≤ µ. In the superstable case,

χ = ℵ0 ≤ µ by the definition of µ-superstability.

To obtain symmetry for our frame, we look at the argument in [VV17]. In [Van16a,

Van16b], VanDieren defined a stronger version of symmetry called µ-symmetry and proved

its equivalence with the continuity of reduced towers. [VV17, Lemma 4.6] noticed that a

weaker version of symmetry is sufficient in one direction and deduced the weaker version

of symmetry via superstability. To generalize these arguments, in Section 5 we replace

superstability by continuity of nonsplitting and stability in a range of cardinals (the range

depends on the no-order-property of K, see Proposition 5.9). Then we can obtain a local

version of µ-symmetry, which implies symmetry of our frame for long enough limit models.

Notice that in the superstable case, χ = ℵ0 while (µ, χ)-symmetry is the same as µ-

symmetry.

Theorem 1.2. Let µ ≥ LS(K), K be µ-tame and stable in µ. Let χ be the local character

of µ-nonsplitting.

1. [VV17, Corollary 6.9] If K is µ-superstable, then it has µ-symmetry;

2. (Corollary 5.13) If µ is regular and K has continuity of µ-nonsplitting. There is

λ < h(µ) such that if K is stable in every cardinal between µ and λ, then K has

(µ, χ)-symmetry.

Continuity of nonsplitting and the localization of symmetry were already exploited in

[BV15, Theorem 20] to obtain the uniqueness of long enough limit models (see Fact 6.1).

They simply assumed the local symmetry while we used the argument in [VV17] to deduce

it from extra stability and continuity of nonsplitting (Corollary 6.2). On the other hand,

[Vas18b, Section 11] used continuity of nonsplitting to deduce that a long enough chain

of saturated models of the same cardinality is saturated. There he assumed saturation of

limit models and managed to satisfy this assumption using his earlier result with Boney

[BV17a], which has a high cardinal threshold. Since we already have local symmetry under

continuity of nonsplitting and extra stability, we immediately have uniqueness of long limit

models, and hence Vasey’s argument can be applied to obtain the above result of saturated

3



models (see Proposition 6.6; a comparison table of the approaches can be found in Remark

6.8(2)).

Vasey [Vas18b, Lemma 11.6] observed that a localization of VanDieren’s result

[Van16a] can give: if the union of a long enough chain of µ+-saturated models is µ+-

saturated, then local symmetry is satisfied. Assuming more tameness, we use this obser-

vation to obtain converses of our results (see Main Theorem 8.1(4)⇒(3)). In particular

local symmetry will lead to uniqueness of long limit models, which implies local character

of nonsplitting (Main Theorem 8.1(3)⇒(1)). Despite the important observation by Vasey,

he did not derive these corollaries.

Theorem 1.3. Let µ > LS(K), δ ≤ µ be regular, K have a monster model, be (< µ)-tame,

stable in µ and has continuity of µ-nonsplitting. If any increasing chain of µ+-saturated

models of cofinality ≥ δ has a µ+-saturated union, then K has δ-local character of µ-

nonsplitting.

The equivalent properties of a stable AEC with continuity of nonsplitting can be spe-

cialized to a superstable AEC, because superstability implies stability and continuity of

nonsplitting. In [GV17], equivalent superstability properties were listed using the machin-

ery of averages, leading to a high cardinal threshold for the equivalences to take place, and

a high cardinal jump when moving from one property to another. In comparison, the equiv-

alent properties we obtained in Main Theorem 8.1 and Main Theorem 8.2 do not require a

high cardinal threshold (simply µ > LS(K) to make sense of saturated models) but we do

need extra stability assumptions above µ. Such stability assumption can be replaced by a

smaller range of stability plus more no-order-property. Except for transferring stability in

a cardinal to superstability, all other properties are equivalent to each other up to a jump

to the successor cardinal.

In the original list inside [GV17], (λ, ξ)-solvability was considered for λ > ξ, which

they showed to be an equivalent definition of superstability, with a huge jump of cardinal

from no long splitting chains to solvability. Further developments in [Vas17b] indicate

that such solvability has downward transfer properties which seem too strong to be called

superstability. We propose a variation where λ = ξ and will prove its equivalence with no

long splitting chains in the same cardinal above µ+ (under continuity of nonsplitting and

stability). At Kµ, we demand (< µ)-tameness for the equivalence to hold, up to a jump to

the successor cardinal.

Theorem 1.4. Let µ > LS(K), K have a monster model, be (< µ)-tame, stable in µ.

1. [SV99] If there is λ > µ such that K is (λ, µ)-solvable, then it is µ-superstable;
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2. [GV17, Corollary 5.5] If µ is high enough and K is µ-superstable, then there is some

λ ≥ µ and some λ′ < λ such that K is (λ, λ′)-solvable;

3. (Proposition 6.24) If K has continuity of µ-nonsplitting, then it is µ-superstable iff it

is (µ+, µ+)-solvable.

Meanwhile, [Vas18b, Corollary 4.24] showed that stability in a tail is also an equivalent

definition of superstability, but the starting cardinal of superstability (λ′(K))+ +χ1 is only

bounded by the Hanf number of µ. Since we assume continuity of nonsplitting, we can

obtain µ-superstability by assuming stability in unboundedly many cardinals below µ, and

enough stability above µ.

Theorem 1.5. Let µ > LS(K) with cofinality ℵ0, K have a monster model, be µ-tame,

stable in both µ and unboundedly many cardinals below µ.

1. [Vas18b, Corollary 4.14] If µ ≥ (λ′(K))+ + χ1, then K is µ-superstable;

2. (Proposition 7.5) If K has continuity of µ-nonsplitting, then there is λ < h(µ) such

that if K is stable in [µ, λ), then it is µ-superstable.

As the final item of the list, we prove that the boundedness of the U -rank (with respect

to µ-nonforking for limit models in Kµ ordered by universal extensions) is equivalent to µ-

superstability (Corollary 7.14). We will need to extend our nonforking to longer types, using

results from [BV17b]. Then we can quote a lot of known results from [BG17], [BGKV16]

and [GMA21]. Our strategy of extending frames contrasts with [Vas16a] which used a

complicated axiomatic framework and drew technical results from [She09, III]. Here we

directly construct a type-full good µ-frame from nonforking and the known results apply

(which are independent of the technical ones in [Vas16a, She09]).

Theorem 1.6. Let µ ≥ LS(K) be regular, K have a monster model, be µ-tame, stable in

µ and have continuity of µ-nonsplitting. Let U(·) be the U-rank induced by µ-nonforking

restricted to limit models in Kµ ordered by ≤u. The following are equivalent:

1. K is µ-superstable;

2. U(p) <∞ for all p ∈ gS(M) and limit model M ∈ Kµ.

In Section 2, we will state our global assumptions; define limit models, skeletons and

good frames. In Section 3, we will review useful properties of nonsplitting with miscella-

neous improvements. In Section 4, we will use µ-nonforking to construct our good frame

over the skeleton of (µ,≥ χ)-limit models ordered by ≤u, except for two changes: the local

character of the frame will be χ in place of ℵ0, while symmetry properties will be proven
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in Section 5 under extra stability assumptions. In Section 6, we will generalize known

superstability results using the symmetry properties. In particular we guarantee that the

union of µ+-saturated models is saturated, provided that we have extra stability, continu-

ity of nonsplitting and the chain being long enough. In Section 7, we will consider two

characterizations of superstability, stability in a tail and the boundedness of the U -rank.

We will prove the main theorems in Section 8 and state two applications there.

This paper was written while the author was working on a Ph.D. under the direction of

Rami Grossberg at Carnegie Mellon University and we would like to thank Prof. Grossberg

for his guidance and assistance in my research in general and in this work in particular.

We also thank John Baldwin and Marcos Mazari-Armida for useful comments.

2 PRELIMINARIES

Throughout this paper, we assume the following:

Assumption 2.1. 1. K is an AEC with AP , JEP and NMM .

2. K is stable in some µ ≥ LS(K).

3. K is µ-tame.

4. K satisfies continuity of µ-nonsplitting.

5. χ ≤ µ where χ is the minimum local character cardinal of µ-nonsplitting (see Defini-

tion 3.10).

AP stands for amalgamation property, JEP for joint embedding property and NMM

for no maximal model. They allow the construction of a monster model. Given a model

M ∈ K, we write gS(M) the set of Galois types over M (the ambient model does not

matter because of AP ).

Definition 2.2. Let λ be an infinite cardinal.

1. α ≥ 2 be an ordinal, K is (< α)-stable in λ if for any ‖M‖ = λ, | gS<α(M)| ≤ λ. We

omit α if α = 2.

2. K is λ-tame if for any N ∈ K, any p 6= q ∈ gS(N), there is M ≤ N of size λ such

that p �M 6= q �M .

We will define continuity of µ-nonsplitting in Definition 3.5.

Definition 2.3. Let λ ≥ LS(K) be a cardinal and α, β < λ+ be regular. Let M ≤ N and

‖M‖ = λ.
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1. N is universal over M (M <u N) if M < N and for any ‖N ′‖ = ‖N‖, there is

f : N ′ −→
M

N .

2. N is (λ, α)-limit over M if ‖N‖ = λ and there exists 〈Mi : i ≤ α〉 ⊆ Kλ increasing

and continuous such that M0 = M , Mα = N and Mi+1 is universal over Mi for i < α.

We call α the length of N .

3. N is (λ, α)-limit if there exists ‖M ′‖ = λ such that N is (λ, α)-limit over M ′.

4. N is (λ,≥ β)-limit (over M) if there exists α ≥ β such that (2) (resp. (3)) holds.

5. N is (λ, λ+)-limit (over M) if ‖N‖ = λ+ and we replace α by λ+ in (2) (resp. (3)).

6. Let λ1 ≤ λ2, then N is ([λ1, λ2],≥ β)-limit (over M) if there exists λ ∈ [λ1, λ2] such

that N is (λ,≥ β)-limit (over M).

7. If λ > LS(K), we say M is λ-saturated if for any M ′ ≤M , ‖M ′‖ < λ, M � gS(M ′).

8. M is saturated if it is ‖M‖-saturated.

In general, we do not know limit models or saturated models are closed under chains,

so they do not necessary form an AEC. We adapt [Vas16a, Definition 5.3] to capture such

behaviours.

Definition 2.4. An abstract class K1 is a µ-skeleton of K if the following is satisfied:

1. K1 is a sub-AC of Kµ: K1 ⊆ Kµ and for any M,N ∈ K1, M ≤K1 N implies M ≤K N .

2. For any M ∈ Kµ, there is M ′ ∈ K1 such that M ≤K M ′.

3. Let α be an ordinal and 〈Mi : i < α〉 be ≤K-increasing in K1. There exists N ∈ K1

such that for all i < α, Mi ≤K1 N (the original definition requires strict inequality

but it is immaterial under NMM).

We say K1 is a (≥ µ)-skeleton of K if the above items hold for K≥µ in place of Kµ.

By [She09, II Claim 1.16], limit models in µ with ≤K form a µ-skeleton of K. Similarly

let α < µ+ be regular, then (≥ µ,≥ α)-limits form a (≥ µ)-skeleton of K.

On the other hand, good frames were developed by Shelah [She09] for AECs in a range

of cardinals. [Vas16a] defined good frames over a coherent abstract class. We specialize

the abstract class to a skeleton of an AEC.

Definition 2.5. Let K be an AEC and K1 be a µ-skeleton of K. We say a nonforking

relation is a good µ-frame over the skeleton of K1 if the following holds:
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1. The nonforking relation is a binary relation between a type p ∈ gS(N) and a model

M ≤K1 N . We say p does not fork over M if the relation holds between p and M .

Otherwise we say p forks over M .

2. Invariance: if f ∈ Aut(C) and p does not fork over M , then f(p) does not fork over

f [M ].

3. Monotonicity: if p ∈ gS(N) does not fork over M and M ≤K1 M
′ ≤K1 N for some

M ′ ∈ K1, then p �M ′ does not fork over M while p itself does not fork over M ′.

4. Existence: if M ∈ K1 and p ∈ gS(M), then p does not fork over M .

5. Extension: if M ≤K1 N ≤K1 N
′ and p ∈ gS(N) does not fork over M , then there is

q ∈ gS(N ′) such that q ⊇ p and q does not fork over M .

6. Uniqueness: if p, q ∈ gS(N) do not fork over M and p �M = q �M , then p = q.

7. Transitivity: if M0 ≤K1 M1 ≤K1 M2, p ∈ gS(M2) does not fork over M1, p �M1 does

not fork over M0, then p does not fork over M0.

8. Local character ℵ0: if δ is an ordinal of cofinality ≥ ℵ0, 〈Mi : i ≤ δ〉 is ≤K1-increasing

and continuous, then there is i < δ such that p does not fork over Mi.

9. Continuity: Let δ is a limit ordinal and 〈Mi : i ≤ δ〉 be≤K1-increasing and continuous.

If for all 1 ≤ i < δ, pi ∈ gS(Mi) does not fork over M0 and pi+1 ⊇ pi, then pδ does

not fork over M0.

10. Symmetry: let M ≤K1 N , b ∈ |N |, gtp(b/M) do not fork over M , gtp(a/N) do not

fork over M . There is Na ≥K1 M such that gtp(b/Na) do not fork over M .

If the above holds for a (≥ µ)-skeleton K1, then we say the nonforking relation is a good

(≥ µ)-frame over the skeleton K1. If K1 is itself an AEC (in µ), then we omit “skeleton”.

Let α < µ+ be regular. We say a nonforking relation has local character α if we replace

“ℵ0” in item (8) by α.

Remark 2.6. 1. In this paper, K1 will be the (µ,≥ α)-limit models for some α < µ+,

with ≤K1=≤u (the latter is in K).

2. In Fact 7.20, we will draw results of a good frame over longer types, where we allow

the types in the above definition to be of arbitrary length. Extension property will

have an extra clause that allows extension of a shorter type to a longer one that still

does not fork over the same base.
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3. Some of the properties of a good frame imply or simply one another. Instead of using

a minimalistic formulation (for example in [Vas18a, Definition 17.1]), we keep all the

properties because sometimes it is easier to deduce a certain property first.

3 PROPERTIES OF NONSPLITTING

Let p ∈ gS(N), f : N → N ′, we write f(p) := gtp(f+(d)/f(N)) where f+ extends f

to include some d � p in its domain.

Proposition 3.1. Such f+ exists by AP and f(p) is independent of the choice of f+.

Proof. Pick a ∈ N1 ≥ realizing p, use AP to obtain f+
1 : a 7→ c extending f (enlarge N1 if

necessary so that f+
1 (N1) contains f(N)).

b ∈ N3 b ∈ N2 d ∈ f+
2 (N2)

a ∈ N ′1 c ∈ f++
1 (N ′1)

a ∈ N1 c ∈ f+
1 (N1)

N f(N)

f+2

∼=

f++
1

f+1

g

f

Suppose b ∈ N2 realizes p and there is f+
2 : b 7→ d extending f . Extend N2 so that f+

2

is an isomorphism. We need to find h : d 7→ c which fixes f(N). Since a, b � p, by

AP there is N3 3 b and g : N1 −→
N

N3 that maps a to b. Extend g to an isomorphism

N ′1
∼=N N3 ≥ N2. By AP again, obtain f++

1 of domain N ′1 extending f+
1 . Therefore,

d ∈ f(N+
2 ) and f++

1 ◦ g−1 ◦ idN2 ◦(f+
2 )−1(d) = c. Hence we can take h := f++

1 ◦ g−1 ◦
idN2 ◦(f+

2 )−1 : f+
2 (N2) −−−→

f(N)
f++

1 (N ′1).

Definition 3.2. Let M,N ∈ K, p ∈ gS(N). p µ-splits over M if there exists N1, N2 of size

µ such that M ≤ N1, N2 ≤ N and f : N1
∼=M N2 such that f(p) � N2 6= p � N2.

Proposition 3.3 (Monotonicity of nonsplitting). Let M,N ∈ Kµ, p ∈ gS(N) do not µ-

split over M . For any M1, N1 with M ≤ M1 ≤ N1 ≤ N , we have p � N1 does not µ-split

over M1.

Proposition 3.4. Let M,N ∈ K, M ∈ Kµ and p ∈ gS(N). p µ-splits over M iff p

(≥ µ)-splits over M (the witnesses N1, N2 can be in K≥µ).
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Proof. We sketch the backward direction: pick N1, N2 ∈ K≥µ witnessing p (≥ µ)-splits over

M . By µ-tameness and Löwenheim-Skolem axiom, we may assume N1, N2 ∈ Kµ.

Definition 3.5. Let χ be a regular cardinal.

1. A chain 〈Mi : i ≤ δ〉 is u-increasing if Mi+1 >u Mi for all i < δ.

2. K satisfies continuity of µ-nonsplitting if for any limit ordinal δ, 〈Mi : i ≤ δ〉 ⊆ Kµ

u-increasing and continuous, p ∈ gS(Mδ),

p �Mi does not µ-split over M0 for i < δ ⇒ p does not µ-split over M0.

3. K has χ-weak local character of µ-nonsplitting if for any limit ordinal δ ≥ χ, 〈Mi : i ≤
δ〉 ⊆ Kµ u-increasing and continuous, p ∈ gS(Mδ), there is i < δ such that p � Mi+1

does not µ-split over Mi.

4. K has χ-local character of µ-nonsplitting if the conclusion in (3) becomes: p does not

µ-split over Mi.

We call any δ that satisfies (3) or (4) a (weak) local character cardinal.

Remark 3.6. When defining the continuity of nonsplitting, we can weaken the statement

by removing the assumption that p exists and replacing p � Mi by pi increasing. This is

because we can use [Bon14, Proposition 5.2] to recover p. In details, we can use the weaker

version of continuity and weak uniqueness (Proposition 3.12) to argue that the pi’s form a

coherent sequence. p can be defined as the direct limit of the pi’s.

The following lemma connects the three properties of µ-nonsplitting:

Lemma 3.7. [BGVV17, Lemma 11(1)] If µ is regular, K satisfies continuity of µ-

nonsplitting and has χ-weak local character of µ-nonsplitting, then it has χ-local character

of µ-nonsplitting.

Proof. Let δ be a limit ordinal of cofinality ≥ χ, 〈Mi : i ≤ δ〉 u-increasing and continuous.

Suppose p ∈ gS(Mδ) splits over Mi for all i < δ. Define i0 := 0. By δ regular and continuity

of µ-nonsplitting, build an increasing and continuous sequence of indices 〈ik : k < δ〉 such

that p � Mik+1
µ-splits over Mik . Notice that Mik+1

>u Mik . Then applying χ-weak local

character to 〈Mik : k < δ〉 yields a contradiction.

From stability (even without continuity of nonsplitting), it is always possible to obtain

weak local character of nonsplitting. Shelah sketched the proof and alluded to the first-order

analog, so we give details here.

10



Lemma 3.8. [She99, Claim 3.3(2)] If K is stable in µ (which is in Assumption 2.1), then

for some χ ≤ µ, it has weak χ-local character of µ-nonsplitting.

Proof. Pick χ ≤ µ minimum such that 2χ > µ. Suppose we have 〈Mi : i ≤ χ〉 u-increasing

and continuous and d � p ∈ gS(Mχ) such that for all i < χ, p � Mi+1 µ-splits over p � Mi.

Then for i < χ, we have N1
i and N2

i of size µ, Mi ≤ N1
i , N

2
i ≤ Mi+1, fi : N1

i
∼=Mi

N2
i and

fi(p) � N2
i 6= p � N2

i . We build 〈M ′
i : i ≤ χ〉 and 〈hη : Ml(η) −−→

M0

M ′
l(η) | η ∈ 2≤χ〉 both

increasing and continuous with the following requirements:

1. h〈〉 := idM0 and M ′
0 := M0.

2. For η ∈ 2<χ, hη_0 � N2
l(η) = hη_1 � N2

l(η).

Mhfi M ′
i+1

Mi+1 M∗∗

N1
i N2

i M∗

Mi M ′
i

g1

g0

hν_0

fi
∼=

h

hν

We specify the successor step: suppose l(ν) = i and hν has been constructed. By AP ,

obtain

1. h : N2
i →M∗ ≥M ′

i with h ⊇ hν .

2. hν_0 : Mi+1 →M∗∗ ≥M∗ with hν_0 ⊇ h.

3. g0 : Mi+1 →Mhfi ≥M∗ with g0 ⊇ h ◦ fi.

4. g1 : Mhfi →M ′
i+1 ≥M∗∗ with g1 ◦ g0 = hν_0.

Define hν_1 := g1 ◦ g0 : Mi+1 → M ′
i+1. By diagram chasing, hν_1 � Mi = g1 ◦ g0 � Mi =

g1 ◦h◦fi �Mi = g1 ◦h �Mi = h �Mi = hν �Mi. On the other hand, hν_0 �Mi = h �Mi =

hν � Mi. Therefore the maps are increasing. Now hν_1 � N2
i = g1 ◦ g0 � N2

i = hν_0 � N2
i

by item (4) in our construction.

For η ∈ 2χ, extend hη so that its range includes M ′
χ and its domain includes d. We

show that {gtp(hη(d)/M ′
χ) : η ∈ 2χ} are pairwise distinct. For any η 6= ν ∈ 2χ, pick the
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minimum i < χ such that η[i] 6= ν[i]. Without loss of generality, assume η[i] = 0, ν[i] = 1.

Using the diagram above (see the comment before Proposition 3.1),

gtp(hη(d)/M ′
χ) ⊇ gtp(hη(d)/h(N2

i ))

= h(gtp(d/N2
i ))

6= h ◦ fi(gtp(d/N1
i ))

= g1 ◦ h ◦ fi(gtp(d/N1
i ))

⊆ gtp(hν(d)/M ′
χ)

This contradicts the stability in µ.

Proposition 3.9. If µ is regular, then for some χ ≤ µ, K has the χ-local character of

µ-nonsplitting.

Proof. By Lemma 3.8, K has µ-weak local character of µ-nonsplitting. By Lemma 3.7

(together with continuity of µ-nonsplitting in Assumption 2.1), K has µ-local character of

µ-nonsplitting. Hence χ exists and χ ≤ µ.

From now on, we fix

Definition 3.10. χ is the minimum local character cardinal of µ-nonsplitting. χ ≤ µ if

either µ is regular (by the previous proposition), or µ is greater than some regular stability

cardinal ξ where K has continuity of ξ-nonsplitting and is ξ-tame (by Lemma 6.7).

Remark 3.11. Without continuity of nonsplitting, it is not clear whether there can be

gaps between the local character cardinals: Definition 3.5(4) might hold for δ = ℵ0 and

δ = ℵ2 but not δ = ℵ1. In that case defining χ as the minimum local character cardinal

might not be useful. Similar obstacles form when we only know a particular λ is a local

character cardinal but not necessary those above λ.

Meanwhile, weak local character cardinals close upwards and we can eliminate the

above situation by assuming continuity of nonsplitting: if we know χ is the minimum local

character cardinal, then it is also a weak local character cardinal, so are all regular cardinals

between [χ, µ+). By the proof of Lemma 3.7, the regular cardinals between [χ, µ+) are all

local character cardinals.

We now state the existence, extension, weak uniqueness and weak transitivity proper-

ties of µ-nonsplitting. The original proof for weak uniqueness assumes ‖M‖ = µ but it is

not necessary; while that for extension and for weak transitivity assume all models are in

Kµ; but under tameness we can just require ‖M‖ = ‖N‖.

Proposition 3.12. Let M0 <u M ≤ N where ‖M0‖ = µ.

12



1. [She99, Claim 3.3(1)] (Existence) If p ∈ gS(N), there is N0 ≤ N of size µ such that

p does not µ-split over N0.

2. [GV06, Theorem 6.2] (Weak uniqueness) If p, q ∈ gS(N) both do not µ-split over M0,

and p �M = q �M , then p = q.

3. [GV06, Theorem 6.1] (Extension) Suppose ‖M‖ = ‖N‖. For any p ∈ gS(M) that

does not µ-split over M0, there is q ∈ gS(N) extending p such that q does not µ-split

over M0.

4. [Vas16b, Proposition 3.7] (Weak transitivity) Suppose ‖M‖ = ‖N‖. Let M∗ ≤ M0

and p ∈ gS(N). If p does not µ-split over M0 while p � M does not µ-split over M∗,

then p does not µ-split over M∗.

Proof. 1. We skip the proof, which has the same spirit as that of Lemma 3.8.

2. By stability in µ, we may assume that ‖M‖ = µ. Suppose p 6= q, by tameness in µ we

may find M ′ ∈ Kµ such that M ≤ M ′ ≤ N and p � M ′ 6= q � M ′. By M0 <u M and

M0 < N , we can find f : M ′ −−→
M0

M . Using nonsplitting twice, we have p � f(M ′) =

f(p) and q � f(M ′) = f(q). But f(M ′) ≤ M implies p � f(M ′) = q � f(M ′). Hence

f(p) = f(q) and p = q.

3. By universality of M , find f : N −−→
M0

M . We can set q := f−1(p � f(N)).

4. Let q := p � M . By extension, obtain q′ ⊇ q in gS(N) such that q′ does not µ-split

over M∗. Now p � M = q � M = q′ � M and both p, q′ do not µ-split over M0 (for

q′ use monotonicity, see Proposition 3.3). By weak uniqueness, p = q′ and the latter

does not µ-split over M∗.

Transitivity does not hold in general for µ-nonsplitting. The following example is

sketched in [Bal09, Example 19.3].

Example 3.13. Let T be the first-order theory of a single equivalence relation E with

infinitely many equivalence classes and each class is infinite. Let M ≤ N where N contains

(representatives of) two more classes than M . Let d be an element. Then tp(d/N) splits

over M iff dEa for some element a ∈ N but ¬dEb for any b ∈ M . Meanwhile, suppose

M0 ≤ M both of size µ, then M0 <u M iff M contains µ-many new classes and each class

extends µ many elements. Now require M0 <u M while N contains only an extra class

than M , say witnessed by d, then tp(d/N) cannot split over M . Also tp(d/M) does not

split over M0 because d is not equivalent to any elements from M . Finally tp(d/N) splits

over M0 because it contains two more classes than M0 (one must be from M).

13



The same argument does not work if also M <u N because N would contain two more

classes than M and they will witness tp(d/N) splits over M . Baldwin originally assigned

it as [Bal09, Exercise 12.9] but later [Bal18] retracted the claim.

Question 3.14. When models are ordered by ≤u,

1. does uniqueness of µ-nonsplitting hold? Namely, let M <u N both in Kµ, p, q ∈
gS(N) both do not µ-split over M , p �M = q �M , then p = q.

2. does transitivity of µ-nonsplitting hold? Namely, let M0 <u M <u N all in Kµ,

p ∈ gS(N) does not µ-split over M and p � M does not µ-split over M0, then p does

not µ-split over M0.

In Assumption 2.1, we assumed continuity of µ-nonsplitting. One way to obtain it is

to assume superstability which is stronger. Another way is to assume ω-type locality.

Definition 3.15. 1. [Gro02, Definition 7.12] Let λ ≥ LS(K), K is λ-superstable if it is

stable in λ and has ℵ0-local character of λ-nonsplitting.

2. [Bal09, Definition 11.4] Types in K are ω-local if: for any limit ordinal α, 〈Mi : i ≤ α〉
increasing and continuous, p, q ∈ gS(Mα) and p � Mi = q � Mi for all i < α, then

p = q.

Proposition 3.16. Let K satisfy Assumption 2.1 except for the continuity of µ-

nonsplitting. It will satisfy the continuity of µ-nonsplitting if either

1. K is µ-superstable; or

2. Types in K are ω-local.

Proof. For (1), it suffices to prove that for any regular λ ≥ ℵ0, λ-local character implies

continuity of µ-nonsplitting over chains of cofinality ≥ λ. Let 〈Mi : i ≤ λ〉 be u-increasing

and continuous. Suppose p ∈ gS(Mλ) satisfies p �Mi does not µ-split over M0 for all i < λ.

By λ-local character, p does not µ-split over some Mi. If i = 0 we are done. Otherwise,

we have M0 <u Mi <u Mi+1 <u Mλ. By assmption, p �Mi+1 does not µ-split over M0. By

weak transitivity (Proposition 3.12), p does not µ-split over M0 as desired.

For (2), let 〈Mi : i ≤ λ〉 and p as above. By assumption p � M1 does not µ-split over

M0 and M1 >u M0. By extension (Proposition 3.12), there is q ⊇ p � M1 in gS(Mλ) such

that q does not µ-split over M0. By monotonicity, for 2 ≤ i < λ, q � Mi does not µ-split

over M0. Now (q � Mi) � M1 = p � M1 = (p � Mi) � M1, we can use weak uniqueness

(Proposition 3.12) to inductively show that q � Mi = p � Mi for all i < λ. By ω-locality,

p = q and the latter does not µ-split over M0 as desired.

14



Once we have continuity of µ-nonsplitting in Kµ, it automatically works for K≥µ:

Proposition 3.17. Let δ be a limit ordinal, 〈Mi : i ≤ δ〉 ⊆ K≥µ be u-increasing and

continuous, p ∈ gS(Mδ). If for all i < δ, p �Mi does not µ-split over M0, then p also does

not µ-split over M0.

Proof. The statement is vacuous when M0 ∈ K>µ so we assume M0 ∈ Kµ. By cofinality

argument we may also assume cf(δ) ≤ µ. Suppose p µ-splits over M0 and pick witnesses

Na and N b of size µ. Using stability, define another u-increasing and continuous chain

〈Ni : i ≤ δ〉 ⊆ Kµ such that:

1. For i ≤ δ, Ni ≤Mi.

2. Nδ contains Na and N b.

3. N0 := M0.

4. For i ≤ δ, |Ni| ⊇ |Mi| ∩ (|Na| ∪ |N b|).

By assumption each p � Mi does not µ-split over M0, so by monotonicity p � Ni does not

µ-split over N0 = M0. By continuity of µ-nonsplitting, p � Nδ does not µ-split over N0,

contradicting item (2) above.

4 GOOD FRAME OVER (≥ χ)-LIMIT MODELS EXCEPT SYMMETRY

As seen in Proposition 3.12, µ-nonsplitting only satisfies weak transitivity but not

transitivity, which is a key property of a good frame. We will adapt [Vas16b, Definitions

3.8, 4.2] to define nonforking from nonsplitting to solve this problem.

Definition 4.1. Let M ≤ N in K≥µ and p ∈ gS(N).

1. p (explicitly) does not µ-fork over (M0,M) if M0 ∈ Kµ, M0 <u M and p does not

µ-split over M0.

2. p does not µ-fork over M if there exists M0 satisfying (1).

We call M0 the witness to µ-nonforking over M .

The main difficulty of the above definition is that different µ-nonforkings over M may

have different witnesses. For extension, the original approach in [Vas16b] was to work in

µ+-saturated models. Later [VV17, Proposition 5.1] replaced it by superstability in an

interval, which works for K≥µ. We weaken the assumption to stability in an interval and

continuity of µ-nonsplitting, and use a direct limit argument similar to that of [Bon14,

Theorem 5.3].
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Proposition 4.2 (Extension). Let M ≤ N ≤ N ′ in K≥µ. If K is stable in [‖N‖, ‖N ′‖]
and p ∈ gS(N) does not µ-fork over M , then there is q ⊇ p in gS(N ′) such that q does not

µ-fork over M .

Proof. Since p does not µ-fork over M , we can find witness M0 ∈ Kµ such that M0 <u M

and p does not µ-split over M0. If ‖N‖ = ‖N ′‖, we can use extension of nonsplitting

(Proposition 3.12) to obtain (the unique) q ∈ gS(N ′) extending p which does not µ-split

over M0. By definition q does not µ-fork over M .

If ‖N‖ < ‖N ′‖, first we assume N ′ =
⋃
{Ni : i ≤ α} u-increasing and continuous

where N0 = N , Nα = N ′ for some α. We will define a coherent sequence 〈pi : i ≤ α〉 such

that pi is a nonsplitting extension of p in gS(Ni). The first paragraph gives the successor

step. For limit step δ ≤ α, we take the direct limit to obtain an extension pδ of 〈pi : i < δ〉.
Since all previous pi does not µ-split over M0, by Proposition 3.17, pδ also does not µ-split

over M0. After the construction has finished, we obtain q := pα a nonsplitting extension of

p in gS(N ′). Since M0 <u M ≤ N ′, we still have q does not µ-fork over M .

In the general case where N ≤ N ′, extend N ′ ≤ N ′′ so that ‖N ′′‖ = ‖N ′‖ and N ′′

contains a limit model over N of size ‖N ′‖. The construction is possible by stability in

[‖N‖, ‖N ′‖]. Then we can extend p to a nonforking q′′ ∈ gS(N ′′) and use monotonicity to

obtain the desired q.

Corollary 4.3. Let M0 <u M ≤ N ′ with M0 ∈ Kµ. If K is stable in [‖M‖, ‖N ′‖] and

p ∈ gS(M) does not µ-split over M0, then there is q ⊇ p in gS(N ′) such that q does not

µ-split over M0.

Proof. Run through the exact same proof as in Proposition 4.2, where M = N and M0 is

given in the hypothesis.

For continuity, the original approach in [Vas16b, Lemma 4.12] was to deduce it from

superstability (which we do not assume) and transitivity. Transitivity there was obtained

from extension and uniqueness, and uniqueness was proved in [Vas16b, Lemma 5.3] for

µ+-saturated models only (or assuming superstability in [Vas17a, Lemma 2.12]). Our new

argument uses weak transitivity and continuity of µ-nonsplitting to show that continuity

of µ-nonforking holds for a universally increasing chain in Kµ. The case in K≥µ will be

proved after we have developed transitivity and local character of nonforking.

Proposition 4.4 (Continuity 1). Let δ < µ+ be a limit ordinal and 〈Mi : i ≤ δ〉 ⊆ Kµ be

u-increasing and continuous. Let p ∈ gS(Mδ) satisfy p � Mi does not µ-fork over M0 for

all 1 ≤ i < δ. Then p also does not µ-fork over M0.
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Proof. For 1 ≤ i < δ, since p � Mi does not µ-fork over M0, we can find M i <u M0 of size

µ such that p �Mi does not µ-split over M i. By monotonicity of nonsplitting, p �Mi does

not µ-split over M0. By continuity of µ-nonsplitting, p does not µ-split over M0. Since

M1 <u M0 <u M1 <u Mδ, by weak transitivity (Proposition 3.12) p does not µ-split over

M1. (By a similar argument, it does not µ-split over other M i.) By definition p does not

µ-fork over M0.

We now show uniqueness of nonforking in Kµ, by generalizing the argument in

[Vas17a]. Instead of superstability, we stick to our Assumption 2.1. Fact 2.9 in that paper

will be replaced by our Proposition 4.2. The requirement that M0,M1 be limit models is

removed.

Proposition 4.5 (Uniqueness 1). Let M0 ≤ M1 in Kµ and p0, p1 ∈ gS(M1) both do not

µ-fork over M0. If in addition p〈〉 := p0 �M0 = p1 �M0, then p0 = p1.

Proof. Suppose the proposition is false. Let N0 <u M0 and N1 <u M0 such that p0 does not

µ-split over N0 while p1 does not µ-split over N1 (necessarily N0 6= N1 by weak uniqueness

of nonsplitting). We will build a u-increasing and continuous 〈Mi : i ≤ µ〉 ⊆ Kµ and a

coherent 〈pη ∈ gS(Ml(η)) : η ∈ 2≤µ〉 such that for all ν ∈ 2<µ, pν_0 and pν_1 are distinct

nonforking extensions of pν . If done {pη : η ∈ 2µ} will contradict stability in µ.

The base case is given by the assumption. For successor case, suppose Mi and {pη :

η ∈ 2i} have been constructed for some 1 ≤ i < µ. Define M ′
i+1 to be a (µ, ω)-limit over Mi.

Fix η ∈ 2i, we will define pη_0, pη_1 ∈ gS(M ′
i+1) nonforking extensions of pη (nonsplitting

will be witnessed by different models; otherwise weak uniqueness of nonsplitting applies).

Since pη does not µ-fork over M0, we can find Nη <u M0 such that pη does not µ-split

over Nη. Pick p+
η ∈ gS(M ′

i+1) a nonsplitting extension of pη. On the other hand, obtain

N ′η <u N
∗ <u M0 such that N∗ is a (µ, ω)-limit over N ′η and N ′η >u Nη. By uniqueness of

limit models over Nη of the same length, there is f : M ′
i+1
∼=N ′η N

∗.

p0 pη_0

Nη N ′η N∗ M0 M1 · · · Mi M ′
i+1 Mi+1

p1 pη_1

u (µ,ω) u (µ,ω)

f

By invariance of nonsplitting, f(p+
η ) does not µ-split over Nη. By monotonicity of

nonsplitting, pη, and hence pη � N∗ does not µ-split over Nη. f(p+
η ) � N ′η = p+

η � N ′η = (pη �
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N∗) � N ′η. By weak uniqueness of µ-nonsplitting, f(p+
η ) = pη � N∗. Since pη � N∗ has two

nonforking extensions p0 6= p1 ∈ gS(M1) where M1 >u N
∗, we can obtain their isomorphic

copies pη_0 6= pη_1 ∈ gS(Mi+1) for some Mi+1 >u M
′
i+1. They still do not µ-fork over M0

because M0 is fixed (actually pη_i does not µ-split over Ni <u M0). Ensure coherence at

the end.

For limit case, let η ∈ 2δ for some limit ordinal δ ≤ µ. Define pη ∈ gS(Mδ) to be the

direct limit of 〈pη�i : i < δ〉. By Proposition 4.4, pη does not µ-fork over M0.

Corollary 4.6 (Uniqueness 2). Let M ≤ N in K≥µ and p, q ∈ gS(N) both do not µ-fork

over M . If in addition p �M = q �M , then p = q.

Proof. Proposition 4.5 takes care of the case M,N ∈ Kµ. Suppose the corollary is false,

then p 6= q and there exist Np, N q <u M such that p does not µ-fork over Np and q does

not µ-fork over N q. We have two cases:

1. SupposeM ∈ Kµ but N ∈ K>µ. By tameness obtain N ′ ∈ Kµ such that M ≤ N ′ ≤ N

and p � N ′ 6= q � N ′. Together with p �M = q �M , it contradicts Proposition 4.5.

2. Suppose M ∈ K>µ. Obtain Mp,M q ≤ M of size µ that are universal over Np and

N q respectively. By Löwenheim-Skolem axiom, pick M ′ ≤ M of size µ containing

Mp and M q. Thus M ′ is universal over both Np and N q, and p �M ′ = q �M ′. Since

p 6= q, tameness gives some N ′ ∈ Kµ, M ′ ≤ N ′ ≤ N such that p � N ′ 6= q � N ′, which

contradicts Proposition 4.5.

Remark 4.7. The strategy of case (2) cannot be applied to Proposition 4.5 because M ′

might coincide with M and we do not have enough room to invoke weak uniqueness of

nonsplitting. This calls for a specific proof in Proposition 4.5. Similarly, we cannot simply

invoke weak uniqueness of nonsplitting to prove case (2) because we do not know if M is

also universal over M ′.

Corollary 4.8 (Transitivity). Let M0 ≤ M1 ≤ M2 be in K≥µ, p ∈ gS(M2). If K is stable

in [‖M1‖, ‖M2‖], p does not µ-fork over M1 and p � M1 does not µ-fork over M0, then p

does not µ-fork over M0.

Proof. By Proposition 4.2, obtain q ⊇ p � M1 a nonforking extension in gS(M2). Both q

and p do not fork over M1 and q � M1 = p � M1. By Corollary 4.6, p = q, but q does not

µ-fork over M0.

18



For local character, we imitate [Vas16b, Lemma 4.11] which handled the case of µ+-

saturated models ordered by ≤K instead of <u. That proof originates from [She09, II Claim

2.11(5)].

Proposition 4.9 (Local character). Let δ ≥ χ be regular, 〈Mi : i ≤ δ〉 ⊆ K≥µ u-increasing

and continuous, p ∈ gS(Mδ). There is i < δ such that p does not µ-fork over Mi.

Proof. If δ ≥ µ+, then by existence of nonsplitting (Proposition 3.12) and monotonicity,

there is j < δ such thtat p does not µ-split over Mj. As Mj+1 is universal over Mj, p does

not µ-fork over Mj+1.

If χ ≤ δ ≤ µ and suppose the conclusion fails, then we can build

1. 〈Ni : i ≤ δ〉 ⊆ Kµ u-increasing and continuous;

2. 〈N ′i : i ≤ δ〉 ⊆ Kµ increasing and continuous;

3. N0 = N ′0 ≤M0 be any model in Kµ;

4. For all i < δ, Ni ≤Mi and Ni ≤ N ′i ≤Mδ.

5. For all i < δ,
⋃
j≤i(|N ′j| ∩ |Mi+1|) ⊆ |Ni+1|

6. For all j < δ, p � N ′j+1 µ-splits over Nj.

We specify the successor step of N ′i : suppose Ni has been constructed. Since p µ-forks over

Mi, hence over Ni. Thus (Ni−1, Ni) cannot witness nonforking, so there is N ′i ∈ Kµ with

Ni ≤ N ′i ≤Mδ such that p � N ′i µ-splits over Ni−1. After the construction, by monotonicity

p � Nδ ⊇ p � N ′i µ-splits over Ni−1 for each successor i, contradicting χ-local character of

µ-nonsplitting.

In Section 6, we will need the original form of [Vas16b, Lemma 4.11], whose proof is

similar to Proposition 4.9. We write the statement here for comparison.

Fact 4.10. Let δ ≥ χ be regular, 〈Mi : i ≤ δ〉 be an increasing and continuous chain of

µ+-saturated models, p ∈ gS(Mδ). There is i < δ such that p does not µ-fork over Mi.

We now show the promised continuity of nonforking. In [Vas16b, Lemma 4.12], the

chain must be of length≥ χ. We do not have the restriction here because we have continuity

of nonsplitting in Assumption 2.1.

Proposition 4.11 (Continuity 2). Let δ < µ+ be regular, 〈Mi : i ≤ δ〉 ⊆ K≥µ u-increasing

and continuous, and K is stable in [‖M1‖, ‖Mδ‖). Let p ∈ gS(Mδ) satisfy p � Mi does not

µ-fork over M0 for all 1 ≤ i < δ. Then p also does not µ-fork over M0.
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Proof. If δ ≥ χ, by Proposition 4.9 there is i < δ such that p does not µ-fork over Mi. By

Corollary 4.8, p does not µ-fork over M0.

If δ < χ ≤ µ, we have two cases: (1) M0 ∈ Kµ: then for 1 ≤ i < δ, p � Mi does

not µ-split over M0. By Proposition 3.17, p does not µ-split over M0, so p does not µ-fork

over M1. By Corollary 4.8, p does not µ-fork over M0. (2) M0 ∈ K>µ: for 1 ≤ i < δ, let

Ni <u M0 witness p � Mi does not µ-fork over M0. By Löwenheim-Skolem axiom, there is

N ∈ Kµ (here we need δ ≤ µ) such that Ni <u N ≤ M0 for all i. Apply case (1) with N

replacing M0.

Existence is more tricky because nonforking requires the base to be universal over the

witness of nonsplitting. The second part of the proof is based on [Vas16b, Lemma 4.9].

Proposition 4.12 (Existence). Let M be a (≥ µ,≥ χ)-limit model, p ∈ gS(M). Then p

does not µ-fork over M . Alternatively M can be a µ+-saturated model.

Proof. The first part is immediate from Proposition 4.9. For the second part, apply ex-

istence of nonsplitting Proposition 3.12 to obtain N ∈ Kµ, N ≤ M such that p does not

µ-split over N . By model-homogeneity, M is universal over N , hence p does not µ-fork

over M .

Corollary 4.13. There exists a good µ-frame over the µ-skeleton of (µ,≥ χ)-limit models

ordered by ≤u, except for symmetry and local character χ in place of ℵ0.

Proof. Define nonforking as in Definition 4.1(2). Invariance and monotonicity are immedi-

ate. Existence is by Proposition 4.12, χ-local character is by Proposition 4.9, extension is

by Proposition 4.2, uniqueness is by Proposition 4.5, continuity is by Proposition 4.4.

Remark 4.14. 1. We do not expect ℵ0-local character because there are strictly stable

AECs. For the same reason we restrict models to be (µ,≥ χ)-limit to guarantee

existence property.

2. Let λ ≥ µ. Our frame extends to ([µ, λ],≥ χ)-limit models if we assume stability in

[µ, λ]. However [Vas16b] has already developed µ-nonforking for µ+-saturated models

ordered by ≤, and we will see in Corollary 6.2(2) that under extra stability assump-

tions, (> µ,≥ χ)-limit models are automatically µ+-saturated, so the interesting part

is Kµ here.

3. We will see in Corollary 5.13(2) that symmetry also holds if we have enough stability.

Since we have built an approximation of a good frame in Corollary 4.13, one might

ask if it is canonical. We first observe the following fact (Assumption 2.1 is not needed):
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Fact 4.15. [Vas18a, Theorem 14.1] Let λ ≥ LS(K). Suppose K is λ-superstable and

there is an independence relation over the limit models (ordered by ≤) in Kλ, satisfying

invariance, monotonicity, universal local character, uniqueness and extension. Let M ≤ N

be limit models in Kλ and p ∈ gS(N). Then p is independent over M iff p does not λ-fork

over M .

Its proof has the advantage that it does not require the independence relation to be

for longer types as in [BGKV16, Corollary 5.19]. However, it still uses the following lemma

from [BGKV16, Lemma 4.2]:

Lemma 4.16. Suppose there is an independence relation over models in Kµ ordered by

≤. If it satisfies invariance, monotonicity and uniqueness, then the relation is extended by

µ-nonsplitting.

Proof. Suppose M ≤ N in Kµ, p ∈ gS(N) is independent over M . For any N1, N2 ∈ Kµ

with M ≤ N1, N2 ≤ N , and any f : N1
∼=M N2. We need to show that f(p) � N2 = p � N2.

By monotonicity, p � N1 and p � N2 do not depend on M . By invariance, f(p) � N2 is

independent over M . By uniqueness and the fact that f fixes M , we have f(p) � N2 = p �

N2.

In the above proof, it utilizes the assumption that the independence relation is for

models ordered by ≤, so it makes sense to talk about p � Ni is independent over M for

i = 1, 2. To generalize Fact 4.15 to our frame in Corollary 4.13, one way is to assume the

independence relation to be for models ordered by ≤, and with universal local character χ.

But since we defined our frame to be for models ordered by ≤u, we want to keep the weaker

assumption that the arbitrary independence relation is also for models ordered by ≤u. Thus

we cannot directly invoke Lemma 4.16, where the Ni’s are not necessarily universal over

M . To circumvent this, we adapt the lemma by allowing more room:

Lemma 4.17. Let M <u N <u N
′ all in Kµ, p ∈ gS(N ′). If p � N µ-splits over M , then

p also µ-splits over M with witnesses universal over M . Namely, there are N ′1, N
′
2 ≤ N ′

such that N ′1 >u M , N ′2 >u M and there is f ′ : N ′1
∼=M N ′2 with f(p) � N ′2 6= p � N ′2.

Proof. By assumption, there are N1, N2 ∈ Kµ such that M ≤ N1, N2 ≤ N and there

is f : N1
∼=M N2 such that f(p � N) � N2 6= p � N2. Extend f to an isomorphism f̃ of

codomain N , and let N∗ ≥ N1 be the domain of f̃ . Since N >u M , by invariance N∗ >u M .

On the other hand, N ′ >u N , then N ′ >u N1 and there is g : N∗ −→
N1

N ′. Let the image of

g be N∗∗

In the diagram below, we use dashed arrows to indicate isomorphisms. Solid arrows

indicate ≤.
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N∗

N1 N∗∗

M N2 N N ′

f̃

g

f
f̃◦g−1

Since f̃ ◦ g−1 : N∗∗ ∼=M N and M <u N
∗∗, N ≤ N ′, we consider f̃ ◦ g−1(p) � N and p � N .

f̃ ◦ g−1(p) � N ≥ [f̃ ◦ g−1(p)] � N2

= f̃([g−1(p)] � N1) � N2 as f̃−1[N2] = N1

= f̃(p � N1) � N2 as g fixes N1

= f(p � N1) � N2 as f̃ extends f

= f(p � N) � N2 as f−1[N2] = N1 ≤ N

p � N ≥ p � N2

Since f(p � N) � N2 6= p � N2, f̃ ◦g−1(p) � N 6= p � N and we can take N ′1 := N∗∗, N ′2 := N ,

f ′ := f̃ ◦ g−1 in the statement of the lemma.

Now we can prove a canonicity result for our frame. In order to apply Lemma 4.17, we

will need to enlarge N to a universal extension in order to have more room. This procedure

is absent in the original forward direction of Fact 4.15 but is similar to the backward

direction (to get q below).

Proposition 4.18. Suppose there is an independence relation over the (µ,≥ χ)-limit mod-

els ordered by ≤u satisfying invariance, monotonicity, local character χ, uniqueness and

extension. Let M <u N be (µ,≥ χ)-limit models and p ∈ gS(N). Then p is independent

over M iff p does not µ-fork over M .

Proof. Suppose p is independent over M . By assumption M is a (µ, δ)-limit for some

regular δ ∈ [χ, µ+). Resolve M =
⋃
i<δMi such that all Mi are also (µ, δ)-limit. By local

character, p � M is independent over Mi for some i < δ. Since the independence relation

satisfies uniqueness and extension, by the proof of Corollary 4.8 it also satisfies transitivity.

Therefore p is independent over Mi. Let N ′ >u N . By extension, there is p′ ∈ gS(N ′)

independent over Mi and p′ ⊇ p. Now suppose p µ-splits over Mi, by Lemma 4.17 p′

µ-splits over Mi with universal witnesses, contradicting Lemma 4.16 (where ≤ is replaced

by <u where). As a result, p does not µ-split over Mi. Since Mi <u M , p does not µ-fork

over M .

Conversely suppose p does not µ-fork over M . By local character and monotonicity,

p � M is independent over M . By extension, obtain q ∈ gS(N) independent over M and
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q ⊇ p. From the forward direction, q does not µ-fork over M . By Proposition 4.5, p = q so

invariance gives q independent over M .

To conclude this section, we show that the existence of a frame similar to Corollary

4.13 is sufficient to obtain local character of nonsplitting. Continuity of µ-nonsplitting and

µ-tameness in Assumption 2.1 are not needed.

Proposition 4.19. Let δ < µ+ be regular. Suppose there is an independence relation over

the (µ,≥ δ)-limit models ordered by ≤u satisfying invariance, monotonicity, local character

δ, uniqueness and extension. Then K has δ-local character of µ-nonsplitting.

Proof. Let 〈Mi : i ≤ δ〉 be u-increasing and continuous, p ∈ gS(Mδ). There is i < δ such

that p is independent over Mi. By the forward direction of Proposition 4.18 (local character

of nonsplitting is not used), p does not µ-split over Mi.

5 LOCAL SYMMETRY

Tower analysis was used in [Van16a, Theorem 3] to connect a notion of µ-symmetry

and reduced towers. Combining with [GVV16], superstability and µ-symmetry imply the

uniqueness of limit models. [VV17, Lemma 4.6] observed that a weaker form of µ-symmetry

is sufficient to deduce one direction of [Van16a, Theorem 3], and enough superstability

implies the weaker form of µ-symmetry. Therefore enough superstability already implies

the uniqueness of limit models [VV17, Corollary 1.4]. Meanwhile, [BV15] localized the

notion of µ-symmetry and deduced the uniqueness of limit models of length ≥ χ. We

will imitate the above argument and replace the hypothesis of local symmetry by sufficient

stability. As a corollary we will obtain symmetry property of nonforking. The uniqueness

of limit models will be discussed in the next section.

The following is based on [BV15, Definition 10]. They restricted M0 to be exactly

(µ, δ)-limit over N but they should mean (µ,≥ δ) for the proofs to go through. We will

use δ := χ in this paper.

Definition 5.1. Let δ < µ+ be a limit ordinal. K has (µ, δ)-symmetry for µ-nonsplitting

if for any M,M0, N ∈ Kµ, elements a, b with

1. a ∈M −M0;

2. M0 <u M and M0 is (µ,≥ δ)-limit over N ;

3. gtp(a/M0) does not µ-split over N ;

4. gtp(b/M) does not µ-split over M0,
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then there is M b ∈ Kµ universal over M0 and containing b such that gtp(a/M b) does not

µ-split over N . We will abbreviate (µ, δ)-symmetry for µ-nonsplitting as (µ, δ)-symmetry.

Now we localize the hierarchy of symmetry properties in [VV17, Definition 4.3]. The

first two items will be important in our improvement of [BV15].

Definition 5.2. Let δ < µ+ be a limit ordinal. In the following items, we always let

a ∈ M − M0, M0 <u M , M0 be (µ,≥ δ)-limit over N and b be an element. In the

conclusion, M b ∈ Kµ universal over M0 and containing b is guaranteed to exist.

1. K has uniform (µ, δ)-symmetry : If gtp(b/M) does not µ-split over M0, gtp(a/M0)

does not µ-fork over (N,M0), then gtp(a/M b) does not µ-fork over (N,M0).

2. K has weak uniform (µ, δ)-symmetry : If gtp(b/M) does not µ-fork over M0,

gtp(a/M0) does not µ-fork over (N,M0), then gtp(a/M b) does not µ-fork over

(N,M0).

3. K has nonuniform (µ, δ)-symmetry : If gtp(b/M) does not µ-split over M0, gtp(a/M0)

does not µ-fork over M0, then gtp(a/M b) does not µ-fork over M0.

4. K has weak nonuniform (µ, δ)-symmetry : If gtp(b/M) does not µ-fork over M0,

gtp(a/M0) does not µ-fork over M0, then gtp(a/M b) does not µ-fork over M0.

The following results generalize [VV17, Section 4] which assumes superstability and

works with full symmetry properties.

Proposition 5.3. Let δ < µ+ be a limit ordinal. (µ, δ)-symmetry is equivalent to uni-

form (µ, δ)-symmetry. Both imply nonuniform (µ, δ)-symmetry and weak uniform (µ, δ)-

symmetry. Nonuniform (µ, δ)-symmetry implies weak nonuniform (µ, δ)-symmetry.

Proof. In the definition of the symmetry properties, we always have N <u M0, so the

following are equivalent:

• gtp(a/M0) does not µ-fork over (N,M0);

• gtp(a/M0) does not µ-split over N .

Similarly, the following are equivalent:

• gtp(a/M b) does not µ-fork over (N,M0);

• gtp(a/M b) does not µ-split over N .
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Therefore, (µ, δ)-symmetry is equivalent to uniform (µ, δ)-symmetry.

Uniform (µ, δ)-symmetry implies weak uniform (µ, δ)-symmetry because nonforking

over M0 is a stronger assumption than nonsplitting over M0. Uniform (µ, δ)-symmetry

implies nonuniform (µ, δ)-symmetry because the latter does not require the witness to

nonforking be the same, so its conclusion is weaker. Nonuniform (µ, δ)-symmetry implies

weak nonuniform (µ, δ)-symmetry because nonforking over M0 is a stronger assumption

than nonsplitting over M0.

The following result modifies the proof of [BV15] which involves a lot of tower analysis.

We will only mention the modifications and refer the readers to the original proof.

Proposition 5.4. Let δ < µ+ be a limit ordinal. If δ ≥ χ, then weak uniform (µ, δ)-

symmetry implies uniform (µ, δ)-symmetry.

Proof sketch. [BV15, Theorems 18, Proposition 19] establish that (µ, δ)-symmetry is equiv-

alent to continuity of reduced towers at ≥ δ. We will show that the backward direction

only requires weak uniform (µ, δ)-symmetry. Then using the equivalence twice we deduce

that weak uniform (µ, δ)-symmetry implies (µ, δ)-symmetry. By the previous proposition,

it is equivalent to uniform (µ, δ)-symmetry.

There are three places in [BV15, Theorems 18] which use (µ, δ)-symmetry. In the first

two paragraphs of page 11:

1. By χ-local character, there is a successor i∗ < δ such that gtp(b/M δ
δ ) does not µ-split

over M i∗
i∗ .

2. For any j < δ, M δ
δ is universal over M j

j .

3. For any j < δ, gtp(aj/M
j
j ) does not µ-split over Nj.

4. For any successor j < δ, M j
j is (µ,≥ δ)-limit over M j−1

j−1 and over Nj.

Let j∗ := i∗ + 1 which is still a successor ordinal less than δ. Combining (1) and (4), we

have gtp(b/M δ
δ ) does not µ-fork over M j∗

j∗ . Combining (3) and (4), gtp(aj∗/M
j∗

j∗ ) does not

µ-fork over M j∗

j∗ ). Moreover, (2) gives M δ
δ is universal over M j∗

j∗ . Together with (4) and

weak uniform (µ, δ)-symmetry, we can find M b (µ,≥ δ)-limit over M j∗

j∗ and containing b

such that gtp(a/M b) does not µ-fork over (Nj∗ ,M
j∗

j∗ ). In other words, gtp(a/M b) does not

µ-split over Nj∗ and so the original argument goes through with i∗ replaced by j∗.

In “Case 2” on page 12:

a. gtp(b/
⋃
l<αM

l
l ) does not µ-split over M i∗

i∗ .

b. i∗ + 2 ≤ k < α and gtp(ak/M
k+1
k ) does not µ-split over Nk.
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c. Mk+1
k is universal over M i∗

i∗ .

d.
⋃
l<αM

l
l is universal over Mk+1

k . Mk+1
k is (µ,≥ δ)-limit over Nk.

Combining (a) and (c), gtp(b/
⋃
l<αM

l
l ) does not µ-fork over Mk+1

k . (b) gives gtp(ak/M
k+1
k )

does not µ-fork over (Nk,M
k+1
k ). Together with (d) and weak uniform (µ, δ)-symmetry,

we can find M b
k (µ,≥ δ)-limit over Mk+1

k and containing b such that gtp(ak/M
b
k) does not

µ-fork over (Nk,M
k+1
k ) so the proof goes through (we do not change index this time).

Before “Case 1” on page 11, they refer the successor case to the original proof of

[Van16a, Theorem 3] which also uses (µ, δ)-symmetry. But the idea from the previous case

applies equally.

In [Vas17a, Corollary 2.18], it was shown that under superstability, weak nonuniform

µ-symmetry implies weak uniform µ-symmetry. We generalize this as:

Proposition 5.5. Let δ < µ+ be a limit ordinal. Weak nonuniform (µ, δ)-symmetry implies

weak uniform (µ, δ)-symmetry.

Proof. Using the notation in Definition 5.2, we assume gtp(b/M) does not µ-fork over M0

and gtp(a/M0) does not µ-fork over (N,M0). By weak nonuniform (µ, δ)-symmetry, we

can find M b such that gtp(a/M b) does not µ-fork over M0. Since gtp(a/M0) does not

µ-fork over (N,M0), by extension of nonsplitting (Proposition 3.12), there is a′ such that

gtp(a/M0) = gtp(a′/M0) and gtp(a′/M b) does not µ-split over N . Now both gtp(a/M b) and

gtp(a′/M b) do not µ-fork over M0 and they agree on the restriction of M0. By uniqueness

of nonforking (Proposition 4.5), gtp(a/M b) = gtp(a′/M b) and hence gtp(a/M b) does not

µ-split over N . In other words, it does not µ-fork over (N,M0) as desired.

Corollary 5.6. The following are equivalent:

0. (µ, χ)-symmetry for µ-nonsplitting;

1. Uniform (µ, χ)-symmetry;

2. Weak uniform (µ, χ)-symmetry;

3. Nonuniform (µ, χ)-symmetry;

4. Weak nonuniform (µ, χ)-symmetry.

Proof. By Proposition 5.3, (0) and (1) are equivalent, (1) implies (2) and (3) while (3)

implies (4). By Proposition 5.4 (this is where we need χ instead of a general δ), (2) implies

(1). By Proposition 5.5, (4) implies (2).
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The following adapts [VV17, Lemma 5.6] and fills in some gaps. In particular we need

µ-tameness (in Assumption 2.1) and stability in ‖Nα‖ for the proof to go through. It is

not clear how to remove µ-tameness which they do not assume.

Lemma 5.7. Let M0 ∈ Kµ, Nα ∈ K≥µ with M0 ≤ Nα, b, bβ ∈ |Nα|, aα be an element. If

K is stable in ‖Nα‖, gtp(aα/Nα) does not µ-fork over M0 and gtp(b/M0) = gtp(bβ/M0),

then gtp(aαb/M0) = gtp(aαbβ/M0).

Proof. Let M∗ <u M0 witness that gtp(aα/Nα) does not µ-fork over (M∗,M0). By ex-

tension (Corollary 4.3) and weak uniqueness of nonsplitting (Proposition 3.12(2)), we can

extend Nα to N∗ >u Nα such that gtp(aα/N
∗) does not µ-split over M∗. As gtp(b/M0) =

gtp(bβ/M0) and N∗ >u Nα, there is f : Nα −−→
M0

N∗ such that f(b) = bβ. As gtp(aα/N
∗)

does not µ-split over M∗, by Proposition 3.4 gtp(f(aα)/f(Nα)) = gtp(aα/f(Nα)). Hence

there is g ∈ Autf(Nα)(C) such that g(f(aα)) = aα. Then

gtp(aαb/M0) = gtp(f(aα)f(b)/M0) = gtp(g(f(aα))f(b)/M0) = gtp(aαbβ/M0).

Remark 5.8. By swapping the dummy variables, we have the following formulation: Let

M0 ∈ Kµ, N ′β ∈ K≥µ with M0 ≤ N ′β, a, aα ∈ |N ′β|, bβ be an element. If K is stable in ‖N ′β‖,
gtp(bβ/N

′
β) does not µ-fork over M0 and gtp(a/M0) = gtp(aα/M0), then gtp(abβ/M0) =

gtp(aαbβ/M0).

The following adapts [VV17, Lemma 5.7] which assumes superstability in [µ, λ). When

we write the µ-order property, we mean tuples that witness order property have length µ.

Proposition 5.9. Let λ ≥ µ be a cardinal. If K is stable in [µ, λ) and fails (µ, χ)-symmetry,

then it has the µ-order property of length λ.

Proof. By Corollary 5.6(2)⇒(0), K fails weak uniform (µ, χ)-symmetry. So there are

N,M0,M ∈ Kµ and elements a, b such that

• a ∈M −M0, M0 <u M and M0 is (µ,≥ χ)-limit over N ;

• gtp(b/M) does not µ-fork over M0;

• gtp(a/M0) does not µ-fork over (N,M0);

• There is no M b ∈ Kµ universal over M0 containing b such that gtp(a/M b) does not

µ-fork over (N,M0).

Build 〈aα, bα, Nα, N
′
α : α < λ〉 such that:
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1. Nα, N
′
α ∈ Kµ+|α|;

2. b ∈ |N0| and N0 is universal over M ;

3. Nα <u N
′
α <u Nα+1;

4. aα ∈ |N ′α| and gtp(aα/M0) = gtp(a/M0);

5. bα ∈ |Nα+1| and gtp(bα/M) = gtp(b/M);

6. gtp(aα/Nα) does not µ-fork over (N,M0);

7. gtp(bα/N
′
α) does not µ-fork over M0.

N0 is specified in (2). We specify the successor step: suppose Nα has been constructed , by

Corollary 4.3 there is aα such that gtp(aα/Nα) extends gtp(a/M0) and does not µ-fork over

(N,M0). Build any N ′α universal over Nα containing aα. By Proposition 4.2 again, there

is bα such that gtp(bα/N
′
α) extends gtp(b/M) and does not µ-fork over M0. Build Nα+1

universal over N ′α containing bα. Notice that stability is used to guarantee the existence of

Nα, N
′
α and the extension of types.

After the construction, we have the following properties for α, β < λ:

a. gtp(aαb/M0) 6= gtp(ab/M0);

b. gtp(abβ/M0) = gtp(ab/M0);

c. If β < α, gtp(ab/M0) 6= gtp(aαbβ/M0);

d. If β ≥ α, gtp(ab/M0) = gtp(aαbβ/M0).

Suppose (a) is false. By invariance and the choice of a, b,M0, N there is no M ′ ∈ Kµ

universal over M0 containing b such that gtp(aα/M
′) does not µ-fork over (N,M0). This

contradicts M ′ := Nα and item (6) in the construction. (b) is true because of item (5) of

the construction and a ∈ |M |. For (c), items (5), (6) and Lemma 5.7 (with the exact same

notations) imply gtp(aαbβ/M0) = gtp(aαb/M0) which is not equal to gtp(ab/M0) by (a).

For (d), items (4), (7) and Remark 5.8 imply gtp(aαbβ/M0) = gtp(abβ/M0) which is equal

to gtp(ab/M0) by (b).

To finish the proof, let d enumerate M0, and for α < λ, cα := aαbαd. By (c) and (d)

above, 〈cα : α < λ〉 witnesses the µ-order property of length λ.

Remark 5.10. When proving (d), we used Remark 5.8 which requires gtp(bβ/N
′
β) non-

forking over M0, and this is from extending gtp(b/M) nonforking over M0. This called

for the failure of weak uniform (µ, χ)-symmetry instead of just (µ, χ)-symmetry. (In the

original proof, they claimed the same for (c) in place of (d), which should be a typo.)
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Question 5.11. Is it possible to weaken the stability assumption in Proposition 5.9?

Fact 5.12. For any infinite cardinal λ, h(λ) := i(2λ)+ . When we write the µ-stable, we

mean stability of tuples of length µ.

1. [She99, Claim 4.6] If K does not have the µ-order property, then there is λ < h(µ)

such that K does not have the µ-order property of length λ.

2. [BGKV16, Fact 5.13] If K is µ-stable (in some cardinal ≥ µ), then it does not have

the µ-order property.

3. If K is stable in some λ = λµ, then K is µ-stable in λ.

4. [GV06, Corollary 6.4] If K is stable and tame in µ (these are in Assumption 2.1),

then it is stable in all λ = λµ. In particular it is stable in 2µ.

5. For some λ < h(µ), K does not have the µ-order property of length λ.

Proof. For (1) and (2), see also [Leu21b, Proposition 3.4] for a proof sketch. (3) is an

immediate corollary of [Bon17, Theorem 3.1], see [Leu21b, Theorem 2.2] for a proof. We

show (5): by (4) K is stable in 2µ. By (3) it is µ-stable in 2µ. Combining with (2) and (1)

gives the conclusion.

Corollary 5.13. There is λ < h(µ) such that if K is stable in [µ, λ), then

1. K has (µ, χ)-symmetry;

2. the frame in Corollary 4.13 satisfies symmetry.

Proof. 1. By Fact 5.12(5), there is λ < h(µ) such that K does not have the µ-order

property of length λ. By the contrapositive of Proposition 5.9, K has (µ, χ)-symmetry.

2. By (1) and Proposition 5.3, K has weak nonuniform (µ, χ)-symmetry. Compared to

symmetry in a good frame, weak nonuniform (µ, χ)-symmetry has the extra assump-

tion that gtp(a/M0) does not µ-fork over M0, but this is always true by Proposition

4.12.

Remark 5.14. From the proof of Corollary 5.13(2), we see that if the frame in Corollary

4.13 (which is defined for (µ,≥ χ)-limits) has symmetry, then weak nonuniform (µ, χ)-

symmetry, and hence all the other ones in Corollary 5.6 hold.
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6 SYMMETRY AND SATURATED MODELS

As mentioned in the previous section, [VV17, Corollary 1.4] deduced symmetry from

superstability and obtained the uniqueness of limit models. It is natural to localize such

argument, which was partially done in

Fact 6.1. [BV15, Theorem 20] Assume K has (µ, χ)-symmetry (together with Assumption

2.1). Then it has the uniqueness of (µ,≥ χ)-limit models: let M0,M1,M2 ∈ Kµ. If both

M1 and M2 are (µ,≥ χ)-limit over M0, then M1
∼=M0 M2.

In the original proof of the above fact, they did not assume tameness. However, we will

need tameness when we remove the symmetry assumption (see also the discussion before

Lemma 5.7).

Corollary 6.2. There is λ < h(µ) such that if K is stable in [µ, λ), then

1. K has the uniqueness of (µ,≥ χ)-limit models.

2. if also µ > LS(K), any (µ,≥ χ)-limit model is saturated.

Proof. 1. By Corollary 5.13(1), K has (µ, χ)-symmetry. Apply Fact 6.1.

2. Suppose µ is regular. Since χ ≤ µ, any (µ,≥ χ)-limit is isomorphic to a (µ, µ)-limit,

which is saturated. Suppose µ is singular. Let M be a (µ,≥ χ)-limit model. We

show that it is δ-saturated for any regular δ < µ. Since δ + χ is a regular cardinal in

[χ, µ+), M is also (µ, δ + χ)-limit, which implies it is (δ + χ)-saturated.

Before stating a remark, we quote a fact in order to compare Vasey’s results with ours

(but we will not use that fact in our paper). Continuity of µ-nonsplitting in Assumption

2.1 is not needed.

Fact 6.3. [BV17a, Theorems 5.15] Let χ0 ≥ 2µ be such that K does not have the µ-order

property of length χ+
0 , define χ1 := (22χ0 )+3, and let ξ ≥ χ1. If K is stable in unboundedly

many cardinals < ξ, then any increasing chain of ξ-saturated models of length ≥ χ is

ξ-saturated.

Remark 6.4. We assumed enough stability to get a local result: the same µ was con-

sidered throughout. In contrast, [Vas18b, Theorems 6.3, 11.7] are eventual : Fact 6.3 was

heavily used. Some of the hypotheses there require unboundedly many (H1-closed) stability

cardinals.

Now we turn to an AEC version of Harnik’s Theorem. [Vas18b, Lemma 11.9] improved

[Van16b, Theorem 1] and showed that:
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Fact 6.5. Let K be µ-tame with a monster model. Let ξ ≥ µ+. Suppose

1. K is stable in µ and ξ;

2. 〈Mi : i < δ〉 is an increasing chain of ξ-saturated models;

3. cf(δ) ≥ χ;

4. (ξ, δ)-limit models are saturated,

then
⋃
i<δMi is ξ-saturated.

We remove the assumption of (4) by assuming more stability and continuity of non-

splitting. Our proof is based on [Vas18b, Lemma 11.9] which have some omissions. For

comparison, we write down all the assumptions.

Proposition 6.6. Let K be an AEC with a monster model. Assume K is µ-tame, stable

in µ and has χ-local charcter of µ-nonsplitting. Let ξ ≥ µ+. There is λ < h(ξ) such that if

1. K is stable in [ξ, λ),

2. 〈Mi : i < δ〉 is an increasing chain of ξ-saturated models;

3. cf(δ) ≥ χ;

4. Continuity of µ-nonsplitting and of ξ-nonsplitting holds,

then
⋃
i<δMi is ξ-saturated.

Before proving the proposition, we need to justify that the local character χ (Definition

3.10), which was defined for Kµ, also applies to Kξ. In other words, we need to show that

Kξ has local character of nonsplitting (at most) χ. (Vasey usually cited this fact as [Vas16b,

Section 4], by which he should mean an adaptation of [Vas16b, Lemma 4.11].)

Lemma 6.7 (Local character transfer). If K is stable in some ξ ≥ µ, then it has χ-local

character of ξ-nonsplitting.

Proof. Let 〈Mi : i ≤ δ〉 be u-increasing and continuous in Kξ, p ∈ gS(Mδ). By Proposition

4.9, there is i < δ such that p does not µ-fork over Mi. By definition of nonforking, there

is N <u Mi of size µ such that p does not µ-split over N . Suppose p ξ-splits over Mi then

it also ξ-splits over N . By µ-tameness, it µ-splits over N , contradiction.
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Proof of Proposition 6.6. Let δ ≥ χ be regular. If δ ≥ ξ we can use a cofinality argument.

So we assume δ < ξ. Let Mδ :=
⋃
i<δMi and N ∈ K<ξ, N ≤Mδ, p ∈ gS(N). Without loss

of generality, we may assume for i ≤ δ, Mi ∈ Kξ: given a saturated M∗ ∈ K≥ξ+ and some

Ñ ≤ M∗ of size ≤ ξ, we can close Ñ into a (ξ, χ)-limit N∗. By ξ-model-homogeneity of

M∗, we may assume N∗ ≤M∗. By Lemma 6.7 and Corollary 6.2(2), any (ξ,≥ χ)-limits are

saturated, so N∗ is saturated. Therefore we can recursively shrink each Mi to a saturated

model in Kξ while still containing the same intersection with Ñ .

Extend p to a type in gS(Mδ). By Fact 4.10, there is i < δ such that p does not µ-fork

over Mi. By reindexing assume i = 0 and let M0
0 ∈ Kµ witness the nonforking. Obtain

N0 ∈ Kµ such that M0
0 <u N0 ≤ M0. Define µ′ := µ + δ, we build 〈Ni : 1 ≤ i ≤ δ〉

increasing and continuous in Kµ′ such that N0 ≤ N1 ≤ N ≤ Nδ and for i ≤ δ, Ni ≤ Mi.

Now we construct

1. 〈M∗
i , fi,j : i ≤ j < δ〉 an increasing and continuous directed system;

2. For i < δ, M∗
i ∈ Kξ, Ni ≤M∗

i ≤Mi;

3. For i < δ, fi,i+1 : M∗
i −→

Ni
M∗

i+1;

4. M∗
0 := M0. For i < δ, fi,i+1[M∗

i ] <u M
∗
i+1.

Kξ M0 M1 · · · Mδ M̃

Kξ M∗
0 M∗

1 M∗
δ

K ′µ N1 · · · Nδ

Kµ M0
0 <u N0

f0,1 f1,δ

At limit stage i < δ, take direct limit M∗
i which contains Ni. Since ‖Ni‖ < ξ and Mi

is model-homogeneous, we may assume M∗
i is inside Mi. Suppose M∗

i is constructed for

some i < δ, obtain the amalgam M∗∗
i+1 of M∗

i and Ni+1 over Ni. Since ‖Ni+1‖ < ξ and

Mi+1 is model-homogeneous, we may embed the amalgam into Mi+1. Call the image of the

amalgam M∗
i+1. After the construction, take one more direct limit to obtain (M∗

δ , fi,δ)i<δ

(but this time we do not know if M∗
δ ≤ Mδ). By item (4) above, we have that M∗

δ is a

(ξ, δ)-limit, hence saturated.

We will work in a local monster model, namely we find a saturated M̃ ∈ Kξ such that

a. M̃ contains Mδ and M∗
δ ;
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b. For i < δ, fi,δ can be extended to f ∗i,δ ∈ Aut(M̃);

c. For i < δ, f ∗i,δ[Nδ] ≤M∗
δ .

(c) is possible because M∗
δ is universal over fi,δ[M

∗
i ]. Finally, we define N∗ ≤M∗

δ of size µ′

containing
⋃
i<δ f

∗
i,δ[Nδ]. By model-homogeneity of M∗

δ , we build M∗∗ ∈ Kξ saturated such

that N∗ ≤M∗∗ <u M
∗
δ .

By Proposition 4.2, extend p to q ∈ gS(M̃) nonforking over N0 (here we need N0 ∈ Kµ

or else we have to assume more stability). Since M∗
δ >u M

∗∗, we can find bδ ∈ M∗
δ such

that bδ � q � M∗∗. Since M∗
δ is a direct limit of the M∗

i ’s, there is i < δ such that

fi,δ(b) = bδ. As b ∈ M∗
i ⊆ Mi ≤ Mδ, it suffices to show that b � q � (f ∗i,δ)

−1[M∗∗], because

N ≤ Nδ ≤ (f ∗i,δ)
−1[N∗] ≤ (f ∗i,δ)

−1[M∗∗]. In the following diagram, dotted arrows refer to ≤
or <u between models, while the dashed equal sign is our goal.

q ∈ gS(M̃) p ∈ gS(Mδ)

q �M∗
δ bδ ∈M∗

δ b ∈M∗
i

q �M∗∗ gtp(bδ/M
∗∗) gtp(b/(f ∗i,δ)

−1[M∗∗]) q � (f ∗i,δ)
−1[M∗∗]

q � N0 gtp(bδ/N0) gtp(b/N0) p � N

f∗i,δ

u

f∗i,δ

Since q � M∗∗ = gtp(bδ/M
∗∗) does not µ-fork over N0 and f ∗i,δ fixes Ni ≥ N0, by

invariance gtp(b/(f ∗i,δ)
−1[M∗∗]) does not µ-fork N0. By monotonicity, q and hence q �

(f ∗i,δ)
−1[M∗∗] does not µ-fork over N0. By invariance again, gtp(b/N0) = gtp(bδ/N0) = q �

N0. By Corollary 4.6, q � (f ∗i,δ)
−1[M∗∗] = gtp(b/(f ∗i,δ)

−1[M∗∗]) as desired.

Remark 6.8. 1. In Proposition 6.6, the assumption of stability in [ξ, λ) is to guarantee

local symmetry from no ξ-order property of length λ. We can relax the stability

assumption if we have the stronger assumption of no ξ-order property. Namely, if K

does not have ξ-order property of length ζ where ζ > ξ, then we can simply assume

stability in [ξ, ζ).

2. We compare our approach with Vasey’s. To satisfy hypothesis (4) in Fact 6.5, he

used Fact 6.1 which requires (ξ, χ)-symmetry and continuity of nonsplitting [Vas18b,

Theorem 11.11(1)]. Meanwhile he obtained the equivalence of (ξ, χ)-symmetry ⇔
the increasing union of saturated models of length ≥ χ in Kξ+ is saturated (see

Fact 6.15). By Fact 6.3, the latter is true for large enough ξ. In short, he raised
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the cardinal threshold while we assumed more stability. More curiously, both our

stability assumption and his cardinal threshold are linked to no order property.

A comparison table can be found below. For ξ ≥ µ, we abbreviate the increasing

union of saturated models of length ≥ χ in Kξ is saturated by “Union(ξ)”.

Our approach Vasey’s approach

For ξ ≥ µ+ and For large enough ξ,

Enough stability
(
[µ, h(ξ)) suffices

)
⇒ Union(ξ+) (Fact 6.3)

⇒(ξ, χ)-symmetry (Corollary 5.13(1)) ⇒ (ξ, χ)-symmetry (Fact 6.15)

⇒Saturation of (ξ,≥ χ)-limits ⇒Saturation of (ξ,≥ χ)-limits

(Corollary 6.2(2)) (Fact 6.1)

⇒Union(ξ) (Proposition 6.6) ⇒Union(ξ) (Fact 6.5)

Observation 6.9. The [ξ, λ) stability assumption in Proposition 6.6 can be replaced by

(ξ, χ)-symmetry, because we can directly apply Fact 6.1 instead of using extra stability to

invoke Corollary 6.2. This applies to other results in the paper.

We now recover two known results with different proofs. The original proof for [Vas16a,

Proposition 10.10] is extremely abstract so we supplement a direct argument. (Here we

already assumed a monster model which implies no maximal models everywhere. Alterna-

tively, one can adapt the proof of [Bon14, Theorem 7.1] without using symmetry to transfer

no maximal models upward.) On the other hand, since we have generalized the arguments

in [VV17], we can specialize them to χ = ℵ0 and recover [VV17, Corollary 6.10] (see below).

In their approach, [Van16b, Theorem 22] was cited for the successor case of λ and the limit

case was proven by inductive hypothesis. We provide a uniform argument to both cases

for closure under chains, and fill in the computation of the Löwenheim-Skolem number for

the successor case, which they glossed over.

The following facts do not require continuity of nonsplitting.

Fact 6.10. 1. [BKV06, Theorem 1] Let ξ ≥ µ. If K is stable in ξ, then it is also stable

in ξ+n for all n < ω.

2. [Vas16b, Theorem 5.5] Let ξ0 ≥ µ while δ be regular, 〈ξi : i < δ〉 be strictly increasing

stability cardinals. If K has δ-local character of ξ0-nonsplitting, then supi<δ ξi is also

a stability cardinal. In particular, if K is ξ-superstable for some ξ ≥ µ, then it is

stable in all λ ≥ ξ.

Corollary 6.11. 1. [Vas16a, Proposition 10.10] Let ξ ≥ µ. If K is ξ-superstable, then

it is superstable in all ζ ≥ ξ.
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2. [VV17, Corollary 6.10] Let K be µ-superstable and ξ ≥ µ+, then Kξ-sat the class of

ξ-saturated models in K forms an AEC with Löwenheim-Skolem number ξ.

Proof. 1. Combine Fact 6.10(2) and Lemma 6.7.

2. By (1) and Proposition 3.16, we have continuity of ξ-nonsplitting and stability

in [ξ,∞). By Proposition 6.6, Kξ-sat is closed under chains. We show that the

Löwenheim-Skolem number is ξ: let A be a subset of a ξ-saturated model M . We

need to find a ξ-saturated N ≤M of size ξ + |A| containing A.

Consider the case where ξ is regular : then we construct 〈Ni : i ≤ ξ〉 increasing and

continuous such that for 1 ≤ i < ξ,

• N0 contains A;

• Ni ∈ Kξ+|A| is ξ-saturated;

• If N∗ ≤ Ni is of size less than ξ, then Ni+1 realizes all types over N∗.

The construction is possible by stability in ξ+ |A| (implied by µ-superstability): M is

ξ-saturated so it has witnesses to all types over N∗, but those types can be extended

to be over Ni ∈ Kξ+|A|. By stability we can restrict to (ξ + |A|)-many witnesses that

work for all such N∗. Now Nξ ≤ M is ξ-saturated by a cofinality argument. Also, it

has size ξ + |A|.

For the singular case, write ξ =
⋃
i<cf(ξ) ξi where the ξi’s form an increasing chain of

regular cardinals with µ+ ≤ ξi < ξ. By the inductive hypothesis that LS(Kξi-sat) = ξi,

we can build 〈Ni : i ≤ cf(ξ)〉 increasing and continuous such that N0 contains A,

Ni ∈ Kξi+|A| is ξi-saturated. Since each Kξi-sat is closed under chains, Nξ is ξ-

saturated and has size ξ + |A|.

It is natural to ask if there are converses to our results. In particular what are the

sufficient conditions to K having the χ-local character in Kξ for some ξ ≥ µ. [Vas18b,

Lemma 4.12] gave one useful criterion which we adapt below. The original statement did

not cover the case δ = ξ below and such omission affects the rest of his results. In particular

[Vas18b, Theorem 4.11] should only apply to singular µ there. Our result covers regular

cardinals because we assume stability and continuity of nonsplitting. Only in [Vas18b,

Section 11] did he start to assume continuity of nonsplitting and in [Vas18b, Theorem 12.1]

did he take care of the regular case by under extra assumptions.

We state the full assumptions in the following proposition.
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Proposition 6.12. Let µ ≥ LS(K). Suppose K has a monster model, is µ-tame and stable

in some ξ ≥ µ+. Let δ < ξ+ be regular, 〈Mi : i ≤ δ〉 be u-increasing and continuous in Kξ

and p ∈ gS(Mδ). There is i < δ such that p does not ξ-split over Mi if one of the following

holds:

1. δ = ξ (so ξ is regular), K has continuity of ξ-nonsplitting;

2. δ < ξ and Mδ is (µ+ δ)+-saturated.

Proof. The first case is by Proposition 3.9 (with ξ in place of µ). We consider the second

case δ < ξ. Suppose the conclusion is false, then for i < δ, there exist

1. N1
i , N

2
i ∈ Kξ with Mi ≤ N1

i , N
2
i ≤Mδ;

2. fi : N1
i
∼=Mi

N2
i with fi(p � N1

i ) 6= p � N2
i ;

3. M1
i ≤ N1

i and M2
i ≤ N2

i such that fi[M
1
i ] ∼= M2

i and fi(p �M1
i ) 6= p �M2

i .

Let N ≤ Mδ of size µ + δ containing M1
i and M2

i for all i < δ. Since Mδ is (µ + δ)+-

saturated, there is b ∈ |Mδ| realizing p � N . Then there is i < δ such that b ∈ |Mi|. Since

fi fixes Mi, it also fixes b. Thus

fi(p �M
1
i ) = gtp(fi(b)/M

2
i ) = gtp(b/M2

i ) = p �M2
i ,

contradicting item (3) above.

Corollary 6.13. Suppose ξ ≥ µ+ and δ < ξ+ be regular. If K is stable in ξ, has continuity

of ξ-nonsplitting and has unique (ξ,≥ δ)-limit models, then it has δ-local character in Kξ.

If in addition Kξ has unique limit models, then it is ξ-superstable.

Proof. Let δ′ ≥ δ be regular and 〈Mi : i ≤ δ′〉 ⊆ Kξ be u-increasing and continuous,

p ∈ gS(Mδ′). By the proof of Corollary 6.2(2), Mδ′ is saturated. By Proposition 6.12, there

is i < δ′ such that p does not ξ-split over Mi.

Remark 6.14. As before, our result is local. [GV17, Theorem 3.18] proved a similar result

which is eventual: they managed to guarantee superstability after iω(χ0) where K has no

order property of length χ0.

Vasey [Vas18b, Fact 11.6] also made another observation that connects saturated mod-

els and symmetry. In the original statement, he omitted writing continuity of nonsplitting

in the hypothesis and did not give a proof sketch, so we give more details here (Assump-

tion 2.1 applies). As in the discussion before Definition 5.1, we consider the tail of regular

cardinals δ′ ≥ δ in place of a fixed δ′ = δ to match our notations.
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Fact 6.15. Let δ < µ+ be regular. If for any δ′ ∈ [δ, µ+) regular, any 〈Mi : i < δ′〉 increasing

chain of saturated models in Kµ+ has a saturated union, then K has (µ, δ)-symmetry.

Proof. In [Van16a, Theorem 2], it was shown that if the above fact holds for any δ < µ+,

then any reduced tower is continuous at all δ < µ+. We can localize this argument to show

that if the above fact holds for a specific δ < µ+, then any reduced tower is continuous at

≥ δ. By [BV15, Proposition 19], K has (µ, δ)-symmetry.

Corollary 6.16. Let δ < µ+ be regular. If for any δ′ ∈ [δ, µ+) regular, any 〈Mi : i < δ′〉
increasing chain of saturated models in Kµ+ has a saturated union, then K has uniqueness

of (µ,≥ δ)-limit models.

Proof. Combine Fact 6.15 and Fact 6.1.

Question 6.17. Is there an analog of Fact 6.15 and Corollary 6.16 where “µ+” is replaced

by a general ξ ≥ µ+?

We look at superlimits and solvability before ending this section. The following local-

izes [SV18, Definition 2.1], which is more natural than [Vas18b, Definition 6.2].

Definition 6.18. Let ξ ≥ µ. M ∈ Kξ is a χ-superlimit if M is universal in Kξ, not

maximal, and for any regular δ with χ ≤ δ < ξ+, 〈Mi : i < δ〉 increasing such that Mi
∼= M

for all i < δ, then
⋃
i<δMi

∼= M . M is called a superlimit if it is a ℵ0-superlimit.

Proposition 6.19. Let K have continuity of ξ-nonsplitting for some ξ ≥ µ+. There is

λ < h(ξ) such that if K is stable in [ξ, λ), then it has a saturated χ-superlimit in Kξ.

Proof. By Corollary 6.2(2) and Lemma 6.7, any (ξ,≥ χ)-limit M is saturated (hence uni-

versal in Kξ). Let δ be regular, χ ≤ δ < ξ+, 〈Mi : i < δ〉 increasing such that Mi
∼= M for

all i < δ. Then all Mi are saturated in Kξ. By Proposition 6.6,
⋃
i<δMi is also saturated,

hence isomorphic to M .

Remark 6.20. The specific χ-superlimit built above is saturated. Under the same as-

sumptions, it is true for all χ-superlimits (Lemma 6.23).

The following connects superlimit models with solvability (see [GV17, Definition 2.17]

for a definition).

Fact 6.21. [GV17, Lemma 2.19] Let λ ≥ ξ. The following are equivalent:

1. K is (λ, ξ)-solvable.

2. There exists an AEC K′ in L(K′) ⊇ L(K) such that LS(K′) ≤ ξ, K′ has arbitarily

large models and for any M ∈ K ′λ, M � L(K) is a superlimit in K.
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In [GV17, Theorem 4.9], they showed that (λ, ξ)-solvability is eventually (in λ) equiv-

alent to other criteria of superstability (modulo a jump of iω+2). Also, λ is required to be

greater than ξ. We propose that a better formulation of superstability which has λ = ξ.

The case λ > ξ should be a stronger condition because it allows downward transfer (see

[Vas17b, Corollary 5.1] for more development on this). Our result proceeds with a series of

lemmas.

The next lemma generalizes [GV17, Fact 2.8(5)] (which is based on [Dru13]).

Lemma 6.22. Let ξ ≥ µ+ and M be a saturated model in Kξ. M is a χ-superlimit iff for

any regular δ with χ ≤ δ < ξ+, any increasing chain of saturated models in Kξ of length δ

has a saturated union.

Proof. Immediate from the definition of a χ-superlimit. Notice that we need δ < ξ+ to

make sure that the chain of saturated models have a union in Kξ.

The following lemma generalizes [Dru13, Theorem 2.3.11].

Lemma 6.23. Let ξ > LS(K). If M is a χ-superlimit in Kξ, then M is saturated.

Proof. We show that M is a (ξ, δ)-limit for regular δ ∈ [χ, ξ+). If done, the argument in

Corollary 6.2(2) shows that it is saturated. Construct 〈Mi, Ni : i < δ〉 in Kξ such that

M0 := M ∼= Mi <u Ni < Mi+1 for i < δ. Suppose Ni is constructed, by universality Ni

embeds inside M so we can build Mi+1, an isomorphic copy of M over Ni. To construct

Mi for limit i, we embed the union of previous Ni inside M and repeat the above process.

By the property of a χ-superlimit, M ∼=
⋃
i<δMi =

⋃
i<δNi which is a (ξ, δ)-limit.

Proposition 6.24. If µ > LS(K) and K is (< µ)-tame, then it is µ-superstable iff it is

(µ+, µ+)-solvable.

Proof. Suppose K is µ-superstable. By Lemma 6.23 with ξ = µ+, superlimits in Kξ are

saturated. By Corollary 6.11(2), ξ-saturated models are closed under chains. By Lemma

6.22, saturated models in Kξ are superlimits. Therefore, saturated models and superlimits

coincide in Kξ. By Fact 6.21, we can define L(K′) := L(K) and K′ to be the class of

ξ-saturated models. By Corollary 6.11(2) again, it is an AEC with LS(K′) = ξ.

Suppose K is (µ+, µ+)-solvable. By Lemma 6.23 there is a saturated superlimit in

Kµ+ , which witnesses the union of saturated models in Kµ+ is µ+-saturated. By Corollary

6.16, it has uniqueness of limit models in Kµ. By (< µ)-tameness and the proof of Corollary

6.13 (replace “ξ” there by µ and “µ+” there by LS(K)+), it is µ-superstable.

Remark 6.25. One might want to generalize the argument to strictly stable AECs. In that

case the statement of Fact 6.21(2) should naturally be for a χ-AEC instead of an AEC, but
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we do not know how to prove that saturated models are closed under χ-directed systems

(a similar obstacle is in [BGL+16, Remark 2.3(4)]). On top of that, the equivalence in Fact

6.21 is not clear in that case because we do not have a first-order presentation theorem

on χ-AECs to extract an Ehrenfeucht-Mostowski blueprint (but we do have a (< µ)-ary

presentation theorem, see [BGL+16, Theorem 3.2] or [Leu21a, Theorem 5.6]).

7 STABILITY IN A TAIL AND U-RANK

In this section we look at two characterizations of superstability. For convenience we

follow [Vas18b, Section 4] to define some cardinals:

Definition 7.1. 1. λ(K) stands for the first stability cardinal above LS(K).

2. χ(K) stands for the least regular cardinal δ such that K has δ-local character of

ξ-nonsplitting for some stability cardinal ξ ≥ LS(K).

3. λ′(K) stands for the minimum stability cardinal ξ such that for any stability cardinal

ξ′ ≥ ξ, K has χ(K)-local character of ξ′-nonsplitting.

Observation 7.2. 1. By Assumption 2.1, λ(K) ≤ µ.

2. By Definition 3.10 (see also the remark after it), χ(K) ≤ χ.

3. By Lemma 6.7, we can equivalently define λ′(K) as the minimum stability cardinal

ξ such that K has χ(K)-local character of ξ-nonsplitting.

4. K is eventually superstable (ξ-superstable for large enough ξ) iff χ(K) = ℵ0.

Currently we do not have a nice bound of λ′(K) so the cardinal threshold might be

very high if we invoke λ′(K) or χ(K). Vasey built upon [She99] and spent several sections

to derive:

Fact 7.3. [Vas18b, Theorem 11.3(2)] Suppose K has continuity of ξ-nonsplitting for all

stability cardinal ξ, then λ′(K) < h(λ(K)).

We can now state Vasey’s characterization that superstability is equivalent to stability

in a tail of cardinals. Since continuity of µ-nonsplitting is not assumed there, item (1) only

holds for singular ξ. Also, the original formulation wrote λ′(K) instead of (λ′(K))+ but

the proof did not go through.

Fact 7.4. Let K be LS(K)-tame with a monster model.

1. [Vas18b, Corollary 4.14] Let χ1 as in Fact 6.3, ξ ≥ (λ′(K))+ + χ1 be singular, K be

stable in unboundedly many cardinal < ξ. K is stable in ξ iff cf(ξ) ≥ χ(K).
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2. [Vas18b, Corollary 4.24] χ(K) = ℵ0 iff K is stable in a tail of cardinals.

We prove a simpler and local analog to Fact 7.4. Rather than looking at the whole tail

of cardinals (more accurately the class of singular cardinals with all possible cofinalities)

after a potentially high threshold, we directly look for the next ω + 1 many cardinals of µ

and verify that K has enough stability, continuity of nonsplitting and symmetry in those

cardinals. Symmetry will be guaranteed by more stability.

Proposition 7.5. There is λ < h(µ+ω) such that if K is stable in [µ, λ) and has continuity

of µ+ω-nonsplitting, then it is µ+ω-superstable.

Proof. Obtain λ from Corollary 6.2(2) and suppose K is stable in [µ, λ) and has continuity

of µ+ω. The conclusion of Corollary 6.2(2) (which uses stability in µ+ω and continuity of

µ+ω-nonsplitting) gives a saturated model M of size µ+ω. We show that is a (µ+ω, ω)-limit:

by stability in [µ, µ+ω), build 〈Mn : n ≤ ω〉 ⊆ K<µ+ω u-increasing and continuous such

that for n < ω, Mn ∈ Kµ+n and Mω = M . On the other hand, by stability in µ+ω, build

〈Ni : i ≤ ω〉 ⊆ Kµ+ω u-increasing and continuous such that M0 ≤ N0. By a back-and-forth

argument, M ∼=M0 Nω and the latter is a (µ+ω, ω)-limit. By uniqueness of limit models of

the same cofinality, any (µ+ω, ω)-limit is saturated.

By Proposition 6.12(2) where ξ = µ+ω, δ = ℵ0, K has ℵ0-local character of µ+ω-

nonsplitting. Together with stability in µ+ω, we know that K is superstable in µ+ω.

We state a more general form of the above proposition:

Corollary 7.6. Let δ be a regular cardinal. There is λ < h(µ+δ) such that if K is sta-

ble in [µ, λ) and has continuity of µ+δ-nonsplitting, then it has δ-local character of µ+δ-

nonsplitting. Stability in [µ, λ) can be replaced by stability in [µ+δ, λ) and unboundedly

many cardinals below µ+δ.

Proof. Replace “ω” by δ in Proposition 7.5. Notice that unboundedly stability many car-

dinals below µ+δ are sufficient to build 〈Mi : i < δ〉 ⊆ K<µ+δ u-increasing.

Remark 7.7. 1. A missing case of Proposition 7.5 is perhaps the regular cardinal ℵ0.

In [BKV06, Theorem 2], it was shown that if K has ω-locality, ℵ0-tameness and

stability in ℵ0, then K is stable everywhere. The original proof used a tree argument

of height ω. We provide an alternative proof using our general tools: by ω-locality

and Proposition 3.16(2), K has continuity of ℵ0-nonsplitting. By Proposition 3.9,

K has ℵ0-local character of ℵ0-nonsplitting. By Corollary 6.11(1), it is (super)stable

everywhere.
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2. Our proof strategy of Proposition 7.5 is similar to that of [Vas18b, Theorem 4.11]

but we use different tools. Both assume stability in µ+ω and unboundedly many

cardinals in µ+ω. To obtain a saturated model, Vasey raised the threshold of µ so

that the union of µ+n-saturated models is µ+n-saturated (see Fact 6.3). Then he

used [Vas18b, Theorem 4.13] that models in Kµ+ω can be closed to a µ+n-saturated

model. These two give a saturated model in Kµ+ω . In contrast, we bypass such gap

by using the uniqueness of long enough limit models in Kµ+ω , this immediately gives

us a saturated model in Kµ+ω . After that, Vasey and our approaches converge: the

saturated model is a (µ+ω, ω)-limit and Proposition 6.12 gives ℵ0-local character of

µ+ω-nonsplitting.

Question 7.8. 1. Perhaps under extra assumptions, is it possible to obtain a tighter

bound of λ′(K) in terms of λ(K) than in Fact 7.3?

2. Let ξ1, ξ2 be stability cardinals. Is there any relationship between continuity of ξ1-

nonsplitting and continuity of ξ2-nonsplitting? Similarly, can one say anything about

continuity of ξ1-nonsplitting if for unboundedly many stability cardinal ξ < ξ1, K has

continuity of ξ-nonsplitting? A positive answer might help improve Proposition 7.5.

In [BG17, Section 7], Boney and Grossberg developed a U -rank for an independence

relation over types of arbitrary length. Until Fact 7.16, we specify that we only need an

independence relation over 1-types for the proofs to go through.

Definition 7.9. [BG17, Definition 7.2] Let K have a monster model and an independence

relation over types of length one. U is a class function that maps each Galois type (of length

one) in the monster model to an ordinal or ∞, such that for any M ∈ K, p ∈ gS(M),

1. U(p) ≥ 0;

2. For limit ordinal α, U(p) ≥ α iff U(p) ≥ β for all β < α;

3. For an ordinal β, U(p) ≥ β + 1 iff there is M ′ ≥ M , ‖M ′‖ = ‖M‖ and p′ ∈ gS(M ′)

such that p′ is a forking (in the sense of the given independence relation) extension

of p and U(p′) ≥ β;

4. For an ordinal α, U(p) = α iff U(p) ≥ α but U(p) 6≥ α + 1;

5. U(p) =∞ iff U(p) ≥ α for all ordinals α.

Through a series of lemmas, they managed to obtain the following fact (Assumption

2.1 is not needed).
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Fact 7.10. [BG17, Theorem 7.9] Let K have a monster model and an independence rela-

tion over types of length one. Suppose the independence relation satisfies invariance and

monotonicity. Let M ∈ K and p ∈ gS(M). The following are equivalent:

1. U(p) =∞;

2. There is 〈pn : n < ω〉 such that p0 = p and for n < ω, the domain of pn has size ‖M‖,
and pn+1 is a forking extension of pn.

The original proof proceeds with a lemma followed by the theorem statement. Since

the proof of the lemma omitted some details, and that the lemma and the theorem made

reference to each other, we straighten the proof as follows:

Lemma 7.11. (2)⇒(1) holds in Fact 7.10.

Proof. By induction on each ordinal α, we show that for each α, for each n < ω, U(pn) ≥ α.

The base case α = 0 is by the definition of U . The limit case follows from the inductive

hypothesis. Suppose we have proven the case α, then for each n < ω, inductive hypothesis

gives U(pn+1) ≥ α. By the definition of U , U(pn) ≥ α + 1.

Lemma 7.12. Let K have a monster model and an independence relation over types of

length one. Suppose the independence relation satisfies invariance and monotonicity. Let

λ ≥ LS(K). There is an ordinal αλ < (2λ)+ such that for M ∈ Kλ, p ∈ gS(M), if

U(p) ≥ αλ then U(p) =∞.

Proof. By invariance, there are at most 2λ many U -ranks of types over models of size λ. It

suffices to show that there is no gap in the U -rank: if β is an ordinal, N ∈ Kλ, q ∈ gS(N)

with β < U(q) <∞, then there is a forking extension q′ of q (with domain of size λ) such

that U(q′) = β. Otherwise pick a counterexample q ∈ gS(N). Since U(q) ≥ β + 1, there

is a forking extension q1 of q such that U(q1) ≥ β. As U(q1) cannot be β, U(q1) ≥ β + 1.

Using monotonicity of forking, we can inductively build 〈qn : n < ω〉 with q0 := q and for

n < ω, qn+1 is a forking extension of qn. By Lemma 7.11, U(q0) = U(q) =∞, contradicting

the assumption on U(q).

Lemma 7.13. Let K have a monster model and an independence relation over types of

length one. Suppose the independence relation satisfies invariance and monotonicity. Then

(1)⇒(2) in Fact 7.10 holds.

Proof. Let λ = ‖M‖, αλ as in Lemma 7.12 and p0 := p. Define 〈pn : n < ω〉 inductively

such that U(pn) = ∞. The base case is by assumption on p. Suppose pn is constructed

with U(pn) =∞, then in particular U(pn) ≥ αλ + 1. By definition of U , there is a forking

extension pn+1 of pn (with domain of size λ) such that U(pn+1) ≥ αλ. By Lemma 7.12

again, U(pn+1) =∞.
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Proof of Fact 7.10. Combine Lemma 7.11 and Lemma 7.13.

We have now arrived at an alternative characterization of superstability. At the end

of [GV17, Section 6], they suggested the use of coheir and show that superstability implies

bounded U -rank. Since we cannot verify the claim, we use instead µ-nonforking as the

independence relation to characterize superstability as bounded U -rank for limit models in

Kµ.

Corollary 7.14. Under Assumption 2.1, restrict µ-nonforking to limit models in Kµ or-

dered by ≤u. Then K is µ-superstable iff U(p) < ∞ for all p ∈ gS(M) and limit model

M ∈ Kµ.

Proof. By Fact 7.10, we need to show µ-superstability is equivalent to the negation of cri-

terion (2) there. By continuity of µ-nonforking (Proposition 4.4) and the proof of Lemma

3.7, it suffices to prove that µ-superstability is equivalent to µ-nonforking having local char-

acter ℵ0 (under AP it is always possible to extend an omega-chain of types). The forward

direction is given by Proposition 4.9 and the backward direction is given by Proposition

4.2, Proposition 4.5 and Proposition 4.19.

We look at one more result of U -rank, which shows the equivalence of being a nonfork-

ing extension and having the same U -rank (Fact 7.16). The extra assumption of LS(K)-

witness property for singletons was pointed out by [GMA21, Lemma 8.8] to allow the proof

of monotonicity of U -rank [BG17, Lemma 7.3] to go through. We will adapt their definition

of LS(K)-witness property for singletons because our nonforking is originally defined for

model-domains while their independence relations assume set-domains (another approach

is perhaps to work in the closure (Definition 7.17) of nonforking, but we will not pursue it

here).

Definition 7.15. 1. Let λ be a cardinal. An independence relation |̂ has the λ-witness

property if the following holds: let a be a singleton and M,N ∈ K. If for any M ′

with M ≤M ′ ≤ N , ‖M ′‖ ≤ ‖M‖+ λ, we have a |̂
M

M ′, then a |̂
M

N .

2. An independence relation satisfies left transitivity if the following holds: let A be a

set, M0 ≤M1 ≤ N with A |̂
M1

N and M1 |̂
M0

N , then A |̂
M0

N .

Fact 7.16. [BG17, Theorem 7.7] Let K have a monster model and an independence re-

lation over types of arbitrary length. Suppose the independence relation satisfies: in-

variance, monotonicity, left transitivity, existence, extension, uniqueness, symmetry and

LS(K)-witness property for singletons. For any p ∈ gS(M0), any q ∈ gS(M1) extending p

such that both U(p), U(q) <∞, then

U(p) = U(q)⇔ q is a nonforking extension of p
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We notice a gap in [BG17, Lemma 7.6] which Fact 7.16 depends on (readers can skip

to Fact 7.20 if they simply use Fact 7.16 as a blackbox; we will also give an alternative proof

that does not depend on the lemma). As usual, their definition of independence relations

assume that the domain contains the base: if we write A |̂
M

N , we assume M ≤ N . In the

proof of [BG17, Lemma 7.6], they applied monotonicity to obtain N2c |̂
N̄0

N1. However,

N̄0 6≤ N1 because c ∈ N̄0−N1 might happen. We will rewrite the proof in Proposition 7.19

using the idea of a closure of an independence relation, and drawing results from [BGKV16].

Definition 7.17. [BGKV16, Definition 3.4] |̂̄ is a closure of an independence relation |̂
if it satisfies the following properties:

1. |̂̄ is defined on triples of the form (A,M,B) where M ∈ K, A and B are sets of

elements. We allow M 6⊆ B.

2. Invariance: if f ∈ Aut(C) and A |̂̄
M

B, then f [A] |̂̄
f [M ]

f [B];

3. Monotonicity: if A |̂̄
M

B, A′ ⊆ A, B′ ⊆ B, then A′ |̂̄
M

B′;

4. Base monotonicity: if A |̂̄
M

B and M ≤M ′ ⊆M ∪B, then A |̂̄
M ′
B.

The minimal closure of |̂ (which is the smallest closure of |̂ ) is defined by: A |̂̄
M

C iff there

is N ≥M , N ⊇ C such that A |̂
M

N .

We quote the following lemma without proof.

Lemma 7.18. [BGKV16, Lemmas 5.1, 5.3, 5.4] Let |̂ be an independence relation for

types of arbitrary length, |̂̄ be the minimal closure of |̂ .

1. |̂ has symmetry iff |̂̄ has symmetry.

2. Suppose |̂ has extension. Then |̂ has left transitivity iff |̂̄ does.

3. |̂ has extension iff |̂̄ has extension.

Proposition 7.19. Under the same hypothesis as Fact 7.10, let N0 ≤ N1 ≤ N̄1; N0 ≤
N̄0 ≤ N̄1; N0 ≤ N2; c ∈ |N̄0|. If

N1 |̂
N0

N̄0 and N2 |̂
N̄0

N̄1

then there is some N3 extending both N1 and N2 such that

c |̂
N2

N3.
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Proof. We write |̂̄ to mean the minmal closure of the given independence relation |̂ . By

symmetry twice on N2 |̂
N̄0

N̄1, there is N̄2 containing c and extending N̄0, N2 such that

N̄2 |̂
N̄0

N̄1. By definition of the minimal closure,

N̄2 |̂̄
N̄0

N1.

On the other hand, by symmetry (and monotonicity) on N1 |̂
N0

N̄0, N̄0 |̂
N0

N1. Then

N̄0 |̂̄
N0

N1. Applying Lemma 7.18(2) to the last two closure independence, we have N2c |̂̄
N0

N1.

By Lemma 7.18(1), there is N ′3 ≥ N2 and containing c such that N1 |̂̄
N0

N ′3. By definition

of the minimal closure, N1 |̂
N0

N ′3. (Here we return to the original proof.) By base mono-

tonicity, N1 |̂
N2

N ′3. By symmetry, there is N3 extending N1 and N2 such that N ′3 |̂
N2

N3.

By monotonicity, c |̂
N2

N3 as desired.

Back to Fact 7.16, we would like to know if there are any examples of independence

relations that satisfy its hypotheses. The approach in [BG17] is to consider coheir [BG17,

Definition 3.2], assuming tameness, shortness, no weak order property and that coheir

satisfies extension. More developments of coheir can be found in [Vas16a] but the framework

there is too abstract to handle.

Another natural candidate is µ-nonforking. One obstacle is that the hypotheses in

Fact 7.16 require the independence relation to be over types of arbitrary length, while

we have defined it for singletons only. Another obstacles is that if we extend our frame

to longer types, we might not necessarily guarantee type-fullness (existence holds for all

nonalgebraic types), so we cannot invoke Fact 7.16. To resolve these, we use the following

fact to extend our frame to types of arbitrary length, while acknowledging that the new

frame might not be type-full. Then we give an alternative proof to Fact 7.16 that does not

use existence.

We state the full assumptions of the following facts.

Fact 7.20. Let K have a monster model, λ ≥ LS(K).

1. [BV17b, Theorem 1.1] Suppose K is λ-tame and there is a good (≥ λ)-frame perhaps

except the symmetry property. Then the frame can be extended to a (perhaps non-

type-full) good frame for types of arbitrary length and satisfying symmetry.

2. [BGKV16, Lemma 5.9] Let |̂ be an independence relation for types of arbitrary

length. Suppose |̂ satisfies symmetry and right transitivity, then it satisfies left

transitivity.
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Remark 7.21. 1. Fact 7.20(1) is achieved by independent sequences. If we simply build

nonforking from nonsplitting for longer types, then some of the results in this paper do

not generalize (for example stability of µ-types in Kµ immediately fails). One would

need extra assumptions (say shortness) and to build the frame in higher cardinals.

See also [Vas17c, Appendix A].

2. Another known approach to get a type-full frame for longer types is via Shelah’s NF.

Vasey [Vas16a, Sections 11, 12] showed that with shortness (which we do not assume

in this paper), one can extend a nice enough frame by NF, which is type-full.

Under µ-superstability, we can derive an independence relation that satisfies all the

hypotheses of Fact 7.16 except for existence for longer types. We will use Assumption 2.1.

Proposition 7.22. Let K be µ-superstable. Let K′ be the AEC of the limit models in K≥µ

ordered by ≤u. Then µ-nonforking restricted to K′ can be extended to a (perhaps non-type-

full) good frame for types of arbitrary length. Also it satisfies left transitivity and µ-witness

property for singletons.

Proof. By Corollary 4.13 and Remark 4.14(2), µ-nonforking restricted to K′ forms a good

(≥ µ)-frame perhaps except symmetry (it actually satisfies symmetry by Corollary 5.13(2)

but we do not need this result here). K′ is also µ-tame because K is µ-tame under As-

sumption 2.1 and we can extend a model in Kµ to a limit model which is in K ′. By Fact

7.20(1), µ-nonforking can be extended to a good (≥ µ)-frame for types of arbitrary length.

Since the extended frame enjoys symmetry and right transitivity, by Fact 7.20(2) it

satisfies left transitivity. We check the µ-witness property for singletons: let M ≤u N

both in K ′, p ∈ gS(N). Suppose for any M ′ with M ≤u M ′ ≤u N , ‖M ′‖ ≤ ‖M‖ + µ =

‖M‖, we have p � M ′ does not µ-fork over M . We need to show that p does not µ-fork

over M . Without loss of generality assume ‖N‖ > ‖M‖. By existence of µ-nonsplitting

(Proposition 3.12), there is N ′ ∈ Kµ, N ′ ≤ N such that p does not µ-split over N ′. As N

is saturated (replace “µ” by ‖N‖ in Corollary 6.2(2)), we can obtain N ′′ ∈ K ′‖M‖ such that

N ′ <u N
′′ <u N and M ≤u N ′′. By definition p does not µ-fork over N ′′. Since p � N ′′

does not µ-fork over M by assumption, Corollary 4.8 guaratees that p does not µ-fork over

M .

For comparison purposes, we reproduce the original proof of Fact 7.16 that uses exis-

tence for longer types. Then we give an alternative proof that bypasses it, so that we can

utilize the frame in Proposition 7.22.

Original proof of Fact 7.16. The forward direction is by definition of U -rank. For the back-

ward direction, we show that for any ordinal α, U(p) ≥ α iff U(q) ≥ α. It suffices to consider
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the successor case: if U(q) ≥ α + 1, then it has a forking extension q′ ∈ gS(M2) of rank

≥ α, with ‖M2‖ = ‖M1‖. By monotonicity of nonforking, q′ is also a forking extension of

p. However, ‖M‖ might not be the same as ‖M2‖ (this was pointed out by [GMA21]). We

claim that there must be some p′ ∈ gS(M ′) such that

• ‖M ′‖ = ‖M‖;

• p ≤ p′ ≤ q′; and

• p′ is a forking extension of p.

Otherwise, every such p′ satisfying the first two requirements must be a nonforking exten-

sion of p. By LS(K)-witness property, q′ is also a nonforking extension of p, contradiction.

Since U(q′) ≥ α, by inductive hypothesis U(p′) ≥ α, and hence U(p) ≥ α + 1.

If U(p) ≥ α+ 1, by definition there is p′ ∈ gS(M2) such that ‖M2‖ = ‖M‖ and p′ is a

forking extension of p of rank ≥ α. We claim that we can choose p′ and M2 so that there

is q′ ∈ gS(M3) with

• q′ extends p and p′;

• M3 extends M1 and M2;

• q′ is a nonforking extension of p′.

Assume that such p′ and M2 are chosen, we show that q′ is a forking extension of q:

otherwise by transitivity, q′ is a nonforking extension of p, and by monotonicity p′ is also

a nonforking extension of p, contradiction. Now q′ is a nonforking extension of p′, so by

inductive hypothesis U(q′) = U(p′) ≥ α. On the other hand, q′ is a forking extension of q,

so by definition U(q) ≥ U(q′) + 1 ≥ α + 1 as desired.

It remains to guarantee such p′ and M2 above exist. Let d realizes q and d′ realizes

p′. Since both p′ and q extends p, there is f ∈ AutM0(C) such that f(d′) = d. Since

gtp(d/M1) does not fork over M0, by symmetry there is M̄0 containing M0 and d such that

gtp(M1/M̄0) does not fork over M0. Let M̄1 extends both M̄0 and M1 (possible because

we work in C). By existence gtp(f [M2]/M̄0) does not fork over M̄0. By extension there

is M∗
2 such that gtp(M∗

2/M̄1) does not fork over M̄0 and gtp(M∗
2/M̄0) = gtp(f [M2]/M̄0).

Hence there is g ∈ AutM̄0
(C) with g[f [M2]] = M∗

2 . We now invoke Proposition 7.19

where we substitute N0, N1, N̄0, N̄1, N2, c by M0,M1, M̄0, M̄1,M
∗
2 , d respectively. Then we

obtain some M3 extending M1 and M∗
2 such that gtp(d/M3) does not fork over M∗

2 . p′ :=

gtp(d/M∗
2 ) satisfies the requirements.
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Alternative proof of Fact 7.16. In the original proof, the only place that uses existence for

longer types is to guarantee gtp(f [M2]/M̄0) does not fork over M̄0. Pick any M4 ≤ C that

extends both f [M2] and M1. We will work in the minimal closure of the independence

relation and use Lemma 7.18. From the original proof, we have obtained gtp(M1/M̄0) does

not fork over M0. By monotonicity gtp(M1/M̄0) does not fork over M̄0. By symmetry (for

the minimal clsoure), gtp(M̄0/M1) does not fork over M̄0. By extension (see [BGKV16,

Definition 3.5]), there is M∗ and f ∈ AutM̄0M1
(C) such that gtp(M∗/M4) does not fork

over M̄0 and f [M̄0] = M∗. Since f fixes M̄0, M∗ = M̄0. Therefore, gtp(M̄0/M4) does not

fork over M̄0. By monotonicity, gtp(M̄0/f [M2]) does not fork over M̄0. Symmetry gives

the desired result.

Corollary 7.23. Let K be µ-superstable and K′ be the AEC of the limit models in K≥µ

ordered by ≤u. Let |̂ be the extended frame from Proposition 7.22 and define the U-rank

for |̂ . For any M <u M1 ∈ K ′, p ∈ gS(M), any q ∈ gS(M1) extending p such that both

U(p), U(q) <∞, then

U(p) = U(q)⇔ q is a nonforking extension of p

Proof. Combine Fact 7.16 and Proposition 7.22. The alternative proof of Fact 7.16 (given

before Proposition 7.22) shows that existence is not necessary.

8 THE MAIN THEOREMS AND APPLICATIONS

We summarize our results in two main theorems. The first one concerns stable AECs

while the second one concerns superstable ones. Some of the following items allow µ ≥
LS(K) but we assume µ > LS(K) for a uniform statement. The proofs will come after the

main theorems.

Main Theorem 8.1. Let K be an AEC with a monster model, µ > LS(K), δ ≤ µ both

be regular. Suppose K is µ-tame, stable in µ and has continuity of µ-nonsplitting. The

following statements are equivalent under extra assumptions specified after the list:

1. K has δ-local character of µ-nonsplitting;

2. There is a good frame over the skeleton of (µ,≥ δ)-limit models ordered by ≤u, except

for symmetry and local character δ in place of ℵ0. In this case the frame is canonical;

3. K has uniqueness of (µ,≥ δ)-limit models;

4. For any increasing chain of µ+-saturated models, if the length of the chain has cofi-

nality ≥ δ, then the union is also µ+-saturated;
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5. Kµ+ has a δ-superlimit.

(1) and (2) are equivalent. If K is (< µ)-tame, then (3) implies (1). There is λ1 < h(µ)

such that if K is stable in [µ, λ1), then (1) implies (3). Given any ζ ≥ µ+, stability in

[µ, λ1) can be replaced by stability in [µ, ζ) plus no µ-order property of length ζ.

There is λ2 < h(µ+) such that if K is stable in [µ+, λ2) and has continuity of µ+-

nonsplitting, then (1) implies (4). Given any ζ ≥ µ++, stability in [µ+, λ2) can be replaced

by stability in [µ+, ζ) plus no µ+-order property of length ζ. Always (4) and (5) are equiv-

alent and they imply (3).

The following diagram summarizes the implications in Main Theorem 8.1. Labels

on the arrows indicate the extra assumptions needed, in addition to a monster model, µ-

tameness, stability in µ and continuity of µ-nonsplitting. As in the theorem statement,

whenever we require stability in the form [ξ, λ), we can replace it by stability in [ξ, ζ) plus

no ξ-order property of length ζ.

(3)

(2) (1) (4) (5)

(<µ)-tame

stable in [µ,λ1)

stable in [µ,λ1)

cont. of µ+-nonsplitting

Main Theorem 8.2. Let K be an AEC with a monster model, µ > LS(K) be regular.

Suppose K is µ-tame, stable in µ and has continuity of µ-nonsplitting. The following

statements are equivalent modulo (< µ)-tameness and a jump in cardinal (specified after

the list):

1. K has ℵ0-local character of µ-nonsplitting;

2. There is a good frame over the limit models in Kµ ordered by ≤u, except for symmetry.

In this case the frame is canonical;

3. Kµ has uniqueness of limit models;

4. For any increasing chain of µ+-saturated models, the union of the chain is also µ+-

saturated;

5. Kµ+ has a superlimit;

6. K is (µ+, µ+)-solvable;

7. K is stable in ≥ µ and has continuity of µ+ω-nonsplitting;
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8. U-rank is bounded when µ-nonforking is restricted to the limit models in Kµ ordered

by ≤u.

(1), (2) and (8) are equivalent and each of them implies (3) and (4). If K is (< µ)-

tame, then (3) implies (1). Always (4) and (5) are equivalent and they imply (3). (1)

implies (6) and (7) while (6) implies (4). (7) implies (1)µ+ω : K has ℵ0-local character of

µ+ω-nonsplitting.

The jump in cardinal is due to the lack of a precise bound on λ′(K) in deducing (7)⇒(1) (see

Question 7.8(1)). The following diagram summarizes the implications in Main Theorem

8.2. “µ+ω” indicates the jump in cardinal.

(3)

(2)

(8) (1) (4) (5)

(7) (6)

(<µ)-tame

µ+ω

Proof of Main Theorem 8.1. (1) and (2) are equivalent by Corollary 4.13 and Proposition

4.19. The canonicity of the frame is by Proposition 4.18. Suppose (3) holds. Then the

proof of Corollary 6.2(2) and Proposition 6.12(1) give (1).

Suppose (1) holds. Obtain λ1 = λ from Corollary 6.2 and take χ = δ. If K is stable

in [µ, λ1), then it has uniqueness of (µ,≥ δ)-limit models, so (3) holds. The alternative

hypotheses of stability and no-order-property work because we can replace λ in the proof

of Proposition 5.9 by ζ.

The direction of (1) to (4) is by Proposition 6.6. The alternative hypotheses work

because we can replace λ in the proof of Proposition 5.9 by ζ. (4) and (5) are equivalent

by Lemma 6.22 and Lemma 6.23. They imply (3) by Corollary 6.16.

For the proof of Main Theorem 8.2, we show the additional directions and refer the

readers to the proof of Main Theorem 8.1 for the original directions.

Proof of Main Theorem 8.2. Compared to Main Theorem 8.1, we do not need the extra

stability and continuity of nonsplitting assumptions because superstability already implies

them (Corollary 6.11(1) and Proposition 3.16(1)). (1) and (8) are equivalent by Corollary

7.14. (1) implies (7) by Corollary 6.11(1) while (1) implies (6) by the forward direction

of Proposition 6.24. (6) plus (< µ)-tameness implies (4) by the proof of the backward

direction of Proposition 6.24. (7) implies (1)µ+ω by Proposition 7.5.
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Remark 8.3. In [GV17, Corollary 5.5], they did not assume continuity of nonsplitting and

showed that: if item (4) in Main Theorem 8.2 holds in some ξ ≥ iω(χ0 + µ) (see Fact 6.3

for the definition of χ0), then every limit model in Kξ is iω(χ0 +µ)-saturated. This implies

ℵ0-local character of ξ-nonsplitting. Using [BV17b, Theorem 7.1], there is a λ < h(ξ) such

that (3) holds with µ replaced by λ. From hindsight, the last argument can be improved by

quoting Corollary 6.11(3) instead and having λ = ξ+. In comparison, our (4)⇒(3) allows

(3) to still be in Kµ and does not have the high cardinal threshold.

Corollary 8.4. Let ξ > LS(K) and K have a monster model, continuity of ξ-nonsplitting

and be (< ξ)-tame. Then the following are equivalent:

1. K has uniqueness of limit models in Kξ: for any M0,M1,M2 ∈ Kξ, if both M1 and

M2 are limit over M0, then M1
∼=M0 M2;

2. K has uniqueness of limit models without base in Kξ: any limit models in Kξ are

isomorphic.

Proof. The forward direction is immediate and only requires JEP . For the backward

direction, the proof of (3)⇒(1) in Main Theorem 8.2 goes through (JEP is needed) and we

have ξ-superstability. By (1)⇒(3) in Main Theorem 8.2, it has uniqueness of limit models

in Kξ.

As applications, we present alternative proofs to the results in [MA20] and [SV18]

with stronger assumptions. In [MA20], limit models of abelian groups are studied.

Fact 8.5. 1. [MA20, Definition 3.1, Fact 3.2] Let Kab be the class of abelian groups

ordered by subgroup relation. Then Kab is an AEC with LS(Kab) = ℵ0, has a

monster model and is (< ℵ0)-tame.

2. [MA20, Fact 3.3(2)] Kab is stable in all infinite cardinals.

3. [MA20, Corollary 3.8] Kab has uniqueness of limit models in all infinite cardinals.

In the original proof of Fact 8.5(3), an explicit algebraic expression of limit models

was obtained, so that limit models of the same cardinality are isomorphic to each other.

In [MA20, Remark 3.9], it was remarked that [Vas18b] could be used to obtain uniqueness

of limit models for high enough cardinals (above ≥ i(2ℵ0 )+). We write down the exact

argument using known results. Then we present another proof that covers lower cardinals

using results in this paper (but not any algebraic description of limit models).
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First proof of Fact 8.5(3). In Fact 7.4(1), pick ξ ≥ (λ′(K))+ +χ1 with cf(ξ) = ℵ0. By Fact

8.5(2), Kab is stable in ξ. So the conclusion of Fact 7.4(1) gives superstability in ≥ λ′(Kab).

By [VV17, Corollary 1.4] (which combines [VV17, Fact 2.16, Corollary 6.9]), Kab has

uniqueness of limit models in Kab
≥λ′(Kab)

. Notice that by Fact 7.3, λ′(Kab) < h(λ(Kab)) =

h(ℵ0) = i(2ℵ0 )+ , so we can guarantee uniqueness of limit models above i(2ℵ0 )+ .

Second proof of Fact 8.5(3). By Fact 8.5(1)(2), Kab is stable in ℵ0 and is (< ℵ0)-tame. The

latter implies ω-locality. By Proposition 3.16(2), Kab has continuity of ℵ0-nonsplitting. By

Remark 7.7(1), it is superstable in ≥ ℵ0. By Corollary 6.2(1) (or simply [VV17, Corollary

1.4]), it has uniqueness of limit models in all infinite cardinals.

We turn to look at a strictly stable AEC.

Fact 8.6. 1. [MA20, Definition 4.1, Facts 4.2, 4.5] Let Ktf be the class of torsion-

free abelian groups ordered by pure subgroup relation. Then Ktf is an AEC with

LS(Ktf ) = ℵ0, has a monster model and is (< ℵ0)-tame.

2. [MA20, Fact 4.7] Ktf is stable in λ iff λℵ0 = λ. In particular Ktf is strictly stable.

3. [MA20, Corollary 4.18] Let λ ≥ ℵ1. Ktf has uniqueness of (λ,≥ ℵ1)-limit models.

4. [MA20, Theorem 4.22] Let λ ≥ ℵ0. Any (λ,ℵ0)-limit model in Ktf is not algebraically

compact.

5. [MA20, Lemmas 4.10, 4.14] Let λ ≥ ℵ1. Any (λ,≥ ℵ1)-limit model in Ktf is alge-

braically compact. Any two algebraically compact limit models in Ktf
λ are isomorphic.

The original proof of the second part of Fact 8.6(3) uses an explicit algebraic expression

of algebraically compact groups [MA20, Fact 4.13]. Using the results of this paper, we give a

weaker version but without using any algebraic expression of algebraically compact groups.

Proposition 8.7. Assume CH. If for all stability cardinal λ ≥ ℵ1, Ktf does not have the

λ-order property of length λ+ω, then for all such λ, it has uniqueness of (λ,≥ ℵ1)-limit

models.

Proof. By CH and Fact 8.6(2), Ktf is stable in ℵ1. By Fact 8.6(1), Ktf is (< ℵ0)-tame,

hence it has ω-locality. By Proposition 3.16(2), Ktf has continuity of ℵ1-nonsplitting.

Proposition 3.9 and Lemma 6.7 give ℵ1-local character of λ-nonsplitting for all stability

cardinals λ. By Fact 6.10(1), Ktf is stable in [λ, λ+ω). By Corollary 6.2(1) and Remark

6.8(1), Ktf has uniqueness of (λ,≥ ℵ1)-limit models for all λ ≥ ℵ1.

Question 8.8. Is it true that Ktf does not have ℵ1-order property of length ℵω?
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For Fact 8.6(4), the original proof argued that uniqueness of limit models eventually

leads to superstability for large enough λ (from an older result in [GV17]). Then a specific

construction deals with small λ. In [MA20, Remark 4.23], it was noted that [Vas18b,

Lemma 4.12] could deal with both cases of λ. We give a full proof here (the algebraic

description of limit models is needed):

Proof of Fact 8.6(4). Let λ ≥ ℵ0 and M be a (λ,ℵ0)-limit model. Then Ktf is stable in

λ and by Fact 8.6(2) λ > ℵ0. Suppose M is algebraically compact, by Fact 8.6(5) and

Corollary 6.2(2) M is isomorphic to (λ,≥ ℵ1)-limit models and is saturated. By Propo-

sition 6.12(2) (where 〈Mi : i ≤ ℵ0〉 witnesses that M is (λ,ℵ0)-limit), ℵ0-local character

of λ-nonsplitting applies to M . Since M is arbitrary, Ktf has ℵ0-local character of λ-

nonsplitting, which implies stability in ≥ λ by Fact 6.10(2), contradicting Fact 8.6(2).

Remark 8.9. [Vas18b, Lemma 4.12] happened to work because we do not care about the

case ℵ0 (which is not stable) and we can always apply item (2) in Proposition 6.12.

In [SV18], ℵ0-stable AECs with ℵ0-AP , ℵ0-JEP and ℵ0-NMM were studied. They

built a superlimit model in ℵ0 by connecting limit models with sequentially homogeneous

models [SV18, Theorem 4.4]. Then they defined splitting over finite sets where types have

countable domains and obtained finite character assuming categoricity in ℵ0 [SV18, Fact

5.3]. This allowed them to build a good ℵ0-frame over models generated by the superlimit.

These methods are absent in our paper because we studied AECs with a general LS(K),

and our splitting is defined for types over model-domains.

In [SV18, Corollary 5.9], they showed the existence of a superlimit in ℵ1 assuming weak

(< ℵ0,ℵ0)-locality among other assumptions. We will strengthen the locality assumption

to ω-locality, and work in a monster model to give an alternative proof. This allows us to

bypass the machineries in [SV18] that are sensitive to the cardinal ℵ0, and the technical

manipulation of symmetry in [SV18, Section 3]. Also, our result extends to a general

LS(K).

Proposition 8.10. Let K is an ℵ0-stable AEC with a monster model and has ω-locality.

Then there is a superlimit in ℵ1. In general, let λ ≥ LS(K), and if K is stable in λ instead

of ℵ0, then it has a superlimit in λ+.

Proof. Apply Main Theorem 8.2(1)⇒(5) where µ = LS(K) (that direction does not require

µ > LS(K)). Notice that ω-locality implies LS(K)-tameness.

Tracing our proof, we require global assumptions of a monster model and ω-locality

in order to use our symmetry results, especially Proposition 5.9. We end this section with

the following:
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Question 8.11. Instead of global assumptions like monster model and no-order-property,

is it possible to obtain local symmetry properties in Section 5 using more local assumptions?
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