Axiomatizing AECs and Applications 2022 North American Annual Meeting

Samson Leung

Carnegie Mellon University

April 8, 2022

★ ∃ >

Overview

- Main results
- Abstract elementary classes (AECs)
- Proof idea
- Other results
- Open questions

• 3 >

< 47 ▶

э

Theorem (Shelah)

Let **K** be an AEC and $\lambda = LS(\mathbf{K})$. Then K is $PC_{\lambda,2^{\lambda}}$.

イロン 不聞 とくほとう ほとう

3

Theorem (Shelah)

Let **K** be an AEC and $\lambda = LS(\mathbf{K})$. Then K is $PC_{\lambda,2^{\lambda}}$. Namely, there is an expansion $L' \supseteq L(\mathbf{K})$, a first-order theory T in L', a set of L'-types Γ with

- $\mathbf{0} \ K = PC(T, \Gamma, \mathsf{L}(\mathsf{K}));$
- $|T| \leq \lambda;$
- $|\Gamma| \leq 2^{\lambda}.$

く 何 ト く ヨ ト く ヨ ト

Theorem (Shelah)

Let **K** be an AEC and $\lambda = LS(\mathbf{K})$. Then K is $PC_{\lambda,2^{\lambda}}$. Namely, there is an expansion $L' \supseteq L(\mathbf{K})$, a first-order theory T in L', a set of L'-types Γ with

K = PC(T, Γ, L(K));
 |T| ≤ λ;
 |Γ| < 2^λ.

Motivation: how to control $|\Gamma|$?

く 何 ト く ヨ ト く ヨ ト

Theorem (Shelah)

Let **K** be an AEC and $\lambda = LS(\mathbf{K})$. Then K is $PC_{\lambda,2^{\lambda}}$. Namely, there is an expansion $L' \supseteq L(\mathbf{K})$, a first-order theory T in L', a set of L'-types Γ with

K = PC(T, Γ, L(K));
|T| ≤ λ;
|Γ| ≤ 2^λ.

Motivation: how to control $|\Gamma|$?

```
Theorem (4.1,4.10)
```

Let **K** be an AEC and $\lambda = LS(\mathbf{K})$. Then there is χ depending on **K** such that $\lambda \leq \chi \leq 2^{\lambda}$ and K is $PC_{\chi,\chi}$.

э

イロト イヨト イヨト ・

Theorem (Shelah)

Let **K** be an AEC and $\lambda = LS(\mathbf{K})$. Then K is $PC_{\lambda,2^{\lambda}}$. Namely, there is an expansion $L' \supseteq L(\mathbf{K})$, a first-order theory T in L', a set of L'-types Γ with

K = PC(T, Γ, L(K));
|T| ≤ λ;
|Γ| ≤ 2^λ.

Motivation: how to control $|\Gamma|$?

Theorem (4.1,4.10)

Let **K** be an AEC and $\lambda = LS(\mathbf{K})$. Then there is χ depending on **K** such that $\lambda \leq \chi \leq 2^{\lambda}$ and K is $PC_{\chi,\chi}$. Moreover, under $2^{\lambda} < 2^{\lambda^+}$, if **K** is categorical in λ, λ^+ and stable in λ , then **K** is $PC_{\lambda,\lambda}$.

3

3/17

Fact (Shelah)

Let **K** be an AEC, $\theta \ge LS(\mathbf{K})$. Suppose the following hold:

- $K, K^{<}$ are both $PC_{\theta,\theta}$;
- **2** K is categorical in both θ and θ^+ ;
- δ(θ, 1) = θ⁺. (Threshold cardinal for an infinite decreasing chain to exist in a PC_{θ,1}-class.)

Then $K_{\theta^{++}} \neq \emptyset$.

A (1) < A (2) < A (2) </p>

Fact (Shelah)

Let **K** be an AEC, $\theta \ge LS(\mathbf{K})$. Suppose the following hold:

- $K, K^{<}$ are both $PC_{\theta,\theta}$;
- **2** K is categorical in both θ and θ^+ ;
- $\delta(\theta, 1) = \theta^+$. (Threshold cardinal for an infinite decreasing chain to exist in a $PC_{\theta,1}$ -class.)

Then $K_{\theta^{++}} \neq \emptyset$.

Corollary (Shelah)

(1) is true for $\theta \geq 2^{\lambda}$.

- 御下 - 戸下 - 戸下 - 戸

Fact (Shelah)

Let **K** be an AEC, $\theta \ge LS(\mathbf{K})$. Suppose the following hold:

- $K, K^{<}$ are both $PC_{\theta,\theta}$;
- **2** K is categorical in both θ and θ^+ ;
- δ(θ, 1) = θ⁺. (Threshold cardinal for an infinite decreasing chain to exist in a PC_{θ,1}-class.)

Then $K_{\theta^{++}} \neq \emptyset$.

Corollary (Shelah)

(1) is true for $\theta \geq 2^{\lambda}$.

Corollary (4.8)

(1) is true for $\theta \ge \chi$. Moreover, under $2^{\lambda} < 2^{\lambda^+}$ and stability in λ , (2) already implies (1) for $\theta = \lambda$.

(日)

Shelah developed an axiomatic framework to contain certain classes of models, including models of first-order theories.

Shelah developed an axiomatic framework to contain certain classes of models, including models of first-order theories.

Definition

Let L be a finitary language. An abstract elementary class $\mathbf{K} = \langle K, \leq_{\mathbf{K}} \rangle$ in $L = L(\mathbf{K})$ satisfies the following axioms:

() *K* is a class of *L*-structures and $\leq_{\mathbf{K}}$ is a partial order on $K \times K$.

② For $M_1, M_2 \in K$, $M_1 \leq_{\mathbf{K}} M_2$ implies $M_1 \subseteq M_2$ (as *L*-substructures).

Definition (Continued)

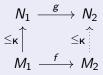
- Isomorphism axioms:
 - **a** If $M \in K$, N is an L-structure, $M \cong N$, then $N \in K$.

∃ ⇒

< A > <

Definition (Continued)

- Isomorphism axioms:
 - **a** If $M \in K$, N is an L-structure, $M \cong N$, then $N \in K$.
 - Let $M_1, M_2, N_1, N_2 \in K$. If $f : M_1 \cong M_2$, $g : N_1 \cong N_2$, $g \supseteq f$ and $M_1 \leq_{\mathbf{K}} N_1$, then $M_2 \leq_{\mathbf{K}} N_2$.



< 43 > <

Definition (Continued)

• Coherence: Let $M_1, M_2, M_3 \in K$. If $M_1 \leq_{\mathbf{K}} M_3$, $M_2 \leq_{\mathbf{K}} M_3$ and $M_1 \subseteq M_2$, then $M_1 \leq_{\mathbf{K}} M_2$.

< A > <

Definition (Continued)

- Coherence: Let $M_1, M_2, M_3 \in K$. If $M_1 \leq_{\mathbf{K}} M_3$, $M_2 \leq_{\mathbf{K}} M_3$ and $M_1 \subseteq M_2$, then $M_1 \leq_{\mathbf{K}} M_2$.
- Solution Solution: There exists an infinite cardinal λ ≥ |L(K)| such that: for any M ∈ K, A ⊆ |M|, there is some N ∈ K with A ⊆ |N|, N ≤_K M and ||N|| ≤ λ + |A|. We call the minimum such λ the Löwenheim-Skolem number LS(K).

Definition (Continued)

- Coherence: Let $M_1, M_2, M_3 \in K$. If $M_1 \leq_{\mathbf{K}} M_3$, $M_2 \leq_{\mathbf{K}} M_3$ and $M_1 \subseteq M_2$, then $M_1 \leq_{\mathbf{K}} M_2$.
- Solution Solution Solution: There exists an infinite cardinal λ ≥ |L(K)| such that: for any M ∈ K, A ⊆ |M|, there is some N ∈ K with A ⊆ |N|, N ≤_K M and ||N|| ≤ λ + |A|. We call the minimum such λ the Löwenheim-Skolem number LS(K).
- Chain axioms: Let α be an ordinal and $\langle M_i : i < \alpha \rangle \subseteq K$ such that for $i < j < \alpha$, $M_i \leq_{\mathbf{K}} M_j$.
 - Then $M = \bigcup_{i < \alpha} M_i$ is in K and for all $i < \alpha$, $M_i \leq_{\mathbf{K}} M$.
 - **2** Let $N \in K$. If in addition for all $i < \alpha$, $M_i \leq_{\mathbf{K}} N$, then $M \leq_{\mathbf{K}} N$.

Definition

Let **K** be an AEC and $\lambda \geq LS(\mathbf{K})$.

$$I(\lambda, \mathbf{K}) = |\{M/_{\cong} : M \in K_{\lambda}\}|$$

э

イロト イヨト イヨト ・

Definition

Let **K** be an AEC and $\lambda \geq \mathsf{LS}(\mathbf{K})$.

$$I(\lambda, \mathbf{K}) = |\{M/_{\cong} : M \in K_{\lambda}\}|$$

 $I_2(\lambda, \mathbf{K}) = |\{(M, N)/_{\cong} : M \leq_{\mathbf{K}} N \text{ both in } K_{\lambda}\}|$

where $(M_1, N_1) \cong (M_2, N_2)$ iff $M_1 \leq_{\mathbf{K}} N_1$, $M_2 \leq_{\mathbf{K}} N_2$ and there is $g : N_1 \cong N_2$ such that $g \upharpoonright M_1 : M_1 \cong M_2$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

Definition

Let **K** be an AEC and $\lambda \geq \mathsf{LS}(\mathbf{K})$.

$$I(\lambda, \mathbf{K}) = |\{M/_{\cong} : M \in K_{\lambda}\}|$$

 $I_2(\lambda, \mathbf{K}) = |\{(M, N)/\cong : M \leq_{\mathbf{K}} N \text{ both in } K_{\lambda}\}|$

where $(M_1, N_1) \cong (M_2, N_2)$ iff $M_1 \leq_{\mathbf{K}} N_1$, $M_2 \leq_{\mathbf{K}} N_2$ and there is $g : N_1 \cong N_2$ such that $g \upharpoonright M_1 : M_1 \cong M_2$.

Fact

 $I_2(\lambda, \mathbf{K}) \leq 2^{\lambda}.$

In the main results, we had $\chi = \lambda + I_2(\lambda, \mathbf{K})$, and bypassed I_2 under more assumptions.

A B A B A B A B A B A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A
 B
 A

Definition

Let I be an index set. A directed system $\langle M_i : i \in I \rangle \subseteq K$ indexed by I satisfies the following: for any $i, j \in I$, there is $k \in I$ such that $M_i \leq_{\mathbf{K}} M_k$ and $M_j \leq_{\mathbf{K}} M_k$.

< 回 > < 回 > < 回 >

Definition

Let I be an index set. A directed system $\langle M_i : i \in I \rangle \subseteq K$ indexed by I satisfies the following: for any $i, j \in I$, there is $k \in I$ such that $M_i \leq_{\mathbf{K}} M_k$ and $M_j \leq_{\mathbf{K}} M_k$.

Given $M \in K$, we index the system by finite tuples of elements in M. Namely, $I = |M|^{<\omega}$ (ordered by inclusion).

Definition

Let I be an index set. A directed system $\langle M_i : i \in I \rangle \subseteq K$ indexed by I satisfies the following: for any $i, j \in I$, there is $k \in I$ such that $M_i \leq_{\mathbf{K}} M_k$ and $M_j \leq_{\mathbf{K}} M_k$.

Given $M \in K$, we index the system by finite tuples of elements in M. Namely, $I = |M|^{<\omega}$ (ordered by inclusion). Conversely,

Fact

Let $\langle M_i : i \in I \rangle \subseteq K$ be a directed system. Then

$$M = \bigcup_{i \in I} M_i \in K;$$

2 For all
$$i \in I$$
, $M_i \leq_{\mathbf{K}} M$;

3 Let $N \in K$. If in addition for all $i \in I$, $M_i \leq_{\mathbf{K}} N$, then $M \leq_{\mathbf{K}} N$.

Fact

Let **K** and **K**' be two AECs with $L(\mathbf{K}) = L(\mathbf{K}')$. If there exists a cardinal λ such that

$$1 \lambda \geq \mathsf{LS}(\mathbf{K}) + \mathsf{LS}(\mathbf{K}');$$

2 $\mathbf{K}_{\lambda} = \mathbf{K}'_{\lambda}$ (both the models and the ordering),

then $\mathbf{K}_{\geq\lambda} = \mathbf{K}'_{\geq\lambda}$.

< 回 > < 三 > < 三 > -

3

10/17

Fact

Let **K** and **K**' be two AECs with $L(\mathbf{K}) = L(\mathbf{K}')$. If there exists a cardinal λ such that

•
$$\lambda \geq \mathsf{LS}(\mathbf{K}) + \mathsf{LS}(\mathbf{K}');$$

2 $\mathbf{K}_{\lambda} = \mathbf{K}'_{\lambda}$ (both the models and the ordering),

then $\mathbf{K}_{\geq \lambda} = \mathbf{K}'_{>\lambda}$.

Hence, given an AEC K, it suffices to encode the models and the ordering in $\kappa_{\text{LS}(K)}.$

3

・ 同 ト ・ ヨ ト ・ ヨ ト …

Let *M* be an L(**K**)-structure, $\lambda = LS(\mathbf{K})$.

 Expand L(K) by adding λ-many functions. They map a finite tuple to a K-structure containing it:

 $a \in |M|^{<\omega} \mapsto \{f_i(a) : i < \lambda\} = |M_a| \text{ with } M_a \in K.$

く 何 ト く ヨ ト く ヨ ト

э

Let *M* be an L(**K**)-structure, $\lambda = LS(\mathbf{K})$.

 Expand L(K) by adding λ-many functions. They map a finite tuple to a K-structure containing it:

 $a \in |M|^{<\omega} \mapsto \{f_i(a) : i < \lambda\} = |M_a| \text{ with } M_a \in K.$

• " $M_a \in K$ " is by listing all the isomorphism types in K_λ , there are $I(\lambda, \mathbf{K})$ -many.

3

Let *M* be an L(**K**)-structure, $\lambda = LS(\mathbf{K})$.

 Expand L(K) by adding λ-many functions. They map a finite tuple to a K-structure containing it:

 $a \in |M|^{<\omega} \mapsto \{f_i(a) : i < \lambda\} = |M_a| \text{ with } M_a \in K.$

- " $M_a \in K$ " is by listing all the isomorphism types in K_λ , there are $I(\lambda, \mathbf{K})$ -many.
- Stipulate that $\langle M_a : a \in |M|^{<\omega} \rangle$ forms a directed system: If $a \cup b \subseteq c$ then $M_a \leq_{\mathbf{K}} M_c$ and $M_b \leq_{\mathbf{K}} M_c$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let *M* be an L(**K**)-structure, $\lambda = LS(\mathbf{K})$.

 Expand L(K) by adding λ-many functions. They map a finite tuple to a K-structure containing it:

 $a \in |M|^{<\omega} \mapsto \{f_i(a) : i < \lambda\} = |M_a| \text{ with } M_a \in K.$

- " $M_a \in K$ " is by listing all the isomorphism types in K_λ , there are $I(\lambda, \mathbf{K})$ -many.
- Stipulate that $\langle M_a : a \in |M|^{<\omega} \rangle$ forms a directed system: If $a \cup b \subseteq c$ then $M_a \leq_{\mathbf{K}} M_c$ and $M_b \leq_{\mathbf{K}} M_c$.
 - " $\leq_{\mathbf{K}}$ " is by listing all the isomorphism types of pairs $N_0 \leq_{\mathbf{K}} N_1$ in K_{λ} , there are $I_2(\lambda, \mathbf{K})$ -many.

11/17

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

We have axiomatized **K** in an $L'_{\chi^+,\omega}$ -sentence σ where L' contains extra functions than $L(\mathbf{K})$ and $\chi = \lambda + I_2(\lambda, \mathbf{K})$. To convert this to a PC-class, we use the following fact:

We have axiomatized **K** in an $L'_{\chi^+,\omega}$ -sentence σ where L' contains extra functions than $L(\mathbf{K})$ and $\chi = \lambda + I_2(\lambda, \mathbf{K})$. To convert this to a PC-class, we use the following fact:

Chang's presentation theorem

Let θ be an infinite cardinal, L be a language of size $\leq \theta$, T be an $L_{\theta^+,\omega}$ -theory contained in a fragment of size $\leq \theta$, then the models of T is a $PC_{\theta,\theta}$ -class.

We have axiomatized **K** in an $L'_{\chi^+,\omega}$ -sentence σ where L' contains extra functions than $L(\mathbf{K})$ and $\chi = \lambda + I_2(\lambda, \mathbf{K})$. To convert this to a PC-class, we use the following fact:

Chang's presentation theorem

Let θ be an infinite cardinal, L be a language of size $\leq \theta$, T be an $L_{\theta^+,\omega}$ -theory contained in a fragment of size $\leq \theta$, then the models of T is a $PC_{\theta,\theta}$ -class.

Taking $T = \{\sigma\}$, we obtain **K** as a $PC_{\chi,\chi}$ -class.

くぼう くほう くほう しゅ

Theorem

Let **K** be an AEC and $\lambda = LS(\mathbf{K})$. Under $2^{\lambda} < 2^{\lambda^+}$, if **K** is categorical in λ, λ^+ and stable in λ , then **K** is $PC_{\lambda,\lambda}$.

く 何 ト く ヨ ト く ヨ ト

3

Theorem

Let **K** be an AEC and $\lambda = LS(\mathbf{K})$. Under $2^{\lambda} < 2^{\lambda^+}$, if **K** is categorical in λ, λ^+ and stable in λ , then **K** is $PC_{\lambda,\lambda}$.

By categoricity in λ , we avoid listing (individual) models indexed by $I(\lambda, \mathbf{K})$.

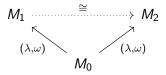
く 何 ト く ヨ ト く ヨ ト

э

Theorem

Let **K** be an AEC and $\lambda = LS(\mathbf{K})$. Under $2^{\lambda} < 2^{\lambda^+}$, if **K** is categorical in λ, λ^+ and stable in λ , then **K** is $PC_{\lambda,\lambda}$.

By categoricity in λ , we avoid listing (individual) models indexed by $I(\lambda, \mathbf{K})$. The assumptions also imply that we can build limit models that are isomorphic over the same base:



(In other words, if $I(\lambda, \mathbf{K}) = 1$ and $\leq_{\mathbf{K}}$ is replaced by " (λ, ω) -limit", then $I_2(\lambda, \mathbf{K}) = 1!$)

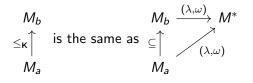
- 本間 と く ヨ と く ヨ と 二 ヨ

Instead of encoding $M_a \leq_{\mathbf{K}} M_b$, we use coherence axiom and encode $M_a \subseteq M_b$ and the existence of a common limit model over them.

э

< A >

Instead of encoding $M_a \leq_{\mathbf{K}} M_b$, we use coherence axiom and encode $M_a \subseteq M_b$ and the existence of a common limit model over them.



14 / 17

One can also axiomatize an AEC K within the same language L(K).

Fact (Shelah-Villaveces)

Let **K** be an AEC, $L = L(\mathbf{K})$ and $\lambda = LS(\mathbf{K})$. Then **K** can be axiomatized by a sentence in $L_{(2^{2^{\lambda^+}})^{+++}}$.

One can also axiomatize an AEC K within the same language L(K).

Fact (Shelah-Villaveces)

Let **K** be an AEC, $L = L(\mathbf{K})$ and $\lambda = LS(\mathbf{K})$. Then **K** can be axiomatized by a sentence in $L_{(2^{2^{\lambda^+}})^{+++}}$.

Their proof used partition theorem to color an ω -tree of models, but we could not verify some of the claims.

One can also axiomatize an AEC K within the same language L(K).

Fact (Shelah-Villaveces)

Let K be an AEC, L = L(K) and $\lambda = LS(K)$. Then K can be axiomatized by a sentence in $L_{(2^{2^{\lambda^+}})^{+++}}$.

Their proof used partition theorem to color an ω -tree of models, but we could not verify some of the claims.

Theorem (3.7)

Let **K** be an AEC, $L = L(\mathbf{K})$, $\lambda = LS(\mathbf{K})$ and $\chi = \lambda + I_2(\lambda, \mathbf{K})$. Then **K** can be axiomatized by a sentence in $L_{\chi^+,\lambda^+}(\omega \cdot \omega)$ (game quantification of $\omega \cdot \omega$ steps).

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $\mu \geq \aleph_0$. Define PC^{μ} as <u>before</u> except that the underlying languages L, L' are $(< \mu)$ -ary.

K is	K is axiomatizable in	K is
An AEC	$L_{\chi^+,\lambda^+}(\omega\cdot\omega)$	$PC_{\chi,\chi}$
A μ -AEC	$L_{\chi^+,\lambda^+}(\mu\cdot\mu)$	$PC^{\mu}_{\chi,\chi}$

э

< /⊒> <

Open questions

Question

Let **K** be an AEC and $\lambda = \mathsf{LS}(\mathbf{K})$.

- Under extra assumptions (categoricity, stability, etc), is it possible to bound l₂(λ, K) strictly below 2^λ ?
 - We bypassed I_2 and used other arguments.

∃ ⇒

A ► <

Open questions

Question

Let **K** be an AEC and $\lambda = LS(\mathbf{K})$.

- Under extra assumptions (categoricity, stability, etc), is it possible to bound l₂(λ, K) strictly below 2^λ ?
 - We bypassed I_2 and used other arguments.
- Can we relate the infinitary logics $L_{\alpha,\beta}$ and $L_{\gamma,\epsilon}(\delta)$?
 - This might remove the game quantification in our axiomatization.

Open questions

Question

Let **K** be an AEC and $\lambda = LS(\mathbf{K})$.

 Under extra assumptions (categoricity, stability, etc), is it possible to bound l₂(λ, K) strictly below 2^λ ?

We bypassed I_2 and used other arguments.

• Can we relate the infinitary logics $L_{\alpha,\beta}$ and $L_{\gamma,\epsilon}(\delta)$?

This might remove the game quantification in our axiomatization.

- Does the Hanf number exist for μ-AECs?
 - Hanf number is the threshold cardinal for arbitrarily large models. In AECs, the Hanf number is $\beth_{(2^{\lambda})^{+}}$.

・ 同 ト ・ ヨ ト ・ ヨ ト …