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2022 NORTH AMERICAN ANNUAL MEETING

OF THE ASSOCIATION FOR SYMBOLIC LOGIC

Cornell University
Ithaca, NY, USA

April 7–10, 2022

Program Committee: Wesley Calvert, Valentine Kabanets, Justin Moore, Rehana Pa-
tel, Sanford Shieh and Jindrich Zapletal (chair).
Local Organizing Committee: Bob Constable, Harold Hodes, Alexander Kocurek, Dex-
ter Kozen, Justin Moore (chair), Anil Nerode and Slawomir Solecki.

All plenary and tutorial talks will be held in Rockefeller Hall 201. The special session
and contributed talks will be held in rooms 102, 103, 104, 105, 112 and 115 of Rockefeller
Hall. Coffee and registration will take place in the hallway outside 102-115 Rockefeller.
The welcoming reception will be held at 6:00pm on Thursday April 7 in the Clark
Atrium in the Physical Sciences Building.

THURSDAY, April 7

Morning

8:00 – 9:30 COVID check-in, registration and coffee.
9:30 – 10:30 Invited Lecture: Alexander Razborov (University of Chicago),

Continuous combinatorics.
10:30 – 11:00 Coffee and registration.
11:00 – 12:00 Tutorial Lecture 1: Isaac Goldbring (University of California,

Irvine), The Connes Embedding Problem, MIP∗ = RE, and model
theory, part 1.

Afternoon

2:00 – 3:30 Special Session A1, B1, C1, D1 and E1. See pages 3–5.
3:30 – 4:00 Coffee and registration.
4:00 – 5:00 Tutorial Lecture 2: Isaac Goldbring (University of California,

Irvine), The Connes Embedding Problem, MIP∗ = RE, and model
theory, part 2.

5:00 – 6:00 Retiring Presidential Address: Julia Knight (University of Notre
Dame), Generalizing a question of Gromov.

6:00 – 8:00 Welcoming Reception. Clark Atrium, Physical Sciences Building

FRIDAY, April 8

Morning

9:00 – 9:30 Registration and coffee
9:30 – 10:30 Invited Lecture: Avi Wigderson (Institute for Advanced Studies),

The value of errors in proofs (a fascinating journey from Turing’s
1936 seminal R ̸= RE to the 2020 breakthrough of MIP∗ = RE).

10:30 – 11:00 Registration and coffee.
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11:00 – 12:00 Tutorial Lecture 3: Isaac Goldbring (University of California,
Irvine), The Connes Embedding Problem, MIP∗ = RE, and model
theory, part 3.

Afternoon

2:00 – 3:00 Panel Discussion I. Hélène Barcelo, Tomek Bartoszynski and
Elvira Mayordomo Mathematical logic in the pandemic era, part 1.

3:00 – 3:15 Coffee.
3:15 – 4:15 Invited Lecture: Robin Tucker-Drob (University of Florida),

Treeability and planarity in measured group theory.
4:15 – 5:15 Invited Lecture: Juliet Floyd (Boston University), Turing and

Wittgenstein.
5:15 – 5:30 Coffee.
5:30 – 7:00 Contributed Talks. See pages 5–6.

SATURDAY, April 9

Morning

9:00 – 9:15 Coffee.
9:15 – 10:45 Special Session A2, B2, C2, D2, E2 and F1. See pages 3–5.

10:45 – 11:00 Coffee.
11:00 – 12:00 Invited Lecture: Will Boney (Texas State University), Compactness

of strong logics and large cardinals.

Afternoon

2:00 – 3:00 Panel Discussion II. Philipp Hieronymi, Joel Ronnie Nagloo,
Christopher Porter and Caroline Terry Mathematical logic in the
pandemic era, part 2.

3:00 – 3:15 Coffee.
3:15 – 4:15 Invited Lecture: Mengche (Turbo) Ho (California State University,

Northridge), Small cancellation groups in logic.
4:15 – 5:15 Invited Lecture: Michael Hrušák (Universidad Nacional Autónoma

de México), Ultrafilters, MAD families and the Katětov order.
5:15 – 5:30 Coffee.
5:30 – 7:00 Special Session B3, C3, D3, E3 and F2. See pages 3–5.

SUNDAY, April 10

Morning

9:00 – 9:15 Coffee.
9:15 – 10:45 Special Session B4, C4, D4, E4 and F3. See pages 3–5.

10:45 – 11:00 Coffee.
11:00 – 12:00 Invited Leecture: Jerome Keisler (University of Wisconsin), Model

theory for non-metric structures.
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SPECIAL SESSIONS

A. History and Philosophy of Logic

(Organized by Lydia Patton)

Session A1: Thursday, April 7 in room 102

2:00 – 2:40 Alexander Kocurek (Cornell University), Axiomatizing hyperlogic.
2:50 – 3:30 Valérie Lynn Therrien (McGill University), The evolution of

Cantor’s proof of the non-denumerability of R.

Session A2: Saturday, April 9 in room 102

9:15 – 9:55 Sun-Joo Shin (Yale University), Peirce’s triadic logic: extension or
deviation?

10:05 – 10:45 Justin Cavitt (Harvard University), The evidence for large cardinal
axioms and the curious case of supercompactness.

B. Set Theory

(Organized by Slawomir Solecki)

Session B1: Thursday, April 7 in room 103

2:00 – 2:40 Jenna Zomback (University of Illinois), Pointwise ergodic theorems
for semigroup actions.

2:50 – 3:30 Konstantin Slutsky (Iowa State University), L1 full groups of flows.

Session B2: Saturday, April 9 in room 103

9:15 – 9:55 Victoria Gitman (CUNY Graduate Center), Jensen’s forcing at an
inaccessible.

10:05 – 10:45 Dima Sinapova (University of Illinois at Chicago), Combinatorial
principles and singular cardinals.

Session B3: Saturday, April 9 in room 103

5:30 – 6:10 Dana Bartošová (University of Florida), Ramsey theory in
ultraproducts of finite structures.

6:20 – 7:00 Aristotelis Panagiotopoulos (Carnegie Mellon University), Strong
ergodicity phenomena for Bernoulli shifts of bounded algebraic
dimension.

Session B4: Sunday, April 9 in room 103

9:15 – 9:55 Filippo Calderoni (University of Illinois at Chicago), Descriptive set
theoretic rigidity and countable Borel equivalence relations.

10:05 – 10:45 Ruiyuan Chen (McGill University), A representation theorem for
cardinal algebras.

C. Models of Peano Arithmetic

(Organized by Roman Kossak)

Session C1: Thursday, April 7 in room 104

2:00 – 2:40 Mateusz  Le lyk (University of Warsaw), The Tarski Boundary: a
cartographic report.
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2:50 – 3:30 Bartosz Wcis lo (University of Gdańsk), Properties characterising
truth and satisfaction.

Session C2: Saturday, April 9 in room 104

9:15 – 9:55 Athar Abdul-Quader (SUNY Purchase College), Generic subsets of
models of PA.

10:05 – 10:45 Laurence Kirby (Baruch College), Models of arithmetic: forty years
on (again).

Session C3: Saturday, April 9 in room 104

5:30 – 6:10 Leszek Ko lodziejczyk (University of Warsaw), An isomorphism
theorem for models of Weak König’s Lemma without Σ0

1 induction.
6:20 – 7:00 Ali Enayat (University of Gothenburg), Surrounding the solidity of

PA and Z2.

Session C4: Sunday, April 10 in room 104

9:15 – 9:55 Haim Gaifman (Columbia), The conflict between mathematical
beauty and realism in the foundations of mathematics.

10:05 – 10:45 Ken McAloon (Brooklyn College), Models of arithmetic - its long,
slow development.

D. Computability Theory

(Organized by Antonio Montalbán)

Session D1: Thursday, April 7 in room 105

2:00 – 2:40 Richard Shore (Cornell University), Theorems of hyperarithmetic
analysis and almost theorems of hyperarithmetic analysis.

2:50 – 3:30 Matthew Harrison-Trainor (University of Michigan), How hard is
it to find an atlas for a surface?

Session D2: Saturday, April 9 in room 105

9:15 – 9:55 Dino Rossegger (University of California, Berkeley), The structural
complexity of models of arithmetic.

10:05 – 10:45 Mariya Soskova (University of Wisconsin), Enumeration pointed
trees.

Session D3: Saturday, April 9 in room 105

5:30 – 6:10 Russell Miller (Queens College CUNY), Universal properties of
differentially closed fields.

6:20 – 7:00 Linda Westrick (The Pennsylvania State University), Borel sets in
reverse mathematics.

Session D4: Sunday, April 10 in room 105

9:15 – 9:55 Damir Dzhafarov (University of Connecticut), Some questions and
observations about the structure of the Weihrauch degrees.

10:05 – 10:45 Jun Le Goh (University of Wisconsin), Extensions of embeddings in
the Σ0

2 enumeration degrees.

E. Logic and Machine Learning

(Organized by James Freitag and Valentina Harizanov)
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Session E1: Thursday, April 7 in room 112

2:00 – 2:40 Michael C. Laskowski (University of Maryland), The more we talk
together, the happier we’ll be.

2:50 – 3:30 Hunter Chase (University of Maryland), No-clash teaching of some
infinite classes.

Session E2: Saturday, April 9 in room 112

9:15 – 9:55 Matthew Harrison-Trainor (University of Michigan), Lowness
notions in computer science.

10:05 – 10:45 Madeleine Udell (Cornell University), Automating machine
learning.

Session E3: Saturday, April 9 in room 112

5:30 – 6:10 D. Gihanee Senadheera (Southern Illinois University), Effective
concept classes of PAC and PACi incomparable degrees and jump
structure.

6:20 – 7:00 Vince Guingona (Towson University), Model theory and differential
privacy.

Session E4: Sunday, April 10 in room 112

9:15 – 9:55 Kevin Zhou (University of Illinois at Chicago), Query learning of
automata.

10:05 – 10:45 Hunter Johnson (John Jay College, CUNY), Binary strings of finite
VC dimension.

F. Homotopy Type Theory

(Organized by Emily Riehl)

Session F1: Saturday, April 9 in room 115

9:15 – 9:55 Jonas Frey (Carnegie Mellon University), An introduction to cohesive
homotopy type theory.

10:05 – 10:45 Simon Henry (University of Ottawa), Homotopy invariant
languages.

Session F2: Saturday, April 9 in room 115

5:30 – 6:10 Steve Awodey (Carnegie Mellon University), Kripke-Joyal semantics
for type theory.

6:20 – 7:00 Sina Hazratpour (Johns Hopkins University), Kripke-Joyal
semantics for Homotopy Type Theory.

Session F3: Sunday, April 10 in room 115

9:15 – 9:55 Chris Kapulkin (University of Western Ontario), Equivalences of
dependent type theories.

10:05 – 10:45 Paige Randall North (University of Pennsylvania), The univalence
principle.

CONTRIBUTED TALKS

FRIDAY, April 8

5



Session A, 5:30-7:00

5:30 – 5:50 Jarl G. Taxer̊as Flaten (Western University), Internal injectivity of
modules in higher toposes.

6:00 – 6:20 Samson Leung (Carnegie Mellon University), Axiomatizing AECs
and applications.

6:30 – 6:50 Matthew DeVilbiss (University of Illinois at Chicago), Strong
minimality of generic differential equations.

Session B, 5:30-7:00

5:30 – 5:50 Vera Fischer and Micha l Tomasz Godziszewski∗ (University of
 Lódź and University of Warsaw), Spectra of maximal almost
orthogonal families of projections in the Calkin algebra.

6:00 – 6:20 Yuxin Zhou (University of Florida), Distinguish chromatic numbers
for isosceles triangles in choiceless set theory.

6:30 – 7:00 Victoria Gitman, Micha l Tomasz Godziszewski∗, Toby
Meadows and Kameryn Williams (University of  Lódź and
University of Warsaw), On axioms for multiverses of set theory.

Session C, 5:30-7:00

5:30 – 5:50 Robert Lubarsky (Florida Atlantic University), On winning
strategies in Σ0

2 games.
6:00 – 6:20 Shay Allen Logan (Kansas State University), Easy proofs of strong

variable sharing theorems.
6:30 – 6:50 Katalin Bimbó (University of Alberta), Relational semantics for

some classical relevance logics.

Session D, 5:30-7:00

5:30 – 5:50 Diego A. Rojas (Iowa State University), Effective vague convergence
of measures on the real line.

6:00 – 6:20 David J. Webb (University of Hawaii at Manoa), Reducibilities
between MLR and Either(MLR).

6:30 – 6:50 Omer Ben-Neria, and Thomas Gilton∗ (University of
Pittsburgh), Club Stationary Reflection and the Special Aronszajn Tree
Property.

Abstract of the Retiring Presidential Address

▶ JOHANNA FRANKLIN, MENG-CHE (TURBO) HO, AND JULIA F. KNIGHT*,
Generalizing a question of Gromov.
Department of Mathematics, University of Notre Dame.
E-mail: knight.1@nd.edu.

Gromov asked “What is a typical group?” He was thinking of finitely presented
groups. He proposed an approach involving limiting density. In 2013, the third author
conjectured that for elementary first order sentences φ, and for groups with n generators
(n ≥ 2) and a single relator, the limiting density of the groups satisfying φ always exists,
with value 0 or 1, and the value is 1 iff φ is true in the non-Abelian free groups. The
conjecture is still open, but there are partial results by Kharlampovich and Sklinos and
by Coulon, Ho, and Logan. We ask about structures in other equational classes. What
sentences are true in the typical structure? We give examples illustrating different
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possible behaviors. In particular, for Abelian groups given by presentations with a
single generator and a single relator, the analogue of the conjecture fails—we find
sentences for which the limiting density does not exist, and sentences for which the
limiting density has value strictly between 0 and 1. Focusing on languages with just
finitely many unary function symbols, we prove a result with conditions sufficient to
guarantee that the analogue of the conjecture holds. The proof uses a version of
Gaifman’s Locality Theorem, plus ideas from random group theory and probability.

Abstract of invited tutorial

▶ ISAAC GOLDBRING, The Connes Embedding Problem, MIP∗ = RE, and model the-
ory.
Department of Mathemtics, University of California, Irvine, 340 Rowland Hall, Irvine,
CA 92697.
E-mail: isaac@math.uci.edu.
URL Address: https://www.math.uci.edu/ isaac/.

The Connes Embedding Problem is one of the most famous open problems in the
theory of von Neumann algebras and can be stated in purely model-theoretic terms:
do all II1 factors have the same universal theory? Here, a II1 factor is an infinite-
dimensional von Neumann algebra that admits a trace and has trivial center. Since
its formulation in Alain Connes’ seminal paper [1], the Connes Embedding Problem’s
notoriety has increased through a plethora of nontrivial reformulations spanning a wide
variety of areas of mathematics, including C*-algebras, quantum information theory,
free probability, noncommutative real algebraic geometry, group theory, and, more
recently, continuous model theory.

In early 2020, a group of computer scientists announced a groundbreaking result in
the field of quantum complexity known as MIP∗ = RE [5], asserting that the collection
of languages (in the sense of complexity theory) that can be reliably verified by a verifier
interacting with a pair of provers sharing an entangled quantum state coincides with
the class of recursively enumerable languages. Besides being intrinsically fascinating,
this result yields, as a corollary, a negative solution to the Connes Embedding Prob-
lem! However, the path from MIP∗ = RE to the resolution of the Connes Embedding
Problem is quite difficult and involves deep detours in C*-algebra theory and quantum
information theory.

In these tutorials, I will carefully describe the statements of the Connes Embedding
Problem and MIP∗ = RE and briefly describe the “standard” derivation of the negative
solution of the former using the latter. I will then describe a more elementary derivation
of this implication using methods from continuous model theory; this part of the tutorial
represents joint work with Bradd Hart [3, 4]. The key tools from continuous model
theory being used here are a continuous version of the Completeness Theorem as well
as the theory of definable sets in continuous model theory. I will also describe how the
model theoretic approach offers extra information, including a Gödelian style refutation
of the Connes Embedding Problem as well as the existence of infinitely many distinct
universal theories of II1 factors.

Time permitting, I will also discuss the basic outline of the proof of MIP∗ = RE
as well as a model-theoretic variant of the Connes Embedding Problem, namely the
existence of the enforceable II1 factor, which still remains open.

I will not presuppose any knowledge of operator algebras or complexity theory in
these tutorials. Most if not all of the material to be presented can be found in the
survey article [2].
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[1] Alain Connes, Classification of injective factors. Cases II1, II∞, IIIλ, λ ̸= 1,
Annals of Mathematics, vol. 74 (1976), pp. 73–115.

[2] Isaac Goldbring, The Connes Embedding Problem: a guided tour, preprint,
arXiv 2109.12682.

[3] Isaac Goldbring and Bradd Hart, A computability-theoretic reformulation
of the Connes Embedding Problem, The Bulletin of Symbolic Logic, vol. 22 (2016),
pp. 238–248.

[4] , The universal theory of the hyperfinite II1 factor is not computable,
preprint, arXiv 2006.05629.

[5] Zhengfeng Ji, Anand Natarajan, Thomas Vidick, John Wright, and
Henry Yuen, MIP∗ = RE, preprint, arXiv 2001.04383.

Abstracts of invited plenary lectures

▶ WILL BONEY, Compactness of strong logics and large cardinals.
Department of Mathematics, Texas State University, 601 University Drive, San Marcos,
TX, USA.
E-mail: wb1011@txstate.edu.
URL Address: https://wboney.wp.txstate.edu/.

Connections between large cardinals in set theory and compactness principles of
strong logics in model theory have a long history, going back to Tarski (compact cardi-
nals), Magidor, (extendibles), and Benda (supercompacts). We discuss several recent
advances, including connecting omitting types and nomral ultrafilters; sort logic and
C(n)-cardinals; abstract Henkin models and Woodin cardinals; and virtual logic and
virtual large cardinals. Additionaly, this work has connections to category theory.

This draws from joint work with Dimopoulos, Gitman, and Magidor and with
Brooke-Taylor.

▶ JULIET FLOYD, Turing and Wittgenstein.
Philosophy, Boston University, 745 Commonwealth Avenue, Boston, MA 02215 USA.
E-mail: jfloyd@bu.edu.

A philosophical reconstruction of the mutual impact of Wittgenstein and Turing
upon one another. Wittgensteinian features of Turing’s diagonal argumentation and
machine-model of human computation in [2] may be discerned, especially when con-
joined with Turing’s reference to Hobson’s Cambridge textbook on analysis [1]. This
interplay of Cambridge traditions and ideas illuminates the the path toward Turing’s
machine-model of computation, deepens our understanding of Wittgenstein’s later phi-
losophy of logic, and highlights the anti- psychologistic, yet pragmatist sides of Turing’s
conception of the foundations of logic, including the Turing Test [3]. Some of Turing’s
later work on types ([5]) was explicitly indebted to his having attended Wittgenstein’s
Cambridge lectures in 1939 ([6]). Wittgenstein in turn responded to Turing in his later
philosophy, surrendering the ideal of a “gap free” presentation of logic to admit par-
tial functions as basic, and incorporating into his mature philosophy of logic the ideas
of forms of life and technique. These concepts are strikingly consonant with certain
aspects of Turing’s subsequent writings about AI [4].

[1] E.W. Hobson, The Theory of Functions of a Real Variable and the The-
ory of Fourier’s Series, Vol. I, Revised 2nd edition, Cambridge University Press,
1921.

[2] A.M. Turing, On computable numbers, with an application to the Entschei-
dungsproblem, Proceedings of the London Mathematical Society, vol. 2 (1936/37),
no. 42, pp. 230–265.
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[3] , Computing Machinery and Intelligence, Mind, vol. 59 (1950), pp. 433–
460.

[4] , Intelligent Machinery (1948), Alan Turing: His Work and Impact
(Barry S. Cooper and Jan van Leeuven, editors), North Holland/Elsevier Science, Am-
sterdam, 2013, pp. 107–128.

[5] , The Reform of Mathematical Notation and Phraseology (1944/45), Alan
Turing: His Work and Impact (Barry S. Cooper and Jan van Leeuven, editors),
North Holland/Elsevier Science, Amsterdam, 2013, pp. 245–249.

[6] L. Wittgenstein, Wittgenstein’s 1939 Lectures on the Foundations of
Mathematics: Cambridge 1939, (Cora Diamond, editor), University of Chicago
Press,1989.

▶ MENG-CHE “TURBO” HO, Small cancellation groups in logic.
Department of Mathematics, California State University, Northridge.
E-mail: mengche.ho@csun.edu.

Small cancellation theory is developed by Greendlinger and later refined and gen-
eralized by Lyndon, Schupp, Olshanskii, and others. One of the first main results in
small cancellation theory is Greendlinger’s lemma, which says the word problem of a
small cancellation group can be solved by Dehn’s algorithm. Small cancellation theory
is also used to construct many special groups, for instance, the Burnside groups and
the Tarski’s monsters.

In this talk, we will start by introducing the definition and basic properties of a small
cancellation group and some classical results. We will then discuss how they can be
used to code computability information in groups. We will also discuss equations in
small cancellation groups and their connection to the model theory of free groups.

▶ MICHAEL HRUŠÁK, Ultrafilters, MAD families and the Katětov order.
Centro de Ciencias matemáticas, Universidad Nacional Autónoma de México, Campus
Morelia, Mexico.
E-mail: michael@matmor.unam.mx.

We shall review recent results on the Katětov order on Borel ideals and its applica-
tions to classification of ultrafilters and maximal almost disjoint families on countable
sets concentrating on open problems.

▶ H. JEROME KEISLER, Model theory for non-metric structures.
University of Wisconsin, Madison.
E-mail: keisler@math.wisc.edu.

In the seminal paper “Model Theory for Metric Structures”, Ben Yaacov, Beren-
stein, Henson, and Usvyatsev, London Math. Society Lecture Note Series, vol. 350
(2008), 315-427, introduced the modern version of continuous model theory, which has
led to an explosion of research with many applications to analysis. In that paper, a
metric signature is a set of constant, function, and predicate symbols including a bi-
nary predicate d for distance, and a bound of uniform continuity for each function and
predicate symbol. A metric structure has a metric signature, a universe set M, and
interpretations of the symbols that respect the uniform continuity bounds, where d is
a complete metric and the predicates take values in the real unit interval [0,1].

Continuous model theory is often used to study objects that are not quite metric
structures in the above sense. They may have predicates with unbounded values, fail to
satisfy uniform continuity requirements, and so on. In some cases it is easy to convert
the original object to a metric structure in a way that clarifies properties of the original
object. But in other cases such a conversion will be very complicated or will obscure
the original object too much.
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A notion with less baggage than a metric structure is a [0,1]-valued structure,
which has no distinguished metric and no continuity requirement on the functions
and predicates. In the author’s paper “Model theory for real-valued structures”, to
appear in “Beyond Second Order Model Theory”, CRC Press, edited by Jose Iovino
(arXiv:2005.11851), it is shown (using a result called the expansion theorem) that al-
most all of the model theory of metric structures can be carried over in a systematic
way to arbitrary [0,1]-valued structures.

The above paper was in part motivated by the idea that in some applications it
will be easier to usefully convert an object to a [0,1]-valued structure than to a metric
structure. The model theory of [0,1]-valued structures would be appropriate for such
applications. It may happen that the [0,1]-valued structure is easily described, but
any corresponding metric structure will have a complicated or unnatural metric. This
lecture will expand on that idea and give some illustrative examples.

▶ ALEXANDER RAZBOROV, Continuous combinatorics.
University of Chicago.
E-mail: razborov@uchicago.edu.

Any increasing sequence of finite models of an universal theory in a relational sig-
nature contains a subsequence converging in a strictly defined sense to an analytical
object. It turns out that these objects possess rich and very helpful structure; in partic-
ular, they can be alternately described in many different ways using analytical, logical,
algebraic or statistical languages.

In this talk we will describe this theory using examples from combinatorics, logic
and other fields. Most of the talk will be devoted to the so-called “dense regime”
in which the density of elementary predicates is assumed to be a constant in (0,1).
Then, time permitting, we will also discuss recent applications, including the theory
of quasi-randomness and connections to infinite Ramsey combinatorics via stability
theory.

▶ ROBIN TUCKER-DROB, Treeability and planarity in measured group theory.
Department of Mathematics, University of Florida, Gainesville FL.
E-mail: r.tuckerdrob@ufl.edu.

We show that several new classes of groups are measure strongly treeable, i.e., all
of their free quasi-pmp actions are treeable. This includes all finitely generated groups
admitting planar Cayley graphs, all finitely generated elementarily free groups, and
more generally all groups arising as the fundamental group of an “IFL tower” over
these groups. Our techniques also lead to new measure strong free factors of groups, i.e.,
group elements which generate a primitive subrelation in every free quasi-pmp action.
This is based on joint work with Clinton Conley, Damien Gaboriau, and Andrew Marks.

▶ AVI WIGDERSON, The value of errors in proofs (a fascinating journey from Turing’s
1936 seminal R ̸= RE to the 2020 breakthrough of MIP∗ = RE).
Institute for Advanced Study, Princeton, NJ, USA.
E-mail: avi@ias.edu.

Last year, a group of theoretical computer scientists posted a paper on the Arxiv with
the strange-looking title “MIP∗ = RE”, impacting and surprising not only complexity
theory but also some areas of math and physics. Specifically, it resolved, in the negative,
the “Connes’ embedding conjecture” in the area of von-Neumann algebras, and the
“Tsirelson problem” in quantum information theory. You can find the paper here
https://arxiv.org/abs/2001.04383

As it happens, both acronyms MIP∗ and RE represent proof systems, of a very differ-
ent nature. To explain them, we’ll take a meandering journey through the classical and
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modern definitions of proof. I hope to explain how the methodology of computational
complexity theory, especially modeling and classification (both problems and proofs)
by algorithmic efficiency, naturally leads to the generation of new such notions and re-
sults. A special focus will be on notions of proof which allow interaction, randomness,
and errors, and their surprising power and magical properties.

The talk does not assume any special mathematical background.

Abstracts of invited talks in the Special Session on

Computability Theory

▶ DAMIR D. DZHAFAROV, Some questions and observations about the structure of the
Weihrauch degrees.
Department of Mathematics, University of Connecticut.
E-mail: damir@math.uconn.edu.

The Weihrauch degrees, and their non-uniform analogue, the computable degrees,
have seen much interest in computable analysis. More recently, they have also played
a prominent role in computable combinatorics and reverse mathematics. Each class
of degrees forms a lattice, and a number of papers have focused on their algebraic
properties. In this talk, I will survey some known facts about these structures, and
mention a few open questions. I will also present some new results concerning the
density of the Weihrauch and computable lattices, which contrast with the situation in
the related Medvedev/Muchnik lattices. This is joint work with Lerman, Patey, and
Solomon.

▶ JUN LE GOH, Extensions of embeddings in the Σ0
2 enumeration degrees.

Department of Mathematics, University of Wisconsin-Madison, 480 Lincoln Drive,
Madison, WI, 53706 USA.
E-mail: junle.goh@wisc.edu.

In order to measure the algorithmic content of partial functions, or the positive infor-
mation content of subsets of the natural numbers, one can use the notion of enumeration
reducibility. The associated degree structure, known as the enumeration degrees (e-
degrees), forms a superstructure of the Turing degrees. We present ongoing work with
Steffen Lempp, Keng Meng Ng and Mariya Soskova on the algebraic properties of a
countable substructure of the e-degrees, namely the Σ0

2 e-degrees. The Σ0
2 e-degrees

are analogous to the computably enumerable (c.e.) Turing degrees but these structures
are not elementarily equivalent as partial orders. Indeed, Ahmad [1] showed that there
are incomparable Σ0

2 e-degrees a and b such that if c < a, then c < b, implying that
a cannot be expressed as the join of two degrees below it. This stands in contrast to
Sacks’s splitting theorem for the c.e. Turing degrees.

One can view Ahmad’s result as a two-quantifier sentence in the language of partial
orders which holds in the Σ0

2 e-degrees. While it is easy to compute whether a given one-
quantifier sentence is true in the Σ0

2 e-degrees (because all finite partial orders embed),
the corresponding task for two-quantifier sentences (which corresponds to an extension
of embeddings problem) is not known to be algorithmically decidable. Towards solving
this problem, we investigate the extent to which Ahmad’s result can be generalized.
For instance, we [2] show that a natural generalization of Ahmad’s result to triples of
Σ0

2 e-degrees fails to hold: For any incomparable Σ0
2 e-degrees a, b and c, either there

is some d such that d < a and d ̸≤ b, or there is some d such that d < b and d ̸≤ c.

[1] Ahmad, Seema and Lachlan, Alistair, Some special pairs of Σ2 e-degrees,
Mathematical Logic Quarterly, vol. 44 (1998), no. 4, pp. 431–449.

[2] Goh, Jun Le and Lempp, Steffen and Ng, Keng Meng and Soskova,
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Mariya, Extensions of two constructions of Ahmad, to appear.

▶ MATTHEW HARRISON-TRAINOR, How hard is it to find an atlas for a surface?.
Department of Mathematics, University of Michigan, United States.
E-mail: matthhar@umich.edu.

A (topological) manifold is a topological space which is locally Euclidean, i.e., there
is an atlas of coordinate charts covering the surface. While the manifold does not come
equipped with any particular atlas, nearly every proof begins by fixing an atlas. So it is
natural to ask, how hard is it to recover an atlas from the purely topological structure
of the manifold? We consider the case of surfaces, represented as the completion of a
countable metric space. We show that there is always an atlas which is arithmetic in
the surface. One can view this as saying that the locally Euclidean structure is not
too hidden within the topological structure, and can be recovered in a first-order way.
This is joint work with Alexander Melnikov.

▶ RUSSELL MILLER, Universal properties of differentially closed fields.
Mathematics Department, Queens College – CUNY, 65-30 Kissena Blvd., Queens, NY
11355, USA.
E-mail: russell.miller@qc.cuny.edu.

Various classes of structures are known to be universal (or complete) for stan-
dard computable-model-theoretic properties, as described in [2]. These classes include
graphs, partial orders, groups, and fields, but exclude linear orders, Boolean algebras,
and trees. Here we build on results in [3], joint with Marker, that showed that differ-
entially closed fields of characteristic 0 are not universal for Turing degree spectra.

We begin by adjoining a unary predicate A to the signature of differential fields, de-
fined to hold of those elements algebraic over a specific computable differential subfield
K of the differential closure of Q. Universality of the class DA of all countable models
of DCF0 (in the signature with A) can now be considered “on a cone,” i.e., relative
to an oracle set. We use the set T of those formulas with parameters from K that are
complete for DCF0. This set T is Π0

1, but its decidability is an open question. We show
that on the cone above T , the class DA is universal for Turing degree spectra, and also
for categoricity spectra and other computable-categoricity properties. Of course, if T
is decidable, then this universality holds without restriction. If T is undecidable, then
it gives some of the first natural examples of the notion of “universality on a cone.”

We also note that this construction fails to prove universality of DA for automorphism
groups, and hence does not yield a bi- interpretation between DA and the class of
graphs, even in the broad sense of interpretations from [1]. This failure raises intriguing
model-theoretic questions about the models of DCF0.

[1] M. Harrison-Trainor, R. Miller, & A. Montalbán, Borel functors and
infinitary interpretations, The Journal of Symbolic Logic, vol. 83 (2018), no. 4,
pp. 1434–1456.

[2] D.R. Hirschfeldt, B. Khoussainov, R.A. Shore, & A.M. Slinko, Degree
spectra and computable dimensions in algebraic structures, Annals of Pure and Ap-
plied Logic, vol. 115 (2002), pp. 71–113.

[3] D. Marker & R. Miller, Turing degree spectra of differentially closed fields,
The Journal of Symbolic Logic, vol. 82 (2017), no. 1, pp. 1–25.

▶ ANTONIO MONTALBÁN, DINO ROSSEGGER∗, The structural complexity of models
of arithmetic.
Department of Mathematics, University of California, Berkeley.
E-mail: antonio@math.berkeley.edu.
Department of Mathematics, University of California, Berkeley and Institut of Discrete
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Mathematics and Geometry, Technische Universität Wien, Austria.
E-mail: dino@math.berkeley.edu.

The Scott rank of a countable structure is the least ordinal α such that all auto-
morphism orbits of the structure are definable by infinitary Σα formulas. Montalbán
showed that the Scott rank of a structure is a robust measure of the structural and
computational complexity of a structure showing that various different measures are
equivalent. For example, a structure has Scott rank α if and only if it has a Πα+1 Scott
sentence if and only if it is uniformly ∆∆∆0

α categorical.
One of the objectives of computable structure theory is to obtain measures of the

complexity of structures in common classes. In this talk we present results on the Scott
rank of non-standard models of Peano arithmetic. We show that non-standard models
of PA have Scott rank at least ω, but, other than that, there are no limits to their
complexity. Given a completion T of PA we give a reduction via bi-interpretability of
the class of linear orders to the models of T . This allows us to exhibit models of T of
Scott rank α for every ω ≤ α ≤ ω1. In particular, every completion of T has models of
high Scott rank.

▶ JAMES S. BARNES, JUN LE GOH AND RICHARD A. SHORE∗, Theorems of hy-
perarithmetic analysis and almost theorems of hyperarithmetic analysis.
Department of Mathematics, Yale University, New Haven CT USA.
Department of Mathematics, University of Wisconsin-Madison, Madison WI, USA.
Department of Mathematics, Cornell University, Ithaca NY, USA.
E-mail: shore@math.cornell.edu.

This talk is based on [1] which will appear in the BSL and reports on work in [2],
[3] and [4].

Theorems of hyperarithmetic analysis (THAs) occupy an unusual neighborhood in
the realms of reverse mathematics and recursion theoretic complexity. They lie above
all the fixed (recursive) iterations of the Turing jump but below ATR0 (and so Π1

1-
CA0 or the hyperjump). There is a long history of proof theoretic principles which are
THAs. There was only one mathematical example until [2]. There we analyze an array
of ubiquity theorems in graph theory descended from Halin’s 1965 work on rays in
graphs. They seem to be typical applications of ACA0 but are actually THAs. These
results answer Question 30 of Montalban’s Open Questions in Reverse Mathematics and
supply several other natural principles of different and unusual levels of complexity.

This work led in [4] to a new neighborhood of the reverse mathematical zoo: almost
theorems of hyperarithmetic analysis (ATHAs). When combined with ACA0 they are
THAs but on their own are very weak. Denizens both mathematical and logical are
provided. Generalizations of several conservativity classes (Π1

1, r-Π1
2 and Tanaka) are

defined and these ATHAs as well as many other principles are shown to be conservative
over RCA0 in all these senses and weak in other recursion theoretic ways as well. These
results answer a question raised by Hirschfeldt and reported in Montalbán’s Open
Questions in Reverse Mathematics by providing a long list of pairs of principles one of
which is very weak over RCA0 but over ACA0 is equivalent to the other which may
be strong (THA) or very strong going up a standard hierarchy and at the end being
stronger than full second order arithmetic.

[1] James S. Barnes, Jun Le Goh and Richard A. Shore, Theorems of hyper-
arithmetic analysis and almost theorems of hyperarithmetic analysis, The Bulletin of
Symbolic Logic, to appear.

[2] James S. Barnes, Jun Le Goh and Richard A. Shore, Halin’s Infinite Ray
Theorems: Complexity and Reverse Mathematics, to appear.

[3] Jun Le Goh, The strength of an axiom of finite choice for branches in trees, to
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appear.
[4] Richard A. Shore, Almost theorems of hyperarithmetic analysis, to appear.

▶ MARIYA SOSKOVA, Enumeration pointed trees.
Department of Mathematics, University of Wisconsin–Madison, 480 Lincoln Dr, Madi-
son WI 53706, USA.
E-mail: msoskova@math.wisc.edu.

An enumeration pointed tree (e-pointed tree) is a tree T with no dead ends such
that every path in T can enumerate T . This notion arises in work by Montalbán [3]:
he showed that a degree spectrum of a structure is never the upward closure of an
Fσ set in Cantor space or Baire space unless it is the set of Turing oracles that can
enumerate an e-pointed tree in Cantor space or Baire space respectively. McCarthy [2]
characterized the class of enumeration degrees of e-pointed trees in Cantor space. It
turned out to be the well studied class of cototal degrees [1]: degrees of sets A such

that A ≤e A. McCarthy also showed that this class is fairly robust: for instance, the
degrees of e-pointed trees in Cantor space are the degrees of e-pointed trees with dead
ends. We investigate the similar class of e-pointed trees in Baire space and the related
class of enumeration degrees of introenumerable sets: a set A is introenumerable if it is
enumeration reducible to each of its infinite subsets. We prove that the cototal degrees
are a strict subclass of the introenumerable degrees, which is in turn strictly contained
in the enumeration degrees of e-pointed trees in Baire space. We further characterize
the class of e-pointed trees in Baire space with dead ends using the notion of hyper
enumeration reducibility, introduced by Sanchis [4]. We show that they strictly extend
the degrees of e-pointed trees in Baire space (with no dead ends). This work is joint
with Goh, Jacobsen-Groccott, and J. Miller.

[1] Uri Andrews, Hristo Ganchev, Rutger Kuyper, Steffen Lempp, Joseph
Miller, Alexandra Soskova, and Mariya Soskova, On cototality and the skip
operator in the enumeration degrees, Transactions of the American Mathematical
Society, vol. 372(2019), no. 3, pp. 1631–1670.

[2] Ethan McCarthy, Cototal enumeration degrees and their applications to effec-
tive mathematics, Proceedings of the American Mathematical Society, vol. 146
(2018), no. 8, pp. 3541–3552.

[3] Antonio, Montalbán, Computable structure theory—within the arith-
metic, Perspetives in Logic, Cambridge University Press, Cambridge; Association for
Symbolic Logic, Ithaca, NY, 2021.

[4] Luis Sanchis, Hyperenumeration reducibility, Notre Dame Journal of Formal
Logic, vol. 19 (1978), no. 3, pp. 405–415.

▶ LINDA WESTRICK, Borel sets in reverse mathematics.
Department of Mathematics, The Pennsylvania State University, McAllister Building,
University Park, PA 16802, USA.
E-mail: westrick@psu.edu.

The principles “Every Borel set has the property of Baire” and “Every Borel set
is measurable” are incomparable and strictly weaker than ATR0. Yet these principles
suffice to prove many theorems of Borel combinatorics. We examine the implications
among these theorems.

Abstracts of invited talks in the Special Session on
History and Philosophy of Logic

▶ JUSTIN CAVITT, The evidence for large cardinal axioms and the curious case of
supercompactness.
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Department of Philosophy, Harvard University, 25 Quincy Street, Cambridge, MA,
USA.
E-mail: justincavitt@g.harvard.edu.

The independence phenomenon motivates the study of new axioms to be added to
ZFC and raises the philosophical question of what considerations can serve as evidence
for those axioms. Large cardinal axioms, which assert the existence of large transfinite
cardinals, are the most widely accepted new axioms. In this talk, we will give an
overview of the study and use of various kinds of large cardinals, discuss how it is
that this research can constitute evidence for the corresponding large cardinal axioms,
and articulate what that evidence amounts to. Of particular concern will be the case
of supercompact cardinals. We shall compare the evidence for their consistency and
existence with that for other large cardinals and identify some features of supercompacts
that complicate this case.

▶ ALEXANDER W. KOCUREK, Axiomatizing hyperlogic.
Sage School of Philosophy, Cornell University, Ithaca, NY, USA.
E-mail: awk78@cornell.edu.

Hyperlogic is a hyperintensional modal logic developed in [5] to regiment and inter-
pret metalogical claims (e.g., “Intuitionistic logic is correct” or “The law of noncontra-
diction fails”) directly in the object language, even within embedded environments such
as in attitude reports (“Inej believes intuitionistic logic is correct”) and counterfactu-
als (e.g., “If the Liar were true and not true, the law of noncontradiction would fail”).
This is achieved by extending the basic propositional modal language with proposi-
tional quantifiers (see [3, 4]), a multigrade entailment operator, and modified versions
of the standard hybrid logical operators (see [1, 2]), which can shift the interpretation
of logical connectives. Formulas in this language are interpreted relative to an inter-
pretation of the basic connectives and operators (including the entailment operator).
This paper motivates hyperlogic as an approach to the semantics of metalogical claims
and presents a series of axiomatizability results for the logic of hyperlogic in various
languages (including ones with propositional quantifiers and counterfactuals) and over
a variety of classes of models. These axiomatizations involve two interdependently
defined proof systems, each representing different notions of consequence and each con-
taining rules for moving back and forth between these systems. The result is an elegant
and nontrivial logic for hyperlogic.

[1] Carlos Areces and Balder ten Cate, Hybrid logics, Handbook of modal
logic (Patrick Blackburn, Frank Wolter, and Johan van Benthem, editors), Elsevier,
2007, pp. 821–868.

[2] Torben Braüner, Hybrid logic, The Stanford Encyclopedia of Philoso-
phy (Edward N. Zalta, editor), Metaphysics Research Lab, Stanford University, 2017,
https://plato.stanford.edu/archives/sum2017/entries/logic-hybrid/.

[3] Kit Fine, Propositional quantifiers in modal logic, Theoria, vol. 36 (1970),
pp. 336–346.

[4] David Kaplan, S5 with quantifiable propositional variables, Journal of Sym-
bolic Logic, vol. 35 (1970), no. 2, p. 355.

[5] Alexander W. Kocurek, Logic talk, Synthese, vol. 199 (2021), no. 5–6,
pp. 13661–13688.

▶ SUN-JOO SHIN, Peirce’s triadic logic: extension or deviation?.
Department of Philosophy, Yale University.
E-mail: sun-joo.shin@yale.edu.

The talk has two goals: (i) to suggest a new way to understand Peirce’s triadic
logic and (ii) to raise the question of whether Peirce’s triadic logic is an extension of
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or a deviation from classical logic. I classify Peirce’s six binary connectives, based on
the dominance among three values, V, F, and L. Then, they may be grouped into
three, depending on how the third value L is placed in the dominance hierarchy. (My
visual representation makes the issue clearer.) Where is Peirce’s triadic logic located
in a bigger picture, an extended standard logic or a non-standard logic? Tradition-
ally, many-valued logic is non-standard, hence, a deviation from classical logic. While
examining passages which seem to support the deviation view of Peirce’s new logic,
I beg you to resist the temptation to rush to that conclusion. Peirce’s discussion on
the third value L is rather nuanced. He says dyadic logic is defective (which is dif-
ferent from being incorrect) because dyadic logic “takes no heed of the limit between
two realms.” Obviously, his new logic aims to cover the limit which traditional logic
neglects to represent. Peirce draws our attention to the existence of “an intermediate
ground” between both ends, i.e. “positive assertion and positive negation,” and wants
to represent that middle area. According to this interpretation, Peirce’s triadic logic is
an extension of classical logic, unlike other many-valued logics.

▶ VALÉRIE LYNN THERRIEN, The evolution of Cantor’s proof of the non-denumerability
of R.
Philosophy, McGill University, 855 Sherbrooke Street West Montréal, Québec, H3A
2T7, Canada.
E-mail: valerie.l.therrien@mcgill.ca.
URL Address: www.valerielynntherrien.com.

Cantor gave three distinct proofs of the non-denumerability of R: (1) the first one
in 1874 [1]; (2) the second one in 1879 [3]; and (3) the third and final one in 1891 [4]–
after a protracted absence from public mathematics. The third one is the canonical
one, and is also known as the diagonal argument. Notably, Cantor’s diagonal argument
makes use of an infinite array of infinite sequences, from which a sequence that isn’t
an element of the array is constructed. Yet, the published versions of his first two
proofs did not involve such an array. Interestingly, the first unpublished version of the
first proof did involve an infinite array of infinite sequences, out of which a potentially
infinite sequence of nested intervals was constructed. As well, Cantor’s 1878 proof of
the equipollence of R and Rn [2] involved a finite array of infinite sequences, out of
which a sequence that is itself not an element of the array is also constructed.

The primary aim of this paper is to track the evolution of Cantor’s proofs of the non-
denumerability of R – which culminates in the famous diagonal argument and Cantor’s
Theorem. Why did Cantor revisit his proof three times? The secondary aim of this
paper is to explore the heuristic role of arrays in his proof of the non-denumerability
of R. Why did Cantor return to the infinite array he had abandoned for his first two
versions of the proof? I will conclude that Cantor likely had the means to arrive at the
diagonal argument by 1878, but that the ways in which he had been using arrays up
until then would have involved arbitrarily constructing an irrational number simply by
manipulating numbers as if they were mere symbols. While this may seem natural to
us now, this would not have been an acceptable way to construct an irrational number
to his peers. Cantor’s lengthy absence from public mathematics likely provided him
with the time required to distill the essence of the diagonal argument, and to produce
a proof that did not require the construction of an irrational number at all.

[1] Georg Cantor, Sur une propriété de tous les nombres algébriques réels, Acta
Mathematica, vol. 2, [1874]/(1883), no. 1, pp. 305–310.

[2] , Une contribution à la théorie des ensembles, Acta Mathematica, vol. 2
[1878]/(1883), no. 1, pp. 311–328.

[3] , Sur les ensembles infinis et linéaires de points, I, Acta Mathematica,
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vol. 2 [1879]/(1883), no. 1, pp. 349–346.
[4] , On an Elementary Question in the Theory of Manifolds, From Kant

to Hilbert: A Source Book in the Foundations of Mathematics (William Ewald,
editor), Clarendon Press, Oxford, 2005, pp. 920–922.

Abstracts of invited talks in the Special Session on

Homotopy Type Theory

▶ STEVE AWODEY, Kripke-Joyal semantics for type theory.
Departments of Philosophy and Mathematics, Carnegie Mellon University, 5000 Forbes
Ave., Pittsburgh, PA, 15213, USA.
E-mail: awodey@cmu.edu.

Recent joint work with Nicola Gambino and Sina Hazratpour is presented. Kripke-
Joyal semantics extends basic Kripke semantics for intuitionistic propositional logic
(IPL) and first-order logic (IFOL) to the higher-order logic used in topos theory (IHOL).
It provides a systematic way to interpret propositions in IHOL into any Grothendieck
topos and test them for validity under the interpretation. We extend the interpretation
to the dependent type theory of Martin-Löf (MLTT), using the formalism of natural
models [1]. Prior cases are subsumed, including the completeness theorem for MLTT
from [2]. Presheaf models of homotopy type theory (HoTT) occuring in the work of
Voevodsky et al. [4] and Coquand et al. [3] can be recovered as special cases of our
semantics, as will be presented in a subsequent talk by Hazratpour.

[1] Steve Awodey, Natural models of homotopy type theory, Mathematical Struc-
tures in Computer Science, 2016 vol. 28(2), pp. 241–286.

[2] Steve Awodey, Florian Rabe, Kripke semantics for Martin-Löf ’s Extensional
Type Theory, Logical Methods in Computer Science, 2011 vol. 7(3), pp. 1–25.

[3] Cyril Cohen, Thierry Coquand, Simon Huber, Anders Mörtberg, Cubi-
cal type theory: a constructive interpretation of the univalence axiom, 21st Interna-
tional Conference on Types for Proofs and Programs (TYPES 2015), (Schloss
Dagstuhl. Leibniz-Zentrum für Informatik, Wadern), (T. Uustalu, editor), 5:1–5:34.

[4] Chris Kapulkin, Peter LeFanu Lumsdaine, The simplicial model of univalent
foundations (after Voevodsky), Journal of the European Mathematical Society, to
appear, (preprint arXiv:1211.2851).

▶ JONAS FREY, An introduction to cohesive homotopy type theory.
Department of Philosophy, Carnegie Mellon University, 5000 Forbes Avenue Pitts-
burgh, PA 15213, USA.
E-mail: jonasf@andrew.cmu.edu.

Cohesive homotopy type theory was devised by Schreiber and Shulman [1, 2] as a
combination of Lawvere’s cohesive topos theory [3] with ideas from homotopy type
theory [4], to provide a framework that allows to reason about mathematical objects
which have both a homotopical and a continuous/geometric (‘cohesive’) aspect. For-
mally this is achieved by extending type theory with an adjoint sequence

∫
⊣ ♭ ⊣ ♯ of

modal operators that relate geometry and homotopy by associating to a space X e.g.
its homotopy type

∫
X and its set of points ♭X.

After reviewing basic concepts of homotopy type theory this talk will present the cat-
egory theoretic motivation and type theoretic formalization of cohesive homotopy type
theory, and will conclude by discussing applications to geometry and higher category
theory.

[1] Urs Schreiber, and Michael Shulman, Quantum gauge field theory in cohe-
sive homotopy type theory, arXiv preprint, arXiv:1408.0054 (2014).
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[2] Michael Shulman, Brouwer’s fixed-point theorem in real-cohesive homotopy
type theory, Mathematical Structures in Computer Science, vol. 28 (2018) no. 6,
pp. 856–941.

[3] William Lawvere Axiomatic cohesion Theory and Applications of Cate-
gories, vol. 19 (2007) no. 3, pp.41–49.

[4] The Univalent Foundations Program, Homotopy Type Theory: Univa-
lent Foundations of Mathematics, https://homotopytypetheory.org/book, 2013.

▶ SINA HAZRATPOUR, Kripke-Joyal semantics for Homotopy Type Theory.
Department of Mathematics, Johns Hopkins University, 3400 N. Charles Street Balti-
more, MD 21218, United States.
E-mail: sina@jhu.edu.
URL Address: https://sinhp.github.io.

This talk is a continuation of Awodey’s talk earlier today and it uses our extended
Kripke-Joyal Semantics to find new proofs of some results in Homotopy Type The-
ory. The presented material is based on joint work [2] with Steve Awodey and Nicola
Gambino.

Uniform fibrations are central to constructing Quillen model structures in order to
study categorical models of Homotopy Type Theory. They were introduced in [3, 4]
to provide a constructive model of the Univalence Axiom. However, working with
uniform fibrations diagrammatically can be very complex, since the algebraic structure
on a map is in general not unique, and thus needs to be carried around explicitly. As a
result, the construction of the object of fibration structures on a given map using only
diagrams can be a daunting task.

An alternative approach is provided by the internal type theory of a presheaf category,
which is a highly expressive extensional dependent type theory, in which it is possible
to handle not only the basic categorical structure, but also locally cartesian closed
structure. Following on the suggestion of Thierry Coquand, in [7], Orton and Pitts
successfully used this internal type theory to develop parts of the theory of uniform
fibrations entirely in a type-theoretic fashion. In this approach one can feasibly write
down the type of fibration structures on a map and reason about it formally.

This talk demonstrates a few applications of our forcing semantics in proving certain
important properties of uniform fibrations crucial to their role in the constructive mod-
els of Homotopy Type Theory. In particular, using our forcing semantics, we show that
the category-theoretic and type-theoretic descriptions of uniform fibrations considered
in [1, 3, 4, 5, 7, 8, 9] coincide.

[1] S. Awodey, A cubical model of homotopy type theory, Annals of Pure and
Applied Logic, vol. 169, no. 12, pp. 1270–1294.

[2] S. Awodey and N. Gambino and S. Hazratpour, Kripke-Joyal forcing for
type theory and uniform fibrations, Available from ArXiv: 2110.14576

[3] M. Bezem and T. Coquand and S. Huber, A model of type theory in cu-
bical sets, 19th International Conference on Types for Proofs and Programs
Dagstuhl, Germany, (R. Matthes and A. Schubert, editors), vol. 69, Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik, 2015, pp. 107–128.

[4] C. Cohen and T. Coquand and S. Huber and A. Mörtberg, Cubical type
theory: a constructive interpretation of the univalence axiom, 21st International
Conference on Types for Proofs and Programs (TYPES 2015), (T. Uustalu, edi-
tors), vol.69, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2018, pp. 5:1–5:34.

[5] N. Gambino and C. Sattler, The Frobenius condition, right properness, and
uniform fibrations, Journal of Pure and Applied Algebra, vol. 221, no. 12, pp. 3027–
3068.
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[6] S. Mac Lane and I. Moerdijk, Sheaves in geometry and logic. A first
introduction to topos theory, Universitext, Springer-Verlag, 1994.

[7] I. Orton and A. M. Pitts, Axioms for Modelling Cubical Type Theory in a
Topos, Logical Methods in Computer Science, vol. 14, no. 4, pp. 1–33.

[8] C. Sattler, The Equivalence Extension Property and Model Structures, Avail-
able from ArXiv: 1704.06911

[9] Andrew Swan, An algebraic weak factorisation system on 01-substitution sets:
a constructive proof, Journal of Logic & Analysis, vol. 8, no. 1, pp. 1–35.

▶ SIMON HENRY, Homotopy invariant languages.
University of Ottawa.
E-mail: Shenry2@uottawa.ca.

One of the nice property of homotopy type theory is that it allows to talk about
homotopy theoretic properties in a “homotopy invariant” and “model invariant way”.
For example, if one consider a statement in HoTT that involves some spaces or maps
as parameters and we replace these by homotopy equivalent ones, then the validity of
the statement is unchanged.

Something similar was also observed a long time ago in category theory : if you write
a first order formula (with parameters) in the language of category theory that do not
involve equality between objects then the validity of this formula is preserved if you
replace each object appearing in the formula by isomorphic ones, or if you replace the
category to which it applies by an equivalent category.

The common point between these two observations is that both corresponds to the-
ories where the use of equality has been restricted, but which relies on a notion of
dependent type to maintain enough expressivity despite the lack of equality. And while
equality destroys homotopy invariance (or homotopy invariance), the use of dependent
types is compatible with it.

In this talk I will explain how, more generally, to each Quillen model category one can
associate a similar “homotopy language”, which can be seen as first order logic without
equality over a dependently typed algebraic theory. This language is automatically
“homotopy invariant” in three different senses (invariant under homotopies, under weak
equivalence and under Quillen equivalences) that I will explain.

This construction is strongly inspired from Makkai’s FOLDS and in some sense is a
generalization of it.

▶ CHRIS KAPULKIN, Equivalences of dependent type theories.
Department of Mathematics, University of Western Ontario, 1151 Richmond St, Lon-
don, Ontario, Canada.
E-mail: kkapulki@uwo.ca.

The goal of this talk is to answer the question: what does it mean for two dependent
type theories to be equivalent?

The category of models of a fixed dependent type theory carries the canonical struc-
ture of a left semi-model category, previously studied in categorical homotopy theory.
It is in particular well-understood in homotopy theory when two left semi-model cat-
egories are equivalent; namely, when they are Quillen equivalent. We thus propose
the notion of a Morita equivalence between dependent type theories, amounting to the
existence of a Quillen equivalence between their categories of models.

We will introduce the notion of Morita equivalence and discuss what kind of logical
information about the theories is preserved under it.

▶ PAIGE RANDALL NORTH, The univalence principle.
Departments of Mathematics and Electrical and Systems Engineering, University of
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Pennsylvania, 209 S 33rd St, Philadelphia, PA, USA.
E-mail: pnorth@upenn.edu.
URL Address: https://paigenorth.github.io.

The Equivalence Principle is an informal principle asserting that equivalent mathe-
matical objects have the same properties. For example, group theory has been devel-
oped so that isomorphic groups have the same group-theoretic properties, and cate-
gory theory has been developed so that equivalent categories have the same category-
theoretic properties (though sometimes other, ‘evil’ properties are considered). Vladimir
Voevodsky established Univalent Foundations as a foundation of mathematics (based
on dependent type theory) in which the Equivalence Principle for types (the basic ob-
jects of type theory) is a theorem [5]. Later, versions of the Equivalence Principle for
set-based structures such as groups [3] and categories [1] were shown to be theorems in
Univalent Foundations.

In [2] we formulate and prove versions of the Equivalence Principle for a large class
of categorical and higher categorical structures in Univalent Foundations. Our work
encompasses bicategories, dagger categories, opetopic categories, and more. Some of
the notions used in our work were inspired by Makkai’s First-order logic with dependent
sorts [4].

[1] B. Ahrens, K. Kapulkin, M. Shulman, Univalent categories and the Rezk
completion, Mathematical Structures in Computer Science, vol. 25 (2015), no. 5,
pp. 1010–1039.

[2] B. Ahrens, P. R. North, M. Shulman, D. Tsementzis, The univalence prin-
ciple, 2021. arXiv2102.06275.

[3] T. Coquand, N. A. Danielsson, Isomorphism is equality, Indagationes
Mathematicae, vol. 24 (2013), no. 4, pp. 1105–1120.

[4] M. Makkai, First order logic with dependent sorts, with applications to category
theory, 1995.

[5] V. Voevodsky, A very short note on homotopy λ-calculus, 2009.

Abstracts of invited talks in the Special Session on
Logic and Machine Learning

▶ HUNTER CHASE, No-clash teaching of some infinite classes.
Department of Mathematics, University of Maryland, College Park, 4176 Campus
Drive, College Park, MD, 20742, USA.
E-mail: hsachase@gmail.com.

No-clash teaching dimension is a generalization of recursive teaching dimension and
other notions of machine teaching that seek to encode sets in a set system using a small
number of labeled examples [1]. While work conducted around machine teaching has
primarily focused on the case where the set system is finite, it is possible to consider
infinite classes as well. In particular, several properties that result in good bounds
on the size of a teaching function correspond with model-theoretic dividing lines. We
present bounds on the size of a no-clash teacher for certain infinite classes, including
classes with finite Littlestone dimension and countable classes with VC-dimension 1.
We also observe that many infinite classes do not admit a no-clash teacher, even some
with properties that lead to good results in the finite case.

This is joint work with Chris Laskowski.

[1] David Kirkpatrick, Hans U. Simon, and Sandra Zilles, Optimal collusion-
free teaching, Algorithmic Learning Theory (Chicago, IL, USA), (Aurélien Garivier
and Satyen Kale, editors), vol. 98, Proceedings of Machine Learning Research, 2019,
pp. 506–528.
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▶ VINCENT GUINGONA, Model theory and differential privacy.
Department of Mathematics, Towson University, 8000 York Road, Towson, MD 21252,
United States of America.
E-mail: vguingona@towson.edu.
URL Address: https://tigerweb.towson.edu/vguingona/.

In this talk, we explore the connections between model theory and a notion from
theoretical machine learning called differential privacy. We survey how to employ model
theoretic techniques, specifically ideas from stability theory, to obtain results about
differential privacy. Finally, I discuss some recent work towards classifying various
notions of differential privacy. This work comes from an REU at Towson University;
it is joint with Alexei Kolesnikov and two undergraduate researchers, Julie Nierwinski
and Avery Schweitzer.

▶ MATTHEW HARRISON-TRAINOR, Lowness notions in computer science.
Department of Mathematics, University of Michigan, United States.
E-mail: matthhar@umich.edu.

Some oracles are very weak in the sense that they have no power for solving problems
from a particular class of problems: any problem of that kind that could be solved with
the oracle could already be solved without the oracle. The classic example is that of
an oracle being low, which means that anything that is limit computable in the oracle
was already limit computable. There are many other lowness property; in this talk I
will talk about two of them. (1) An oracle is low-for-speed if it does not speed up any
computations: any decision problem that is computable in time t(x) using the oracle
was already computable in time only polynomially slower than t(x). (2) An oracle is
low-for-learning if any computable function which can be learned with oracle A can be
learned without A.

▶ HUNTER JOHNSON, Binary strings of finite VC dimension.
Department of Mathematics and Computer Science, John Jay College, CUNY, 524 W.
59th St, New York, New York 10019, USA.
E-mail: hujohnson@jjay.cuny.edu.

The complexity of a string can be measured by the richness of its substrings. For
example in genetics a region of DNA is considered to be highly informative if many
of the possible substrings of a certain length actually occur. Abstractly this kind of
complexity is captured by the standard string complexity function. When dealing with
binary strings, we have the additional feature that substrings can be viewed as subsets
of an index set. This allows us to apply measures of subset complexity such as VC
dimension. In this talk we define a notion of VC dimension for binary strings and
investigate the structure of strings of finite VC dimension.

▶ MICHAEL C. LASKOWSKI, The more we talk together, the happier we’ll be.
Department of Mathematics, University of Maryland, College Park, MD 20742, USA.
E-mail: mcl@math.umd.edu.

Since it was first observed that a uniformly definable family of sets {ϕ(M,a) : a ∈M}
is a Vapnik-Chervonenkis (VC) class if and only if the formula ϕ(x, y) is NIP (does not
have the Independence Property) the three fields of model theory, combinatorics, and
machine learning have become deeply intertwined. This talk will survey how the origi-
nal connection was discovered by way of a question of Stengle and Yukich in real alge-
braic geometry, and trace through the subsequent connections between these fields. Via
this connection, examples from model theory give rise to many interesting VC classes,
which are PAC-learnable. With Johnson, we noted the connection between definability
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of types and compression schemes. Working backwards from this led to the formulation
of the UDTFS conjecture, which was extensively studied by Guingona. We discuss how
this conjecture was solved, highlighting the roles played by non-trivial results from both
combinatorics (the (p, q)-theorem) and machine learning (the fundamental theorem of
Recursive Teaching Dimension). Also working backwards, the original proof given by
Vapnik and Chervonenkis has led to the model theoretic VC-theorem, which has be-
come central to how model theorists’ understanding of Keisler measures of types in
NIP theories. Over the past few years, Chase and Freitag have noted how other models
of machine learning are connected to other properties of uniformly definable sets and
we speculate as to how machine learning tools may further advance our understanding
of these families.

▶ D. GIHANEE SENADHEERA, Effective concept classes of PAC and PACi incompa-
rable degrees and jump structure.
School of Mathematics and Statistical Sciences, Southern Illinois University, 1245 Lin-
coln Drive, Mail Code 4408, Carbondale IL, USA.
E-mail: gihanee.s@siu.edu.

The Probably Approximately Correct (PAC) learning model is one of the machine
learning models and it is introduced by Leslie Valiant in 1984. There is a reducibility
to this learning model which is similar to Turing reducibility. The PACi means a less
restricted version of this reducibility. Here i refers to the independence of the size and
time computation of the PAC reducibility definition. The ordering of concept classes
under PAC reducibility is nonlinear, even when restricted to particular concrete exam-
ples. We can throw in equivalence relationships to these PACi and PAC reducibilities
and form the respective degrees. We recursively construct two c.e. effective concept
classes of incomparable PACi degrees to show that there exist incomparable PACi de-
grees. Similarly we can construct for PAC degrees which is analogous to incomparable
Turing degrees. The priority construction method is used to construct the two concept
classes, which was used by Friedburg and Muchnik in their proof of incomparable Tur-
ing degrees. It was necessary to deal with the size of an effective concept class thus we
propose a method to compute the size of the effective concept class using Kolmogorov
complexity. Furthermore, we explore the jump structure of effective concept classes
similar to the Turing jump.

[1] Wesley Calvert, PAC Learning, VC Dimensions, and The Arithmetic Hierar-
chy, Archive for Mathematical Logic, vol. 54, no.7-8, pp. 871–883.

[2] Robert Soare, Recursively Enumerable Sets and Degrees, Springer-Verlag,
New York, 1987.

[3] U.V. Vazirani and M.J. Kearns, An Introduction to Computational
Learning Theory, The MIT Press, 1994.

[4] Ming Li and Paul Vitányi, An Introduction to Kolmogorov Complexity
and Its Applications, Springer-Verlag, Switzerland, 2019.

[5] Wesley Calvert, Mathematical Logic and Probability, 2021 Pre-print.

▶ MADELEINE UDELL, Automating machine learning.
Operations Research and Information Engineering, Cornell University, Ithaca, NY
14853.
E-mail: udell@cornell.edu.

How should practitioners choose a machine learning model? What kind of model
(linear, tree ensemble, deep neural network) will work best? Will the default hyperpa-
rameters work, or should you tweak them? How valuable is the dataset, and has the
algorithm chosen realized that value? In this talk we’ll survey some interesting strate-
gies for automated machine learning that aim to answer these questions automatically.

22



We will focus in particular on understanding how AutoML can teach us about the
structure of data and about the relations between datasets and between algorithms.

▶ KEVIN ZHOU, Query learning of automata.
Department of Mathematics, Statistics, and Computer Science, University of Illinois
at Chicago, 851 S. Morgan Street, Chicago, IL 60607, USA.
E-mail: kzhou23@uic.edu.

Query learning of various forms of automata is a long-studied area of problems,
with applications in automatic verification of security protocols as well as in the study
of hardware and software systems. In this setting, a learner attempts to identify an
unknown target automata by submitting queries to an oracle. Most commonly, the
learner is allowed to ask two types of queries: 1) whether the target is equivalent
to a particular hypothesis automata, and 2) whether the target automata accepts a
particular string. Prior work on developing query learning algorithms for automata
began with work of Angluin [1] on learning deterministic finite automata, and was
followed by many other authors extending Angluin’s algorithm to generalizations of
DFAs.

More recently, Chase and Freitag [3] used ideas from model theory to prove general
bounds on the complexity of query learning in terms of certain combinatorial invariants
of concept classes (namely, Littlestone dimension and consistency dimension). Apply-
ing this approach to the setting of DFAs, they obtain results that are qualitatively
different than previous results. In our work, we extend this approach to prove new
bounds on the complexity of query learning for two variants of DFAs. The first is
that of DFAs with advice [4], where classical DFAs are augmented with a fixed infinite
“advice tape” that is read in parallel to the input tape. In this setting, no prior query
learning results are known. The second variant is that of nominal DFAs [2], a general-
ization of DFAs to infinite alphabets and state sets. Prior query learning results exist
for this setting [5], but our work gives significant improvements over these results.

[1] Dana Angluin, Learning regular sets from queries and counterexamples, Infor-
mation and Computation, vol. 75 (1987), no. 2, pp. 87–106.

[2] Miko laj Bojańczyk, Bartek Klin, and S lawomir Lasota, Automata theory
in nominal sets, Logical Methods in Computer Science, vol. 10 (2014), no. 3.

[3] Hunter Chase and James Freitag, Bounds in query learning, Proceedings
of Thirty Third Conference on Learning Theory (Jacob Abernethy and Shivani
Agarwal, editors), vol. 125, PMLR, 2020, pp. 1142–1160.

[4] Alex Kruckman, Sasha Rubin, John Sheridan, and Ben Zax, A Myhill-
Nerode theorem for automata with advice, Proceedings Third International Sym-
posium on Games, Automata, Logics and Formal Verification (Naopli, Italy),
(Marco Faella and Aniello Murano, editors), EPTCS, 2012, pp. 238–246.

[5] Joshua Moerman, Matteo Sammartino, Alexandra Silva, Bartek Klin,
and Micha l Szynwelski, Learning Nominal Automata, Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages (Paris,
France), (Giuseppe Castagna and Andrew D. Gordon, editors), Association for Com-
puting Machinery, 2017, pp. 613–625.

Abstracts of invited talks in the Special Session on
Models of Peano Arithmetic

▶ ATHAR ABDUL-QUADER, Generic subsets of models of PA.
School of Natural and Social Sciences, SUNY Purchase College, 735 Anderson Hill
Road, Purchase, NY 10577.
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E-mail: athar.abdulquader@purchase.edu.
We study notions of genericity in models of PA, inspired by lines of inquiry initiated

by Chatzidakis and Pillay ([2]) and continued by Dolich, Miller and Steinhorn ([3] and
[4]) in general model-theoretic contexts. In [2], Chatzidakis and Pillay axiomatized
the theories obtained by adding a “random” predicate to a class of structures. We
look at subsets of models of PA satisfying the axiomatization given by Chatzidakis
and Pillay; we refer to these sets as CP-generics. In this talk, we use an arithmetic
version of Cohen forcing to construct CP-generics with various properties, including
ones in which every element of the model is definable in the expansion, and, on the
other extreme, ones in which the definable closure relation is unchanged. This shows
a chasm between the generic subsets of tame theories and generic subsets of models of
PA, answering a question raised by Kossak and the author in [1]. This is joint work
with James Schmerl.

[1] Athar Abdul-Quader and Roman Kossak, Neutrally expandable models of
arithmetic, Mathematical Logic Quarterly, vol. 65 (2019), no. 2, pp. 212–217.

[2] Zoé Chatzidakis and Anand Pillay, Generic structures and simple theories,
Annals of Pure and Applied Logic, vol. 95 (1998), no. 1-3, pp. 71–92.

[3] Alfred Dolich, Chris Miller, and Charles Steinhorn, Extensions of or-
dered theories by generic predicates, The Journal of Symbolic Logic, vol. 78 (2013),
no. 2, pp.369–387.

[4] , Expansions of o-minimal structures by dense independent sets, Annals
of Pure and Applied Logic, vol. 167 (2016), no. 8, pp. 684–706.

▶ ALI ENAYAT, Surrounding the solidity of PA and Z2.
Department of Philosophy, Linguistics, and Theory of Science, University of Gothen-
burg, Renströmsgatan 6, 41255 Gothenburg, Sweden.
E-mail: ali.enayat@gu.se.
URL Address: https://www.gu.se/en/about/find-staff/alienayat.

Let ⊵par denote the relation of parametric interpretability among structures. A first
order theory T is said to be solid iff the following property (∇) holds for all models
M, M∗, and N of T :

(∇) If M ⊵par N ⊵par M∗ and there is a parametrically M-definable iso-
morphism i0 : M → M∗, then there is a parametrically M-definable isomorphism
i : M → N .

Note that if T is solid, then no two distinct deductively closed extensions of T (in
the same language) are bi-interpretable. The solidity of PA was established by Albert
Visser [2]. Visser’s result inspired the author [1] to establish the solidity of certain
other foundational theories, including Z2 (second order arithmetic). This talk presents
evidence in support of the conjecture that the aforementioned results of Visser and the
author about PA and Z2 are optimal.

[1] Ali Enayat, Variations on a Visserian theme, Liber Amicorum Alberti. A
Tribute to Albert Visser, (Jan van Eijk, Rosalie Iemhoff, and Joost J Joosten, edi-
tors), College Publications, London, 2016, pp. 284–341.

[2] Albert Visser, Categories of theories and interpretations, Logic in Tehran,
(Ali Enayat, Iraj Kalantari, and Mojtaba Moniri, editors), Lecture Notes in Logic,
vol. 26, Association for Symbolic Logic, La Jolla, CA, 2006, pp. 284–341.

▶ HAIM GAIFMAN, The conflict between mathematical beauty and realism in the foun-
dations of mathematics.
Department of Philosophy, Columbia University.
E-mail: hg17@columbia.edu.

Usually mathematicians appreciate the so-called beauty of certain mathematical
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proofs, or certain mathematical constructions. This beauty is associated with new
ways of organizing the familiar items of a given problem, which result in new clar-
ity; something complicated and foggy becomes illuminated from a new angle, thereby
leading to a solution. For the sake of simplicity I shall use a well-known simple tiling
problem as an example. Yet this kind of beauty is exemplified in frameworks whose
development took years of intensive efforts. It resulted in new disciplines (new ways
of organizing the mathematical material) such as algebraic topology, and its subdisci-
pline of homology theory. Arguably set theory is beautiful, at least Hilbert thought so.
Andre Weil and Michael Atiyah – among the top of influential mathematicians at the
turn of this century – certainly did not.

What is common to all the cases of mathematical beauty is that they are based on
epistemology, that is, human ways of getting to know. Truth, however, or the facts,
may resist attempts at reorganization that make for easier, ore transparent proofs. In
this talk I shall use Apéry’s proof of the irrationality of ζ(3) (where ζ is Riemann’s
ζ function) as an example of a valid proof that is not beautiful. There will also be a
short discussion of Riemann’s conjecture and Perlman’s proof of Poincare’s conjecture.

I shall then apply the beauty-versus-truth distinction to set theory. Here Woodin
can be taken as the proponent of beauty, that is, epistemic-clarity. Shelah, on the
other hand, was well aware of the danger of using considerations of epistemic nature
as a guide for choosing new set-theoretic axioms. In a paper from 2000 he criticizes
Woodin and provides a truer, down to earth picture of the use of axiomatic set theories.

At the end of the talk I plan to discuss the most extreme cases when beauty has
to be sacrificed for the sake of truth: the need to use computers in order to prove
mathematical results. The two obvious cases are the Appel-Haken proof of the 4-color
theorem and the dramatic story of Tom Hales’ solution of the Kepler problem.

▶ LAURENCE KIRBY, Models of arithmetic: forty years on (again).
Baruch College.
E-mail: vanini@earthlink.net.

The 1970s were a transitional period in the model theory of arithmetic. Some four
and a half decades have now elapsed since then: roughly the same amount of time that
elapsed from the foundational results of Skolem and Gödel to the 1970s. This talk will
give some personal and historical reflections on what we knew, what we didn’t know,
and what we ought to have known.

▶ LESZEK KO LODZIEJCZYK, An isomorphism theorem for models of Weak König’s
Lemma without Σ0

1 induction.
Institute of Mathematics, University of Warsaw.
E-mail: lak@mimuw.edu.pl.

RCA∗
0 is the fragment of second-order arithmetic axiomatized by ∆0

1-comprehension,
∆0

1-induction, and the statement that exponentiation is a total function. WKL∗
0 is

RCA∗
0 extended by Weak König’s Lemma. These theories were first considered in the

mid-1980’s by Simpson and Smith, who proved among other things that WKL∗
0 is Π1

1-
conservative over RCA∗

0.
We prove that if (M,X ) and (M,Y) are two countable models of WKL∗

0, with the
same first-order universe M , such that X ∩ Y contains a set relative to which Σ0

1

induction fails, then (M,X ) and (M,Y) are isomorphic. This result makes it possible
to reprove some earlier theorems in first-order arithmetic (due to Kossak and to Kaye)
saying that each countable model of Σ0

n collection but not Σ0
n induction has many

automorphisms. However, it also has a number of consequences for theories of second-
order arithmetic. For instance, it implies that Weak König’s Lemma is the strongest
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Π1
2 statement that is Π1

1-conservative over RCA∗
0 plus negated Σ0

1 induction, and it
means that there are some serious restrictions on the methods available for proving
Π1

1-conservation over collection principles.
Joint work with Marta Fiori Carones, Tin Lok Wong, and Keita Yokoyama.

▶ MATEUSZ  LE LYK, The Tarski Boundary: a cartographic report.
Faculty of Philosophy, University of Warsaw.
E-mail: mlelyk@uw.edu.pl.

The talk surveys the recent results that revolve around the question: Which proper-
ties make the notion of truth strong? We shall focus on the extensions of the canonical
compositional truth theory, usually denoted with CT−[PA]. The theory extends Peano
Arithmetic (PA) with the following characteristic axioms for the notion of truth

∀s, t
[
T (s=̇t) ≡ val(s) = val(t)

]
∀ϕ, ψ

[
T (ϕ∨̇ψ) ≡

(
T (ϕ) ∨ T (ψ)

)]
.

∀ϕ
[
T (¬̇ϕ) ≡ ¬T (ϕ)

]
.

∀ϕ(v)
[
T (∃̇vϕ(v)) ≡ ∃xT (ϕ[ẋ/v])

)
.

In the above s, t range over (codes of) terms, ϕ, ψ range over codes of sentences of
the arithmetical language (LPA), ϕ(v) ranges over (codes of) formulae of LPA. The
extension of T in each model of CT−[PA] is essentially a full satisfaction class.

CT−[PA] is well known to be a conservative extension of PA ([3]). However, as
observed already in the cited paper, it admits very pathological interpretations. In
particular, there are models of CT−[PA] in which, for some nonstandard a, the sentence
(0 = 1)a is in the extension of the T predicate, where (0 = 1)0 = (0 = 1) and
(0 = 1)n+1 = (0 = 1)n ∨ (0 = 1)n. It is another classical fact, that after adding
full induction scheme for the extended language the resulting theory (usually denoted
with CT) eliminates such pathologies. However, such a theory is a non-conservative
extension of PA. The Tarski Boundary project seeks to establish which principles can
CT−[PA] be extended with, so that the resulting theory remains conservative over PA.

In the first part of the talk we shall look at the non-conservative side of the Tarski
Boundary. We shall start from an obviously non-conservative principle of Global Re-
flection for PA (GR), which asserts ”All theorems of PA are true.” and provide some
recently discovered truth- theoretic principles which are equivalent to it (from [1] and
[4]). The main message here is that CT−[PA]+GR is a robust theory, which admits
many, apparently very different, axiomatizations. Additionally, it turns out to be mu-
tually ω-interpretable with the subsystem of second order arithmetic ACA′

0. Then we
shall enter the realm of non-conservative theories of truth provable in CT−[PA] + GR.
We explain that each such theory shares arithmetical consequences with an extension
of CT−[PA] by a sentence ”All sentences from δ are true”, where δ is proof-theoretically
reducible to the standard axiomatization of PA (we denote such sentences with T [δ],
[2]).

In the second part we look at the conservative side of the boundary. We give some
examples of proper extensions of CT−[PA] which occupy this territory. Last but not
least, we provide some insights into the structure of the fragment of the Lindenbaum
algebra of CT−[PA] consisting of those sentences of the form T [δ] (as defined above)
for which CT−[PA] + T [δ] remains on the conservative side of the boundary.

[1] Cezary Cieśliński, Mateusz  Le lyk, Bartosz Wcis lo, The Two Halves of
Disjunctive Correctness, submitted, arXiv 2108.13718

[2] Ali Enayat, Mateusz  Le lyk, Axiomatizations of PA: a truth theoretic study,
pt I, submitted.

[3] Henryk Kotlarski, Stanis law Krajewski, Alistair Lachlan, Construction
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of Satisfaction Classes for Nonstandard Models, Canadian Mathematical Bulletin
24 vol. 24 (1981), no. 3, pp. 283-293.

[4] Mateusz  Le lyk, Model Theory and Proof Theory of the Global Reflection Prin-
ciple, submitted.

▶ KEN MCALOON, Models of arithmetic - its long, slow development.
Brooklyn College and CUNY Graduate Center.
E-mail: mcaloon2002@yahoo.com.

Many currents converged to give rise to Models of Arithmetic as a full-fledged field
of research of its own within Mathematical Logic. We will discuss how the subject was
built up on contributions from people working in recursion theory, proof theory, set
theory, model theory and miscellaneous topics over a long period of time.

▶ COREY BACAL SWITZER, Axiomatizability of Kaufmann models in strong logics.
Institute Für Mathematik, Kurt Gödel Research Center, Universität Wien, Kolingasse
14-16, 1090 Wien, Austria.
E-mail: corey.bacal.switzer@univie.ac.at.

A Kaufmann model of PA is an ω1-like, recursively saturated, rather classless model.
Such models have been an important object of study in model theory of arithmetic and
its environs since the 70’s. Kaufmann models are natural counterexamples to several
theorems about countable models of PA holding at the uncountable. Moreover they
are a witness to incompactness at ω1 similar to an Aronszajn tree. The proof that
Kaufmann models exist lies along a somewhat twisted road. Kaufmann showed that
there are Kaufmann models under the combinatorial principle ♢ω1 and, later, Shelah
eliminated the use of ♢ω1 by appealing to a forcing absoluteness argument involving
the strong logic Lω1,ω(Q) where Q is the quantifier “there exists uncountably many”. It
remains an extremely interesting, if somewhat vague, question, due to Hodges, whether
one can build a Kaufmann model “by hand” in ZFC without appealing to generic
absoluteness.

In this talk we will report on our recent progress in this area. Specifically we will
consider the role that the strong logic Lω1,ω(Q) plays in Kaufmann models and show
that the statement “Kaufmann models can be axiomatized by Lω1,ω(Q)” is independent
of ZFC. Along the way we will discuss how Kaufmann models are affected by forcing
and in particular show that it is independent of ZFC whether or not there is a Kaufmann
model which can be “killed” by forcing without collapsing ω1.

▶ BARTOSZ WCIS LO, Properties characterising truth and satisfaction.
University of Gdańsk, Instytut Filozofii, Wydzia l Nauk Spo lecznych ul. Jana Bażyńskiego
4, 80-309 Gdańsk, Poland.
E-mail: b.wcislo@ug.edu.pl.

Satisfaction and truth classes are subsets of models of arithmetic which satisfy certain
truth-like axioms. One of basic such axioms is compositionality. For instance, (a Gödel
code of) a sentence ϕ∧ψ is supposed to be a member of a compositional truth class T
iff both ϕ ∈ T and ψ ∈ T .

It turns out that the presence of truth or satisfaction classes in a model of Peano
Arithmetic (PA) imposes a number of model- theoretic properties on the underlying
arithmetical structure. For instance, by results of [?], any model of Peano Arithmetic
containing a full satisfaction class is recursively saturated. Another example is that if
we take any extension of models (M,S) ⊆ (M ′, S′) such that S, S′ are (full or partial)
satisfaction classes and (M,S) is a substructure of (M ′, S′) in the expanded language
with a predicate denoting the satisfaction class, then M , the arithmetical reduct of
(M,S), is an elementary submodel of M ′.
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Satisfaction and truth classes can be characterised axiomatically, as subsets satisfying
certain first-order clauses, like induction or compositionality. We can therefore consider
in a more abstract manner an arbitrary theory U which guarantees that the underlying
arithmetical structure satisfies such truth-related properties. For instance, a theory U
imposes recursive saturation if any model of PA which can be expanded to a model of
U is recursively saturated.

It turns out that in many cases theories with such truth-like model-theoretic con-
sequences can be conversely shown to define a certain form of truth predicate. For
instance, it can be shown that if a theory U imposes recursive saturation on models
of PA, then it in every model one can define a (noninductive) satisfaction predicate
which is compositional on a cut of formulae, possibly the standard cut. Consequently,
if M ⊆M ′ is a sumbodel in the sense of a theory U, then the arithmetical reduct of M
is an elementary submodel of the arithmetical reduct of M ′.

In our talk, we will discuss certain model-theoretic properties imposed by the pres-
ence of satisfaction and truth predicates and we will present certain results showing how
to define truth and satisfaction predicates in theories which impose some truth-related
conditions on models of PA.

The results discussed in this talk are a joint work with Mateusz  Le lyk.

Abstracts of invited talks in the Special Session on

Set Theory

▶ DANA BARTOŠOVÁ, MIRNA DŽAMONJA, REHANA PATEL, AND LYNN SCOW,
Ramsey theory in ultraproducts of finite structures.
University of Florida, 1400 Stadium Rd, Gainesville, FL, USA.
E-mail: dbartosova@ufl.edu.
IRIF, Université de Paris, Bâtiment Sophie Germain, Case courrier 7014, 8 Place
Aurélie Nemours, 75205 Paris Cedex 13, France.
AIMS – Senegal, 92RR+VMQ, Mbour, Senegal; and Bentley University, 175 Forest
Street, Waltham, MA 02452, USA.
California State University, San Bernardino, 5500 University Parkway, San Bernardino,
CA 92407, USA.

Ramsey theory of classes of finite structures have been studied since the 1960s and
in the past two decades it has seen rapid progress. We show that countable ultraprod-
ucts of classes of finite structures with finite Ramsey degrees have analogous Ramsey
theoretic behaviour to the class itself with respect to internal colourings. In particular,
let K be a class of finite structures with a cofinal sequence (Ki)i∈ω and suppose that
A ∈ K has Ramsey degree d in K. Let U be a non-principal ultrafilter on ω. Then for
any internal colouring c of copies of A in Πi∈ωKi/U by finitely many colours, there is
a copy of any countable structure whose finite substructures are in K that takes on at
most d on copies of A.

▶ FILIPPO CALDERONI, Descriptive set theoretic rigidity and countable Borel equiva-
lence relations.
Department of Mathematics, Statistics, and Computer Science, University of Illinois
at Chicago, Chicago IL 60607, USA.
E-mail: fcaldero@uic.edu.
URL Address: https://filippoc.people.uic.edu.

Descriptive set theoretic rigidity asserts that the Borel cardinality of the orbit space
of certain actions of groups “remembers” a lot about the acting group. For example,
Adams and Kechris [1] proved that if one considers the canonical action of GLn(Z)
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on Tn, then Tn/GLn(Z) has the same Borel cardinality as Tm/GLm(Z) if and only if
m = n. In this talk we discuss some new results of descriptive set theoretic rigidity
for the action of the groups of rational rotations over the Euclidean spheres, and real
Grassmannians generalizing results from [2].

[1] Scot Adams and Alexander S. Kechris, Linear algebraic groups and count-
able Borel equivalence relations, Journal of the American Mathematical Society,
vol. 13 (2000), no. 4, pp. 909–943.

[2] Filippo Calderoni, Rotation equivalence and cocycle superrigidity for compact
actions, submitted.

▶ RUIYUAN CHEN, A representation theorem for cardinal algebras.
Department of Mathematics and Statistics, CRM/McGill University, 805 Sherbrooke
St. West, Montréal, Quebec H3A 0B9, Canada.
E-mail: ruiyuan.chen@umontreal.ca.

Tarski’s 1949 theory of cardinal algebras seeks to axiomatize key features of cardi-
nal arithmetic without assuming the axiom of choice, and has recently found several
applications to Borel equivalence relations. The theory is remarkable in its efficiency:
from a few simple axioms, Tarski (and later authors) derive seemingly all conceivable
“natural” properties of countable addition in familiar algebras such as [0,∞]. This
talk will present a result partially explaining this phenomenon: every cardinal algebra
A embeds into an algebra of Borel [0,∞]-valued functions (on a standard Borel space
when A is countably presented, and more generally on a locale). The result is proved
for a more general universally Horn-axiomatizable class of “countably additive posets”
that includes all cardinal algebras, and extends analogous results of Wehrung in the
finitely additive setting as well as of Tix in the setting of continuous domains.

▶ VICTORIA GITMAN, Jensen’s forcing at an inaccessible.
CUNY Graduate Center, New York, USA.
E-mail: vgitman@gmail.com.
URL Address: https://victoriagitman.github.io.

Jensen constructed in L, using ♢, a subposet of the Sacks forcing with the ccc and
the property that it adds a unique generic real over L (in contrast to, say, Cohen forcing
which adds continuum many generic reals). He used what came to be known as Jensen’s
forcing to show that, consistently, there can be a Π1

2-definable non-constructible real.
The “uniqueness of generic reals” property of Jensen’s forcing can be extended to
products of Jensen’s forcing and in some form to iterations, when forcing over L.
Indeed, a Jensen-like forcing with the uniqueness properties can be constructed in any
universe with a ♢-sequence. In a joint work with Friedman and Kanovei, we used a
tree iteration of Jensen’s forcing to construct (in a symmetric submodel of the forcing
extension) a model of full second- order arithmetic Z2 with the choice scheme in which
the dependent choice scheme failed for a Π1

2-assertion (this is optimal because Z2 with
the choice scheme implies dependent choice for Σ1

2-assertions). In this talk, I will
present a generalization of Jensen’s forcing to a sub-forcing of the κ-Sacks forcing for
an inaccessible cardinal κ. I will show that Jensen’s forcing at an inaccessible has some
of the same “uniqueness of generics” properties as Jensen’s forcing. One of the goals
of this work is to prove an analogue of the second-order arithmetic result for second-
order set theory by showing that the dependent choice scheme is independent of the
second-order Kelley-Morse set theory with the choice scheme. This is joint work with
Sy-David Friedman.

▶ ARISTOTELIS PANAGIOTOPOULOS, Strong ergodicity phenomena for Bernoulli
shifts of bounded algebraic dimension.
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Carnegie Mellon University, Department of Mathematical Sciences.
E-mail: apanagio@andrew.cmu.edu.

For every Polish permutation group P ≤ Sym(N) let A 7→ [A]P be the assignment
which maps every A ⊆ N to the set of all k ∈ N whose orbit under the action of the
stabilizer PA of A is finite. Then A 7→ [A]P is a closure operator and hence it endows
P with a natural notion of dimension dim(P ). This notion of dimension has been
extensively studied in model theory when A 7→ [A]P satisfies additionally the exchange
principle; that is, when A 7→ [A]P forms a pregeometry. However, under the exchange
principle every Polish permutation group P with dim(P ) < ∞ is locally compact and
therefore unable to generate any “wild” dynamics. In this talk we will discuss the
relationship between dim(P ) and certain strong ergodicity phenomena in the absence
of the exchange principle. In particular, for every n ∈ N we will provide a Polish
permutation group P , with dim(P ) = n, whose Bernoulli shift P ↷ RN is generically
ergodic relative to the injective part of the Bernoulli shift of any permutation group Q
with dim(Q) < n. We will use this to exhibit an equivalence relation of pinned cardinal
ℵ+
1 which strongly resembles Zapletal’s counterexample to a question of Kechris, but

which does not Borel reduce to the latter. Our proofs rely on the theory of symmetric
models of choiceless set-theory and in the process we establish that a vast collection of
symmetric models admit a theory of supports similar to the basic Cohen model.

This is joint work with Assaf Shani.

▶ DIMA SINAPOVA, Combinatorial principles and singular cardinals.
University of Illinois at Chicago.
E-mail: sinapova@uic.edu.

Combinatorial properties at infinite cardinals are used to address ZFC constraints
versus what can be obtained by the method of forcing. We will focus on two key
principles: the tree property and stationary reflection. Both are compactness type
principles with deep connection to large cardinals. In this talk we will go over recent
results on how these principles interact with cardinal arithmetic, especially at the level
of singular cardinals.

▶ KONSTANTIN SLUTSKY, L1 full groups of flows.
Department of Mathematics, Iowa State University, 411 Morrill Road, Ames, IA 50011,
United States.
E-mail: kslutsky@gmail.com.
URL Address: kslutsky.com.

It has been proved by Foreman, Rudolph, and Weiss [4] that classification of measure-
preserving transformations up to conjugation is an infeasible task. Long before the
descriptive set theoretical viewpoint allowed for estimating the complexity of this clas-
sification problem, ergodic theorists shifted their attention to weaker forms of equiv-
alence. The paramount idea here belongs to Dye [2, 3], who introduced the concept
of a full group of an action, which became an important algebraic invariant encoding
the orbit partition. The scope of applicability of these ideas grew in a multitude of
directions, two of which are most relevant to our talk. First, the concept of a full
group was generalized to Borel measure-preserving actions of Polish groups by Carderi
and Le Mâı tre [1] and second, various subgroups of full groups were found to corre-
spond to stronger types of equivalence than the orbit equivalence of actions. The latter
phenomena first appeared prominently in Cantor dynamics in the work of Giordano,
Putnam, and Skau [5], who showed that the so-called topological full groups encode
flip-conjugacy of minimal homeomorphisms of the Cantor set. Motivated by this cor-
respondence, Le Mâıtre [6] introduced L1 full groups of discrete group actions as the
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analog of topological full groups within the framework of ergodic theory.
In this talk we will discuss our recent work with Le Mâıtre [7] on the L1 full groups

of general Polish group actions. We show that under minor assumptions on the actions,
topological derived subgroups of L1 full groups are topologically simple and — when the
acting group is locally compact and amenable — are whirly amenable and generically
two-generated. For measure-preserving actions of the real line (also known as measure-
preserving flows), the topological derived subgroup of an L1 full group coincides with
the kernel of the index map, which implies that L1 full groups of free measure-preserving
flows are topologically finitely generated if and only if the flow admits finitely many
ergodic components. The latter is in a striking contrast to the case of ergodic Z-actions,
where finite topological rank is equivalent to finiteness of the entropy of the action.

[1] Alessandro Carderi and François Le Mâıtre, More Polish full groups,
Topology and its Applications, vol. 202 (2016), pp. 80–105.

[2] Henry A. Dye, On groups of measure preserving transformations I, American
Journal of Mathematics, vol. 81 (1959), pp. 119–159.

[3] , On groups of measure preserving transformations II, American Jour-
nal of Mathematics, vol. 85 (1963), pp. 551–576.

[4] Matthew Foreman, Daniel J. Rudolph, and Benjamin Weiss, The conju-
gacy problem in ergodic theory, Annals of Mathematics. Second Series, vol. 173
(2011), no. 3, pp. 1529–1586.

[5] Thierry Giordano, Ian F. Putnam, and Christian F. Skau, Full groups of
Cantor minimal systems, Israel Journal of Mathematics, vol. 111 (1999), pp. 285–
320.

[6] François Le Mâıtre, On a measurable analogue of small topological full groups,
Advances in Mathematics, vol. 332 (2018), pp. 235–286.

[7] François Le Mâıtre and Konstantin Slutsky, L1 full groups of flows,
arXiv:2108.09009 (2021).

▶ JENNA ZOMBACK, Pointwise ergodic theorems for semigroup actions.
University of Illinois.
E-mail: zomback2@illinois.edu.

We discuss new pointwise ergodic theorems for free semigroup actions, where the
averages are taken over trees. This is joint work with Anush Tserunyan.

Abstracts of contributed talks

▶ KATALIN BIMBÓ, Relational semantics for some classical relevance logics.
Department of Philosophy, University of Alberta, 2–40 Assiniboia Hall, Edmonton, AB
T6G 2E7, Canada.
E-mail: bimbo@ualberta.ca.
URL Address: www.ualberta.ca/~bimbo.

The framework called generalized Galois logics (or gaggle theory, for short) was in-
troduced in [2] to encompass Kripke’s semantics for modal and intuitionistic logics,
Jónsson & Tarski’s representation of BAO’s and the Meyer–Routley semantics for rel-
evance logics among others. In some cases, gaggle theory gives exactly the semantics
defined earlier for a logic; in other cases, the semantics differ (cf. [3], [1]). Relational
semantics for classical relevance logics such as CR and CB are usually defined as a
modification of the Meyer–Routley semantics for R+ and B+, respectively (cf. [4]).
In this talk, I compare the existing semantics for CB and CR to the semantics that
results as an application of gaggle theory.
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[1] Bimbó, Katalin and J. Michael Dunn, Generalized Galois Logics: Rela-
tional Semantics of Nonclassical Logical Calculi, CSLI Lecture Notes vol. 188,
CSLI Publications, Stanford, CA, 2008.

[2] Dunn, J. Michael, Gaggle theory: An abstraction of Galois connections and
residuation, with applications to negation, implication, and various logical operators,
Logics in AI: European Workshop JELIA ’90, (J. van Eijck, editor), Lecture
Notes in Computer Science vol. 478, Springer, Berlin, 1991, pp. 31–51.

[3] Dunn, J. Michael, Gaggle theory applied to intuitionistic, modal and rele-
vance logics, Logik und Mathematik. Frege-Kolloquium Jena 1993, (I. Max and
W. Stelzner, editors), W. de Gruyter, Berlin, 1995, pp. 335–368.

[4] Meyer, Robert K., Ternary relations and relevant semantics, Annals of Pure
and Applied Logic, vol. 127 (2003), pp. 195–217.

▶ MATTHEW DEVILBISS* AND JAMES FREITAG, Strong minimality of generic dif-
ferential equations.
Department of Mathematics, Statistics, and Computer Science, University of Illinois
at Chicago, Chicago IL, USA.
E-mail: mdevil2@uic.edu.
Department of Mathematics, Statistics, and Computer Science, University of Illinois
at Chicago, Chicago IL, USA.
E-mail: jfreitag@uic.edu.

In this talk, I will outline a new technique for showing that non-linear algebraic
differential equations are strongly minimal. This is used to prove the strong minimality
of generic differential equations with sufficiently large degree, answering a question of
Poizat (1980). Time permitting, I will also discuss ongoing work in applying this
method to differential equations of interest whose coefficients are not generic.

▶ VERA FISCHER, MICHA L TOMASZ GODZISZEWSKI∗, Spectra of maximal almost
orthogonal families of projections in the Calkin algebra.
E-mail: mtgodziszewski@gmail.com.
University of  Lódź and University of Warsaw.
E-mail: vera.fischer@univie.ac.at.
University of Vienna.

Let H be an infinite dimensional separable complex Hilbert space with inner product
⟨·|·⟩. Let B(H) be a Banach space of bounded linear operators on H with the operator
norm. In case when H = ℓ2(ω), we can distinguish a particular subalgebra of the
Banach space B(H): we define K(H) as the smallest Banach subalgebra of B(H) con-
taining all finite-dimensional operators, and we call its elements compact operators. So,
T ∈ B(H) is compact if it is a limit of finite-rank operators. (Equivalently, an operator
T ∈ B(H) is compact if the image of the closed unit ball B ⊂ H under T is precompact,
which in turn is equivalent to T being weak-norm continuous when restricted to B.)
The collection K(H) has the structure of a C∗-algebra and is a ring-theoretical ideal in
B(H).

The Calkin algebra is the quotient C∗- algebra C(H) = B(H)/K(H), where the
quotient mapping is denoted by π : B(H) → C(H). Every separable C∗-algebra is
isomorphic to a C∗-subalgebra of the Calkin algebra. We are interested in the set of
projections in the Calkin algebra, i.e., in the set: P (C(H)) = {p ∈ C(H) : p = p∗ = p2}.
For a set A ⊆ ω, let PA be the projection onto ℓ2(A) ⊆ ℓ2(ω). The map A 7→ PA embeds
the Boolean algebra P(ω) into the space of projections P (H). The map A 7→ π(PA)
defines an embedding of P(ω)/fin into P (C(H)). This map is called the diagonal
embedding. A family of projections A ⊆ P (C(H)) is almost orthogonal if the product
of any two elements p, q ∈ A is the zero of the algebra C(H). In this paper we investigate
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the possible spectra of maximal almost orthogonal families of projections in the Calkin
algebra. The collection of projections P (C(H)) is a natural object to study, as it can be
identified with the lattice of projections on B(H) modulo a natural equivalence relation,
so we can identify elements of P (C(H)) with closed subspaces of B(H).

An important result by Wofsey is:

Theorem (Wofsey, 2007). Let A be a family of disjoint uncountable sets. Then

PA ⊩ ∀X ∈ A ∃Y (|Y | = |X| & Y is a m.a.o.f. ).

In other words, for any family of cardinals C there is a forcing notion such that
C is included in the spectrum of m.a.o.f.’s. Wofsey’s result is an operator-theoretic
counterpart of the (positive) result of Hechler concerning spectra of maximal almosts
disjoint families of sets. We have been searching for an operator-theoretic counterpart
of the (negative) strengthening of Hechler’s result on spectra of mad families given
by Blass. Thus, our main question in this paper is: can we isolate conditions, under
which a specific set of cardinals C can be not only included, but actually equal to the
spectrum of maximal almost orthogonal family of projections in a given model of set
theory?

Theorem. Assume GCH. Let C be a set of cardinals satisfying the following con-
ditions:

• ∀κ ∈ C κ is uncountable,
• C is closed,
• ∀κ ∈ [ℵ1, |C|] κ ∈ C,
• ∀κ ∈ C cf(κ) = ω ⇒ κ+ ∈ C.

Then there exists a forcing notion P such that it satisfies the countable chain condition
and forces the spectrum of maximal almost orthogonal families to be exactly C.

▶ JARL G. TAXERÅS FLATEN, Internal injectivity of modules in higher toposes.
Department of Mathematics, Western University, 1151 Richmond St, London, Canada.
E-mail: jtaxers@uwo.ca.

Any “internal” property in a (higher) topos ought to be stable by pullback. While
this is automatically the case for properties coming from an internal language, such
properties are often unwieldy and one seeks simpler characterizations. Our present
interest is in comparing the notion of injectivity of a module coming from HoTT, to
the preexisting notion of internal injectivity. This is part of joint, ongoing work with
Dan Christensen on the interpretation of homological algebra from HoTT into higher
toposes.

In the 80s, Roswitha Harting proved that internal injectivity of abelian groups in
an elementary topos E is pullback-stable. Central is her construction [1] of a left-exact
left adjoint to pullback of abelian groups, called the internal coproduct:

⊕X : Ab(E/X) ⇆ Ab(E) : X∗

In 2017, Ingo Blechschmidt remarked in his thesis that Harting’s construction works
for modules as well, and further proves that internal injectivity of modules correponds
to injectivity in the “Stacks semantics” of an elementary topos.

We prove that for higher toposes satisfying the external axiom that “sets cover”,
internal injectivity of modules coincides with the notion of injectivity coming from
HoTT. Thus the notions coincide for ∞-sheaves on a 1-site. In general, we show that
internal injectivity is stable by pullback over 0-truncated objects as well as pointed,
connected objects. When pulling back over untruncated objects, the analog of the
internal coproduct is an internal colimit. We give a novel construction of this internal
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colimit in HoTT, and produce examples demonstrating that it may fail to be left-exact.

[1] Roswitha Harting, Internal coproduct of abelian groups in an elementary topos,
Communications in Algebra, vol. 10 (1982), no. 11, pp. 1173–1237.

▶ OMER BEN-NERIA, AND THOMAS GILTON∗, Club Stationary Reflection and the
Special Aronszajn Tree Property.
Department of Mathematics. The Dietrich School of Arts and Sciences, 301 Thackeray
Hall, Pittsburgh, PA 15260
Hebrew University of Jerusalem, Jerusalem, Israel.
E-mail: tdg25@pitt.edu.
E-mail: ineeman@math.ucla.edu.

A fruitful line of research in set theory investigates the tension between compactness
and incompactness principles. Given this tension, it is of interest when principles
in these categories are in fact jointly consistent. In a recent result with Omer Ben-
Neria, we have established such a joint consistency result, showing that Club Stationary
Reflection ([2]) is consistent with the Special Aronszajn Tree property ([1]) on the
cardinal ω2.

The tension between these two principles shows up in the very different properties
of our posets (specializing, and club adding) which we must maintain throughout the
course of our construction. To build the desired posets, we first introduce the idea of
an F-Strongly Proper poset (F is the filter on κ dual to the ineffability ideal). These
posets use systems of continuous residue functions to witness strong genericity. We then
show how to specialize trees on ω2 following a F-strongly proper forcing, generalizing
the classic result of Laver and Shelah. We also show that the composition of Levy
collapsing an ineffable cardinal followed by our club adding is F-strongly proper.

Additionally, we develop new ideas for preserving Aronszajn trees and for stationary
sets which do not make use of the usual closure assumptions. For instance, we show
that our club adding posets don’t add branches to Aronszajn trees of interest and that
quotients of the specializing forcing preserve stationary sets of countable cofinality.

In this talk we will survey these two classes of posets and sketch our proof of spe-
cializing, as well as our preservation theorems.

[1] R. Laver, and S. Shelah, The ℵ2-Souslin Hypothesis., Transactions of the
AMS, vol. 264 (1981), no. 2, pp. 411-417.

[2] M. Magidor, Reflecting stationary sets., The Journal of Symbolic Logic, vol.
47 (1983), no. 4, pp. 755-771.

▶ VICTORIA GITMAN, MICHA L TOMASZ GODZISZEWSKI∗, TOBY MEADOWS,
KAMERYN WILLIAMS, On axioms for multiverses of set theory.
E-mail: vgitman@gmail.com.
City University of New York.
E-mail: mtgodziszewski@gmail.com.
University of  Lódź and University of Warsaw.
E-mail: toby.meadows@gmail.com.
University of California, Irvine.
E-mail: kameryn.jw@gmail.com.
Sam Houston State University.

Recursive saturation, introduced by Barwise and Schlipf is a robust notion, one
which has proved to be important for the study of nonstandard models. In particular,
it is ubiquitous in the model theory of axiomatic theories of truth, e.g. in the topic
of satisfaction classes (one can show that if M |= ZFC is a countable ω-nonstandard
model, then M admits a satisfaction class iff M is recursively saturated). V. Gitman
and J. Hamkins showed in A Natural Model of the Multiverse Axioms that the collection
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of countable, recursively saturated models of set theory satisfy the so-called Hamkins’s
Multiverse Axioms. The property that forces all the models in the Multiverse to be
recursively saturated is the so-called Well-Foundedness Mirage axiom which asserts
that every universe is ω-nonstandard from the perspective of some larger universe, or
to be more precise, that: if a model M is in the multiverse then there is a model N in
the multiverse such that M is a set in N and N |=′ M is ω-nonstandard.’. Inspection of
the proof led to a question if the recursive saturation could be avoided in the Multiverse
by weakening the Well-Foundedness Mirage axiom. Our main results answer this in
the positive. We give two different versions of the Well-Foundedness Mirage axiom
– what we call Weak Well-Foundedness Mirage (saying that if M is a model in the
Multiverse then there is a model N in the Multiverse such that M ∈ N and N |=′ M
is nonstandard.’) and Covering Well-Foundedness Mirage (saying that if M is a model
in the Multiverse then there is a model N in the Multiverse with K ∈ N such that K
is an end-extension of M and N |=′ K is ω-nonstandard’). I will present constructions
of two different Multiverses satisfying these two weakened axioms. This is joint work
with V. Gitman. T. Meadows and K. Williams.

▶ SAMSON LEUNG, Axiomatizing AECs and applications.
Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA
15213, USA.
E-mail: wangchil@andrew.cmu.edu.
URL Address: http://www.math.cmu.edu/~wangchil/.

Let K be an abstract elementary class and λ = LS(K). K can be axiomatized by
a sentence in L(2λ)+,λ+ , allowing game quantification. This extends Kueker’s result

which assumes finite character and countable LS(K). It is also a parallel to Shelah-
Villaveces result which demands a much higher complexity of junctions but without
game quantification. Shelah’s presentation theorem gives K = PC(T,Γ,L(K)) where
T is a first-order theory in an expansion of L(K) and Γ is a set of T -types. We
provide a better bound of |Γ| in terms of I2(λ,K). We also give conditions under
which the categoricity in two successive cardinals implies the existence of models in
the next cardinal. This improves the result of Shelah and as a corollary we extend
Shelah-Vasey’s result.

▶ SHAY ALLEN LOGAN, Easy proofs of strong variable sharing theorems.
Department of Philosophy, Kansas State University, 201 Dickens Hall, Manhattan, KS
66506, USA.
E-mail: salogan@ksu.edu.

Formal symptoms of relevance concern propositional variables shared between an-
tecedent and consequent of provable conditionals. The earliest such result is in [1]. In
[2], Brady showed that for weak enough logics, very strong variable sharing results are
available. In [3], I proved a strengthening of Brady’s result. Both Brady’s proof and
mine use a method that I find to be fairly philosophically opaque. I this talk I will give
more illuminating proofs of these results.

The depth of an occurrence of an atom is the number of entailments it is nested
under. So the occurrence of p in p is a depth 0 occurrence; the occurrence of p in
(p → q) → r is a depth 2 occurrence. Depth substitutions are functions that replace
each atom at a given depth with a formula. Depth substitutions are not uniform—they
may replace an atom at one depth with one formula and replace the same atom at a
different depth with a different formula.

The logic L is closed under depth substitutions when applying a depth substitution to
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a theorem always produces another theorem. In this talk I show that many weak rele-
vant logics are closed under depth substitutions. I then use this fact to give illuminating
proofs of both Brady’s result and my recent strengthening of it.

[1] Nuel D. Belnap, Entailment and Relevance, The Journal of Symbolic Logic,
vol. 25 (1960), no. 2, pp. 144–146.

[2] Ross T. Brady, Depth Relevance of Some Paraconsistent Logics, Studia Log-
ica, vol. 43 (1984), no. 1, pp. 67–73.

[3] Shay Allen Logan, Strong Depth Relevance, Australasian Journal of Logic,
vol. 18 (2021), no. 6, pp. 645–656.

▶ JUAN AGUILERA, ROBERT S. LUBARSKY∗, CONNOR WATSON, On winning
strategies in Σ0

2 games.
Institute of Discrete Mathematics and Geometry, Vienna University of Technology,
Austria, and Department of Mathematics, Ghent University, Belgium.
E-mail: aguilera@logic.at.
Department of Mathematical Sciences, Florida Atlantic University, 777 Glades Rd.,
Boca Raton FL 33431, USA.
E-mail: robertlubarsky@att.net.
Department of Mathematical Sciences, Florida Atlantic University, 777 Glades Rd.,
Boca Raton FL 33431, USA.
E-mail: watsonc2020@fau.edu.

It is known where winning strategies for player I in Σ0
2 games appear (and for that

matter also for games in the standard Boolean difference hierarchy over Σ0
2). But where

are strategies for player II? The answer is not quite so straightforward as one might
think.

[1] Christoph Heinatsch and Michael Möllerfeld, The determinacy strength
of Π1

2-comprehension, Annals of Pure and Applied Logic, vol. 161 (2010), pp. 1462–
1470.

[2] Yiannis Moschovakis, Descriptive Set Theory, 2nd edition, American Mathe-
matical Society, 2009.

[3] P. Wolfe, The strict determinateness of certain infinite games, Pacific Jour-
nal of Mathematics, vol. 5 (1955), pp. 841–847.

▶ DIEGO A. ROJAS, Effective vague convergence of measures on the real line.
Department of Mathematics, Iowa State University, 396 Carver Hall, 411 Morrill Rd,
Ames, IA 50011, United States.
E-mail: darojas@iastate.edu.

Recently, McNicholl and Rojas [1] developed a framework to study the effective
theory of weak convergence of measures on R. In this talk, we introduce a similar
framework to study the effective theory of vague convergence of measures on R. In
particular, we define two effective notions of vague convergence of measures in R and
show that they are equivalent. However, unlike effective weak convergence, we show
that an effectively vaguely convergence sequence need not have a computable limit.
Nevertheless, we show that for a computable sequence {µn}n∈N of measures in R,
effective weak and vague convergence of measures coincide whenever {µn(R)}n∈N has
a computable modulus of convergence.

[1] Timothy H. McNicholl and Diego A. Rojas, Effective notions of weak con-
vergence of measures on the real line, submitted, arXiv:2106.00086

▶ DAVID J. WEBB, Reducibilities between MLR and Either(MLR).
Department of Mathematics, University of Hawaii at Manoa, 2565 McCarthy Mall,
Honolulu, Hawaii 96822, U.S.A..
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E-mail: dwebb@math.hawaii.edu.
We investigate which reducibility notions suffice to output a (Martin-Löf) ran-

dom real given a pair of input oracles, an unknown member of which is itself ran-
dom. We demonstrate that truth-table reducibility suffices, showing that the classes
of Kolmogorov-Loveland random reals and Martin-Löf random reals are truth-table
Medvedev equivalent, answering a question of Miyabe. We also investigate whether
even stronger reducibilities can be used, showing that positive, linear, and bounded
truth-table reductions can fail to output randomness given such oracles.

▶ YUXIN ZHOU, Distinguish chromatic numbers for isosceles triangles in choiceless set
theory.
Department of Mathematics, University of Florida, 1400 Stadium Rd, Gainesville, FL
32601, USA.
E-mail: yuxinzhou@ufl.edu.
URL Address: https://people.clas.ufl.edu/yuxinzhou/.

For n a positive natural number, let Γn be the hypergraph of isosceles triangles on
Rn. Under the axiom of choice, the existence of a countable coloring for Γn holds for
every n. Without the axiom of choice, the chromatic numbers may or may not be
countable. With an inaccessible cardinal assumption, there is a model of ZF+DC in
which Γ2 has countable chromatic number while Γ3 has uncountable chromatic number.
This result is obtained by a balanced forcing over the symmetric Solovay model.

Abstracts of talks presented by title

▶ ALEXANDR BESSONOV, Gödel’s first incompleteness theorem is numerically depen-
dent.
Institute of Philosophy and Law, Siberian Branch, Russian Academy of Sciences,
Novosibirsk, Russia.
Institute of Philosophy and Law, Novosibirsk State University, Novosibirsk, Russia.
E-mail: trt@academ.org.

In proving the first incompleteness theorem, Gödel constructs a formula with one
free variable (up to notation) Φ(x) = ∀y¬Prov(x, y), numeralwise expressing the fact
that a formula with number x is unprovable. If the Gödel number of Φ(x) is n, then
an unsolvable Gödel formula (we denote it by G) is obtained from Φ(x) by substituting
the numeral n for the variable x.

It is generally accepted that the first theorem establishes the unsolvability of G in
Dedekind–Peano (PA) formal arithmetic as such. In fact, Gödel proved only the un-
solvability of G in a very specific fixed numbering of the PA syntax. However, the
definition of the unsolvability of a formula in arithmetic is numerically independent:
there is no mention whatsoever of any numbering. The Gödel’s proof of the unsolv-
ability of G is valid only if a numbering was fixed by Gödel himself and the Gödel
number of Φ(x) equals n. A numbering other than Gödel’s will have another formula
∀y¬Provnew(x, y) with a different number nnew, and another unsolvable (in this num-
bering) formula Gnew. And each numbering will have its own formula. In order to
establish the incompleteness of PA, however, we must prove the unsolvability of G
outside some numbering, at least its unsolvability inside any other numbering. What
will happen to the old formula G in the new numbering? What happens if the formula
Φ(x) is assigned a different number, or if n is the number of some other formula, or
if it is not at all a Gödel number? Can we prove the unsolvability of G in the new
numbering?

Here is an example of the formula constructed (as G) by substituting into the same
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formula of PA the Gödel number of the same arithmetic formula, which is unsolvable
in one numbering and solvable in another. Consider a formula with one free variable

G& (x = n). (∗)

Substituting n into (∗), we obtain the formula G& (n = n), which is obviously equiv-
alent to G and is therefore unsolvable if G is unsolvable.

Let’s move on to another numbering, in which G has a number l other than n.
Substituting l in (∗) yields the formula G& (l = n), the second conjunct of which is
refutable in PA since ⊢PA ¬(l = n) for l ̸= n, yielding ⊢PA ¬(G& (l = n)).

Thus, the formula obtained by substituting in (∗) the number of G for x is unsolvable
in Gödel’s own numbering and is solvable (refutable) in some other numbering. Hence,
it is possible that a formula constructed in the same way as G is unsolvable in one
numbering and solvable in another. Therefore, until we prove that the Gödel formula
G remains unsolvable in any other numbering, we have no sufficient grounds to assert
that the incompleteness of PA is established in Gödel’s first theorem.

▶ MICHA L TOMASZ GODZISZEWSKI, Between the model-theoretic and the axiomatic
method of characterizing mathematical truth.
University of Warsaw and University of  Lódź.
E-mail: mtgodziszewski@gmail.com.

The so-called model-theoretic method of characterizing the notion of truth consists in
defining a general notion of a model of a given formal language L, providing a definition
of a binary relation between models of L and the sentences of L, and finally singling
out a concrete model as the standard or the intended one and declaring that truth
simpliciter (of sentences of L) should be understood as truth in this model. Can we
really treat this model-theoretic definition of truth as the definition of (mathematical)
truth (say, at least with respect to the language of arithmetic)? There are at least two
serious problems with this method:

1. The first problem with is that it indeed relies on the concept of an intended or
standard structure (or the class of intended structures in case of some other theories,
e.g. in the case of set theory). One of the arguments aiming at distinguishing the
standard or intended model of Peano Arithmetic relies on the Tennenbaum’s Theorem
and related results. We demonstrate how the mathematical analysis of the Tennebaum-
like phenomena in the context of a recently proposed modification of the basic concepts
of computable model theory suuports the view that this cannot be achieved and that not
only the argument-from-Tennenbaum’s-theorem doe not work, but that in the context
of computable quotient presentations of first-order structures the theorem itself simply
does not hold.

2. The second one is that even having forgotten about the above, we might assume
that our metatheory can provide us with a determinate concept of the standard model.
Then the question is: does it follow that then the concept of truth is definite, complete,
determinate or absolute? In what follows, we provide an analysis of these two particular
questions regarding the use of the notion of standard model in the model-theoretic
characterization of the notion of mathematical truth simpliciter, leading to results that
can be interpreted as delivering the following message: not only there are conceptual
problems regarding the way standard models are used in the characterization, but there
are philosophically justified mathematical reasons for which the appeal to standard
models in truth- theoretic constructions is at least problematic, if not impossible, and
therefore, if one’s goal is to provide a formal theory of mathematical truth simpliciter,
the axiomatic framework is the right method of doing so.

We conclude with a section describing an application of the axiomatic method of
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characterizing truth to set theory taken as the base theory. By using a result of Gitman
and Hamkins we suggest that our result characterizing the class of models of ZFC
expandable to models of the theory of the so-called Compositional Truth allows for an
essentially truth-theoretic argument in favor of pluralism in philosophy of set theory.

▶ JOACHIM MUELLER-THEYS, Equivalence.
Heidelberg, Germany.
E-mail: mueller-theys@gmx.de.

We legitimate and categorize the different approaches to equivalence, leading to a
natural nomenclature.
0. Let M ̸= ∅ be any domain, a, b, ... ∈ M , P ⊆ M , P (a) :iff a ∈ P , P ⊆ ℘(M). We
specified similarity and equality by a ∼P b :iff P (a) &P (b), a ∼P b :iff ∃P ∈ P a ∼P b,
and a ≡P b :iff P (a) ⇔ P (b), a ≡P b :iff ∀P ∈ P a ≡P b. Among many other things,
a ∼P b iff ∃P ∈ P a, b ∈ P , a ≡P b iff ∀P ∈ P: a ∈ P ⇔ b ∈ P ; a ≡℘(M) b iff a = b.
I. Original Equivalence. Literally, equivalent means to have the same value. This
presupposes a valuation ω : M → V , where V ̸= ∅. From the abstract point of view, a
valuation is nothing else than a function or a mapping. Now

a ≃ω b :iff ω(a) = ω(b),

defines the unique equivalence of ω in the well-known manner.
II. Axiomatic Equivalence. Let E ⊆M×M be RST, viz. E is reflexive, symmetrical,
and transitive. As usual, M/E := {a/E : a ∈M}, where a/E := {b ∈M : bE a}.

For all ω, ≃ω is RST. Conversely, one can link various i(n)dentifications to E. In
particular, the canonical mapping κE with aE b ⇔ a/E = b/E ⇔ κE(a) = κE(b) ⇔
a ≃κE b, shows E to be an original equivalence. Hence RST-relations and original
equivalences may be identified. This justifies the term (axiomatic) equivalence.

III. Partitional Equivalence. Let P be any partition (of M), viz. M =
⋃̇

P, P ̸= ∅
for all P ∈ P. M/E is a partition.

We then call ∼P (cf. 0) the partitional similarity induced by P. ∼P is STR. Since,
moreover, as is generally known, P = M/∼P and E = ∼M/E , as well quotient sets and
partitions as partitional similarities and axiomatic equivalences may be identified.

We call ≡P the partitional equality of P. a ≡P b means that a, b correspond with
respect to all P ∈ P. By the Buchholz Theorem, partitional equality and similarity
coincide, i. e. ≡P = ∼P .

All in all, we may now call ∼=P :∈ {∼P ,≡P} the partitional equivalence of P. We
suggest ≃ as a general equivalence symbol.

References. “Similarity and Equality” (2021 ASL Annual Meeting: abstract, (script
of) talk), “Mathematical Theorems on Equality and Unequality” (abstract, LC 2021,
by-title; comprising the proven Dichotomy Theorem: All P are Q-equal (∀a, b ∈ P a ≡Q

b) if (and only if) P ⊆ Q or P ∩ Q = ∅), “On the Relations Induced by Partitions”
(2022 ASL-JMM, abstracts). Thanks to Fritz Paepcke †, “Peana Pesen”, Andreas
Haltenhoff, P. Maier-Borst, Wernher Bornemann-von Loeben, Reed David Solomon,
Shannon Miller. Joint work with Wilfried Buchholz.
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