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Main results

Fact
1 (Shelah) Let T be a stable first-order theory. The first stability

cardinal is bounded above by 2|T |.

2 (Vasey) Let K be a tame stable AEC with the amalgamation property
(AP). The first stability cardinal is bounded above by the first Hanf
number = ℶ(2LS(K))+ .

Open question

Can we lower the bound of (2) to 2LS(K)? Or are there counterexamples?
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Main results

Theorem (Proposition 4.1)

Let λ be an infinite cardinal and α be an ordinal with λ ≤ α < (2λ)+.
Then there is a stable AEC K such that LS(K) = λ and its first stability
cardinal is ℶα(λ). Moreover, K is tame but fails AP.

First stability cardinal Tame+AP Tame+(¬AP)
Upper bound ℶ(2LS(K))+ (Vasey) ? (Open)

Can go up to ? (Open) ℶ(2LS(K))+ (4.1)
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Abstract elementary classes (AECs)

Shelah developed an axiomatic framework to contain certain classes of
models, including models of first-order theories.

Definition

Let L be a finitary language. An abstract elementary class K = ⟨K ,≤K⟩ in
L = L(K) satisfies the following axioms:

1 K is a class of L-structures and ≤K is a partial order on K .

2 For M1,M2 ∈ K , M1 ≤K M2 implies M1 ⊆ M2 (as L-substructure).
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Abstract elementary classes (AECs)

Definition (Continued)

3 Isomorphism axioms:
a If M ∈ K , N is an L-structure, M ∼= N, then N ∈ K .

b Let M1,M2,N1,N2 ∈ K . If f : M1
∼= M2, g : N1

∼= N2, g ⊇ f and
M1 ≤K N1, then M2 ≤K N2.

N1 N2

M1 M2

g

≤K

f

≤K
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Abstract elementary classes (AECs)

Definition (Continued)

4 Coherence: Let M1,M2,M3 ∈ K . If M1 ≤K M3, M2 ≤K M3 and
M1 ⊆ M2, then M1 ≤K M2.

5 Löwenheim-Skolem axiom: There exists an infinite cardinal
λ ≥ | L(K)| such that: for any M ∈ K , A ⊆ |M|, there is some N ∈ K
with A ⊆ |N|, N ≤K M and ∥N∥ ≤ λ+ |A|. We call the minimum
such λ the Löwenheim-Skolem number LS(K).

6 Chain axioms: Let α be an ordinal and ⟨Mi : i < α⟩ ⊆ K such that
for i < j < α, Mi ≤K Mj .

1 Then M =
⋃

i<α Mi is in K and for all i < α, Mi ≤K M.
2 Let N ∈ K . If in addition for all i < α, Mi ≤K N, then M ≤K N.
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5 Löwenheim-Skolem axiom: There exists an infinite cardinal
λ ≥ | L(K)| such that: for any M ∈ K , A ⊆ |M|, there is some N ∈ K
with A ⊆ |N|, N ≤K M and ∥N∥ ≤ λ+ |A|. We call the minimum
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Abstract elementary classes (AECs)

Definition

K has the amalgamation property (AP) if for any M0,M1,M2 ∈ K with
M0 ≤K M1 and M0 ≤K M2, then there exist M3 ∈ K and K-embeddings
f1 : M1 −−→

M0

M3 and f2 : M2 −−→
M0

M3.

M1 M3

M0 M2

f1

f2
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Abstract elementary classes (AECs)

Definition (Galois types)

Let ai ∈ Ni and Mi ≤K Ni for i = 1, 2. We define
(a1,M1,N1) ∼ (a2,M2,N2) when M1 = M2 and there are N ∈ K ,
fi : Ni −−→

M1

N such that f1(a1) = f2(a2).

a1 ∈ N1 N

M1 = M2 N2 ∋ a2

f1

f2

Take the transitive closure of ∼ to ≡. We define
gtp(a1/M1;N1) = (a1,M1,N1)/ ≡. The Galois types over M is written as
gS(M) = {(a,M,N)/ ≡ : a ∈ N,M ≤K N}.
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Abstract elementary classes (AECs)

Definition (Tameness)

Let p = gtp(a/M;N), M0 ≤ M and a ∈ N. p ↾ M0 = gtp(a/M0;N).

Let κ be a cardinal. K is κ-tame if for any Galois types p ̸= q both in
gS(M), there is M0 ≤ M, ∥M0∥ ≤ κ such that p ↾ M0 ̸= q ↾ M0.

First-order theories are (< ℵ0)-tame!
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Proof idea

Theorem (Proposition 4.1)

Let λ be an infinite cardinal and α be an ordinal with λ ≤ α < (2λ)+.
Then there is a stable AEC K such that LS(K) = λ and its first stability
cardinal is ℶα(λ). Moreover, K is tame but fails AP.

Idea of the construction:

Encode α < (2λ)+ with LS(K) = λ;

Build the cumulative hierarchy using α as base;

Check instability below ℶα(λ) and stability at ℶα(λ).

K is EC (λ, 2λ) ordered by L(K)-substructure.
▶ (< ℵ0)-tameness;
▶ Galois types are quantifier-free types.

=⇒ This ruins AP!
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Possible directions

1 Refine our examples (e.g. change the substructure relation);

2 Lower the bound of the first stability cardinal below ℶ(2LS(K))+ :

1 Find a substitute of Galois types?
2 Investigate the notion of “order property”.

Definition

Let µ be a cardinal. K has the order property of length µ if there exist
⟨ai : i < µ⟩, M ≤K N such that for i0 < i1 and j0 < j1, we have
gtp(ai0ai1/M;N) ̸= gtp(aj1aj0/M;N).
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