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ABSTRACT

Let K be an LS(K)-tame abstract elementary class and assume amalgamation

over sets and arbitrarily large models. Suppose K is categorical in some µ > LS(K),

then it is categorical in all µ′ ≥ µ. At the cost of using amalgamation over sets

instead of over models, our result removes the successor requirement of µ made by

Grossberg-VanDieren [GV06a], and the primes requirement by Vasey [Vas17b]. As

a corollary, we obtain an alternative proof of the upward categoricity transfer for

first-order theories [Mor65, She74]. In our construction, we simplify Vasey’s results

[Vas16a, Vas17c] to build a weakly successful frame. This allows us to use Shelah-

Vasey’s argument [SV18] to obtain primes for sufficiently saturated models. If we

replace the categoricity assumption by LS(K)-superstability, K is already excellent

for sufficiently saturated models. This sheds light on the investigation of the main

gap theorem for uncountable first-order theories within ZFC.
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1 INTRODUCTION

For first-order theories, we have the following categoricity theorems:

Theorem 1.1. 1. [Mor65] Let T be a countable first-order theory. If T is categorical in

some uncountable cardinal, then it is categorical in all uncountable cardinals.

2. [She74] Let T be a first-order theory. If T is categorical in some uncountable cardinal,

then it is categorical in all uncountable cardinals.

In the late seventies after Shelah completed his book [She90], he came up with a far

reaching program: develop classification theory for non-elementary classes. Thus he titled

his papers [She83a, She83b, She87] “Classification theory for non-elementary classes”. In

the summer of 1976, Shelah proposed as a test question for such a theory (which appeared

in [She83a, Conjecture 2]):

Conjecture 1.2 (Categoricity conjecture for Lω1,ω). Let ψ be a sentence of Lω1,ω in a

countable language. If ψ is categorical in some µ ≥ ℶω1 , then ψ is categorical in all

µ ≥ ℶω1 .

In the second edition of his book [She90], the conjecture was generalized to:

Conjecture 1.3 (Categoricity conjecture for Lλ+,ω). Let ψ be a sentence of Lλ+,ω in a

language of size λ. If ψ is categorical in some µ ≥ ℶ(2λ)+ , then ψ is categorical in all

µ ≥ ℶ(2λ)+ .

In [She00, Section 6], Shelah stated that classification theory for abstract elementary

classes (AECs) is the most important direction of model theory. He conjectured:

Conjecture 1.4 (Categoricity conjecture for AECs). Let K be an AEC and λ = LS(K).

The threshold for categoricity transfer is ℶ(2λ)+ (the Hanf number).
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The importance of these conjectures is the structural theory that needs to be devel-

oped. The main concept of the previously-developed structural theory for first-order the-

ories is forking : a canonical notion that generalizes combinatorial geometries (also called

matroids when they are finitely generated).

In about 3000 pages of publications towards these conjectures indeed such a theory

evolved (see the table at the end of this section for a partial list of results). We can divide

the approaches into three types:

a. Assuming tameness and other model theoretic properties: Grossberg and VanDieren

[GV06a, GV06c] extracted the notion of tameness from [She99] and derived categoric-

ity transfer from a successor cardinal for tame AECs with a monster model. Many

subsequent results were obtained by Boney and Vasey but the successor assumption

from [GV06a] still could not be removed. Vasey [Vas18b] building upon Shelah’s

results, showed that categoricity transfer holds for AECs with amalgamation and

primes (without starting from a successor cardinal) and managed to prove that the

eventual categoricity conjecture is true for universal classes [Vas17c, Vas17d].

b. Assuming non-ZFC axioms and model theoretic properties: Shelah [She83a, She83b]

showed that under WGCH, if a countable theory in Lω1,ω is excellent and has few

models in ℵn for n < ω, then categoricity transfers up from an uncountable cardinal.

[She09] also developed heavy machineries such as good frames to derive categoricity

transfers. However many of his results have technical assumptions which are not easy

to verify. Later Shelah and Vasey [SV18] generalized the notion of excellence to AECs

and derived categoricity transfers assuming WGCH and restricting the spectrum in

an interval of cardinals. A few variations were given in [SV18, Vas19] where they

replaced the spectrum requirements by other model theoretic properties.

Meanwhile, Makkai and Shelah [MS90] proved that the eventual categoricity conjec-

ture is true for an Lκ,ω theory starting at successor cardinals, where κ is strongly

compact. Boney [Bon14] showed that tameness holds for compact AECs (assuming

the existence of strongly compact cardinals), thus by [GV06a, GV06c] the eventual

categoricity is true starting at successor cardinals. Eventually [SV18] used the excel-

3



lence argument to remove the successor assumption.

c. Using specific constructions: Cheung [Che21] showed that given a free notion of

amalgamation and the existence of prime models, the AEC behaves like strongly

minimal theories, which allows one to manipulate the AEC algebraically.

Mazari-Armida [MA22] combined decomposition results from algebra and categoricity

transfer from [Vas17b] to characterize algebraically the property of being categorical

in a tail. In particular, let R be an associative ring with unity, he proved that the

threshold of categoricity transfer is (|R|+ ℵ0)
+ for the class of locally pure-injective

modules, flat modules and absolutely pure modules.

Esṕındola [Esp22] used topos-theoretic argument to show that the eventual categoric-

ity conjecture holds. However, there is no explicit bound to the threshold cardinal

µ.

In this paper we follow approach (a) above and focus on AECs that have a monster

model, satisfy amalgamtion over sets and tameness. In doing so we can remove the successor

assumption in (2) in the table. In our proof, we rely heavily on many recent papers and

replace the use of WGCH in (8) by amalgamation over sets to obtain excellence. Then

using [SV18] that excellence implies primes, we can invoke the categoricity transfer in

(3). A main application of this result is the removal of the successor requirement in the

categorical transfer in [MS90] (see also [She00, Question 6.14] for the problem statement).

Our work was motivated by a simple question: using the common model theoretic

assumptions and techniques, can we recover the upward1 categoricity transfer in Theorem

1.1? [Les00] and [HK11] have relevant results but they require LS(K) = ℵ0 and sev-

eral additional assumptions (say simplicity : there is a strong example by Shelah that in

the context of homogeneous model theory, simplicity is not a consequence of ℵ0-stability

[HL02]). Such results might not be easy to check and generalize to uncountable LS(K).

1Downward transfer is a much harder problem for AECs: the currently known transfer with common

assumptions is down to the first Hanf number. Example 6.15 shows that the first categoricity cardinal can

go up to the first Hanf number, but such example fails amalgamation and joint-embedding.
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Meanwhile, Vasey [Vas18b, Section 4] adopted a hybrid approach where he quoted syntac-

tic results from [She71, HS00] to conclude that a homogeneous diagram has primes and a

nonforking relation over sets, and then combined it with the categoricity transfer for AECs

with amalgamation and primes. In comparison, our result is cleaner because we do not

invoke primeness or stability results from [She71, HS00]. The assumptions of tameness and

amalgamation over sets are immediate to check.

When we show excellence, we only require tameness, amalgamation over sets, arbi-

trarily large models and superstability. This way of obtaining excellence does not use any

non-ZFC axioms and might shed light on the main gap theorem for uncountable first-order

theories: [GL05] used an axiomatic framework to obtain the abstract decomposition the-

orem, a key step to the main gap theorem. The results from [SV18] provide us with a

multidimensional independence relation, which satisfies some of the axioms in [GL05]. For

future work, one may look at the axioms on regular types (see [GL05, Axioms 8-10]).

We now list some of the known results on categoricity transfer for AECs. The number-

ing is for reference only and is not chronological. We strengthen some of the assumptions to

a monster model “C” for readability (unless they assumed a local frame). Here a monster

model means amalgamation, joint embedding and no maximal models. We write “Cset”

if we also require amalgamation over sets. We strengthen instances of WGCH in an in-

terval of cardinals to full WGCH. Throughout we let λ = LS(K). Except for (5)(12), we

assume that the categoricity cardinal µ < h(λ) (so we can omit the downward transfer

to the first Hanf number h(λ)). Some of the results can be combined but we highlight

the new parts. The key results of categoricity transfers within ZFC are (2), (3) and (4).

By assuming amalgamation over sets, we remove the successor assumption in (2) and (4),

while removing the prime triples assumption in (3).

This paper was written while the author was working on a Ph.D. under the direction of

Rami Grossberg at Carnegie Mellon University and we would like to thank Prof. Grossberg

for his guidance and assistance in my research in general and in this work in particular.
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Assumptions on K If I(µ,K) = 1 for some Then I(µ′,K) = 1 for all

λ-tame, Cset µ ≥ λ+ µ′ ≥ µ (Theorem 6.13)

1. Homogeneous diagram with Cset µ ≥ |T |+ µ′ ≥ µ [Vas18b, Theorem 4.22]

2. λ-tame, C successor µ ≥ λ+ µ′ ≥ µ [GV06a, Theorem 5.3]

3. λ-tame, C, has primes µ ≥ λ+ µ′ ≥ µ [Vas17b, Theorem 10.9]

4. Has a type-full good [µ1, µ2]- µ1, µ2 as on the left µ′ ∈ [µ1, µ2]

frame where µ2 is a successor > µ1 ≥ λ [Vas17b, Theorem 6.14]

5. λ < κ for some strongly compact κ successor µ ≥ κ+ µ′ ≥ µ [Bon14, Theorem 7.4]

6. Compact µ ≥ λ+ µ′ ≥ µ [SV18, Theorem 14.5]

7. Excellent µ ≥ λ+ µ′ ≥ µ [SV18, Theorem 14.2]

8. WGCH, has a (< ω)-extendible µ2 ≥ µ+
1 µ′ ≥ µ+

1

categorical good µ1-frame [SV18, Corollary 14.4]

9. WGCH, Kλ++ ̸= ∅ and for n < ω, µ = λ, λ+ µ′ ≥ λ [SV18, Theorem 14.11]

I(λ+n,K) < µunif(λ
+n, 2λ

+(n−1)
)

10. WGCH, C µ1, µ2 ≥ λ µ′ ∈ [µ1, µ2] [Vas19, Lemma 9.5]

11. WGCH, C µ > λ+ω µ′ ≥ µ [Vas19, Lemma 9.6]

12. Universal class µ ≥ ℶh(λ) µ′ ≥ µ [Vas17d, Theorem 7.3]

13. PCℵ0 , ℵ0-tame, has primes, 2ℵ0 < 2ℵ1 µ = ℵ1 µ′ ≥ µ [MAV18, Theorem 4.4]

14. WGCH, PCℵ0 , 1 ≤ I(ℵ1,K) < 2ℵ1 , µ ≥ ℵ1 and µ = ℵ0 µ′ ≥ ℵ0

and few models in ℵn [SV18, Theorem 14.12]

15. Atomic models of a countable first-order µ ≥ ℵ1 [She83a, She83b]

theory, WGCH, few models in ℵn

16. Universal Lω1,ω sentence Tail of [LS(K),ℶω) µ′ ≥ ℶω [Vas20, Corollary 5.10]

17. Has prime and small models µ ≥ µ(K) + λ µ′ ≥ µ(K) + λ+ I(λ,K)+

and a free notion of amalgamation [Che21, Theorem 5.7]

18. The class of locally pure-injective modules/ µ ≥ (|R|+ ℵ0)
+ [MA22]

flat modules/absolutely pure modules

19. None (no explicit bound) [Esp22]
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2 PRELIMINARIES

In this section, we will define the main notions used in this paper (see [Leu21a, Defi-

nition 2.2] for the definition of AECs). Relevant results will be discussed in the subsequent

sections.

Definition 2.1. Let K be an AEC and λ ≥ LS(K). The functions f mentioned below will

be K-embeddings.

1. K has the λ-amalgamation property (λ-AP ) if for any M0,M1,M2 ∈ Kλ, M0 ≤K M1,

M0 ≤K M2, there is M3 ∈ Kλ and f : M1 −−→
M0

M3 such that M2 ≤K M3. K has the

amalgamation property (AP ) when the above is true without the cardinal restriction.

2. K has the amalgamation property over set bases (AP over sets) if for anyM1,M2 ∈ K,

any A ⊆ |M1| ∩ |M2|, there is M3 ∈ K and f :M1 −→
A
M3 such that M2 ≤K M3.

3. K has the λ-joint embedding property (λ-JEP ) if for any M1,M2 ∈ K, there is

M3 ∈ Kλ and f : M1 → M3 such that M2 ≤K M3. K has the joint embedding

property (JEP ) when the above is true without the cardinal restriction.

4. K has no maximal models (NMM) if for any M ∈ K, there is N ∈ K such that

M ≤K N but M ̸= N .

5. K has arbitrarily large models (AL) if for any cardinal µ ≥ LS(K), there isM ∈ K≥µ.

6. K has a monster model C if it has AP , JEP and NMM .

7. K has Cset if it has AP over sets (which implies JEP ) and NMM .

Remark 2.2. All the properties except for (2)(7) in the above definition hold in complete

first-order theories because of the compactness theorem. (2)(7) hold if we also fix a monster

model and they will only be used in Section 6. See also the discussions around [Bal09,

Definition 4.34, Lemma 18.8].

Definition 2.3. Let α ≥ 2 be an ordinal.
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1. We denote Galois types (orbital types) of length (< α) as gS<α(·) (see [Vas16c, Def-

inition 2.16]; we will not need the precise definition in this paper). The argument

can be a set A in some model M ∈ K. In general gS<α(A) :=
⋃
{gS<α(A;M) : M ∈

K, |M | ⊇ A} (under AP , the choice of M does not matter).

2. K is (< α)-stable in λ if for any set A in some model M ∈ K, |A| ≤ λ, then

|gS<α(A;M)| ≤ λ. We omit “(< α)” if α = 2, while we omit “in λ” if there exists

such a λ ≥ LS(K). Similarly K is α-stable in λ if for any such A and M above, we

have |gSα(A)| ≤ λ.

The notion of tameness was introduced by Grossberg and VanDieren [GV06a] as an

extra assumption to an AEC. Later Boney [Bon14] introduced a dual property named

shortness. Tameness is a locality property on the domain of types while shortness is a

locality property on the tuples that realize the types.

Definition 2.4. Let κ be an infinite cardinal.

1. Let p = gtp(a/A,N) where a = ⟨ai : i < α⟩ may be infinite, I ⊆ α, A0 ⊆ A. We

write l(p) := l(a), p ↾ A0 := gtp(a/A0, N), aI = ⟨ai : i ∈ I⟩ and pI := gtp(aI/A,N).

2. K is (< κ)-tame for (< α)-types if for any subset A in some model of K, any

p ̸= q ∈ gS<α(A), there is A0 ⊆ A, |A0| < κ with p ↾ A0 ̸= q ↾ A0. We omit (< α) if

α = 2.

3. K is (< κ)-short if for any α ≥ 2, any subset A in some model of K, p ̸= q ∈ gS<α(A),

there is I ⊆ α, |I| < κ with pI ̸= qI .

4. κ-tame means (< κ+)-tame. Similarly for shortness.

Remark 2.5. By [Vas16c, Corollary 3.18], (< κ)-shortness implies (< κ)-tameness. First-

order theories are trivially (< ℵ0)-short, while a theorem due to Boney shows that universal

classes are also (< ℵ0)-short [Vas17c, Theorem 3.7].

The notion of a good frame was introduced in [She09, Chapter II]. The definition was

extended for domains of sizes from an interval of cardinals (instead of a single cardinal) in
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[Vas16b] while for longer types in [BV17]. We follow the notation in [BV17] but specialize it

in our context, where the types are always type-full (basic types coincide with nonalgebraic

types) and we work inside a monster model. [Vas16a], building on numerous papers, defined

many more properties of a frame which cater for his coheir construction, which will not be

considered here.

Definition 2.6. Let K be an AEC with a monster model C, µ ≥ LS(K) be a cardinal and

α ≥ 2 be an ordinal or ∞. A (< α,≥ µ)-good frame is a ternary relation |⌣ such that:

1. If (a,M0,M1) ∈ |⌣, then a ∈ |M1|<α, M0 ≤K M1 and M0,M1 ∈ K≥µ. We write

a |⌣
M0

M1 and say gtp(a/M1) does not fork over M0 (well-defined by invariance below).

2. (Invariance) If f ∈ Aut(C) and a |⌣
M0

M1, then f(a) |⌣
f(M0)

f(M1).

3. (Monotonicity) If a |⌣
M0

M1, M0 ≤K N0 ≤K N1 ≤K M1, a
′ ⊆ a and a′ ∈ |N ′|, then

a′ |⌣
N0

N1.

4. (Stability) For M ∈ K≥µ, | gS(M)| ≤ ∥M∥.

5. (Existence) For M ∈ K≥µ and a ∈ |M |<α, a |⌣
M

M .

6. (Extension) If p ∈ gS<α(M1) does not fork over M0, M1 ≤K M2 and l(p) ≤ β < α,

then there is q ∈ gSβ(M2) such that qβ ↾M = p and q does not fork over M0.

7. (Uniqueness) If p, q ∈ gS<α(M1) do not fork over M0 and p ↾ M0 = q ↾ M0, then

p = q.

8. (Transitivity) If a |⌣
M0

M1 and a |⌣
M1

M2, then a |⌣
M0

M2.

9. (Local character) If δ is regular, ⟨Mi ∈ K≥µ : i ≤ δ⟩ is increasing and continuous,

p ∈ gS<δ(Mδ), then there is i < δ such that p does not fork over Mi.

10. (Continuity) If δ is a limit ordinal, both ⟨Mi ∈ K≥µ : i ≤ δ⟩ and ⟨αi < α : i ≤ δ⟩

both increasing and continuous, pi ∈ gSαi(Mi) increasing in i < δ, then there is some

p ∈ gSαδ(Mδ) such that for all i < δ, pαi ↾Mi = pi. If each pi does not fork over M0,

then neither does p.
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11. (Symmetry) If a2 |⌣
M0

M1 and a1 ∈ |M1|<α, then there is M2 containing a2 such that

a1 |⌣
M0

M2.

We define (< α, µ)-frame similarly when the models must have size µ. We omit “(< α)”

when α = 2. We call |⌣ an independence relation if it only has invariance and monotonicity.

Remark 2.7. There are weaker versions of a good frame which still have nice properties

(for example [JS13, MA19, Leu22]), which will not be discussed here because we will focus

on the full strength of a good frame (and more under categoricity).

3 A (<∞,≥ (2LS(K))+)-NONFORKING RELATION

Assuming superstability and shortness, we will build a (<∞,≥ (2LS(K))+)-nonforking

relation with nice properties. This will allow us to use [Vas16a, Section 11] to conclude

that the underneath good frame is weakly successful. The result was sketched in [Vas17c,

Lemma A.14] but it drew technical results from [Vas16a, Sections 1-10]. In this section,

we will construct the nonforking relation and derive its properties directly. Readers can

blackbox this section and skip to Section 4.

Definition 3.1. Let K be an AEC with a monster model, λ ≥ LS(K).

1. Let M ≤K N , we say that N is an universal extension of M if for any N ′ ∈ K∥M∥

withM ≤K N ′, there is f : N ′ −→
M

N . We say a chain ⟨Mi ∈ Kλ : i ≤ δ⟩ is universally

increasing if for each i < δ, Mi+1 is a universal extension of Mi.

2. Let N ∈ K and p ∈ gS(N), we say that p λ-splits over M if there exists N1, N2 ∈ Kλ

such that M ≤K N1, N2 ≤K N , f : N1 −→
M

N2 with f(p) ↾ N2 ̸= p ↾ N2.

3. K is superstable in λ if K is stable in λ and the following holds: for any limit ordinal

δ < λ+, any universally increasing and continuous ⟨Mi ∈ Kλ : i ≤ δ⟩, p ∈ gS(Mδ),

there is i < δ such that p does not λ-split over Mi.

Remark 3.2. In item (1), if M ≤K N and N is ∥M∥+-saturated, then N is a universal

extension over M . In addition, N realizes all (< ∥M∥+)-types over M . In item (3), by

[Vas16a, Proposition 10.10] or [Leu22, Corollary 6.11(1)], λ-tameness and λ-superstability

imply λ′-superstability for λ′ ≥ λ.
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Under tameness and superstability, we can build a good frame in the successor cardinal.

We remark that the original item (2) did not show whether the µ+-saturated models form

an AEC (in particular whether they are closed under unions). It was only later in item (1)

that the question was fully settled.

Fact 3.3. Let K be an AEC with a monster model and µ ≥ LS(K). Suppose K is µ-tame

and superstable in µ.

1. [VV17, Corollary 6.10] For λ > µ, Kλ-sat is an AEC with LS(Kλ-sat) = λ.

2. [Vas16b, Theorem 7.1] The relation defined by: p ∈ gS(N) does not fork overM ≤ N

if there is M0 ∈ Kµ such that M is a universal extension over M0 and p does not

µ-split over M0, induces a good (≥ µ+)-frame for Kµ+-sat (by (1) the µ+-saturated

models form a sub-AEC of K).

Remark 3.4. � Coheir in [BG17] is another candidate for a good frame, but one has to

assume in addition the no weak order property and the extension property of coheir.

To remove these assumptions, one has to raise the starting cardinal very high, so the

threshold cardinal of categoricity transfer is way above µ+. See also item 2(a) after

this remark.

� One might wonder if it is possible to define the frame for Kµ. [Vas18a, Corollary

13.16] gave a weaker version where the underlying models are limit models while

local character and continuity are for universally increasing chains (this argument was

generalized to the strictly stable context in [Leu22]). Alternatively, [Vas19, Section 6]

built a good µ-frame by assuming WGCH and drawing heavily from [JS13] (WGCH

is used to establish that the frame is weakly successful, see Definition 4.4).

Now we have a good (≥ µ)-frame and would like to extend it to longer types. However,

there are difficulties in terms of proving extension and local character. Besides the use of

WGCH as in the above remark, we list three main approaches in literature:

1. Using independent sequences and tameness, [BV17] developed on [She09, Exercise

III.9.4.1] to extend the frame to longer types. But such frame is not necessarily

type-full, which is assumed in other results.
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2. Extend the good (≥ µ)-frame to a (< ∞,≥ µ)-nonforking relation, which might

not be a good frame itself. [Vas16a, Section 11] gave sufficient conditions of the

nonforking relation in order for the original frame to be weakly successful. Then one

can quote [JS13] to extend the original frame by NF, which is a good frame. To build

the nonforking relation, there are two ways:

(a) [Vas16a, Sections 1-10] built an axiomatic framework that allows one to use

coheir to produce a good (≥ µ)-frame (instead of using nonsplitting). To obtain

the sufficient conditions above, he went on with a highly convoluted construction,

which also uses canonicity to obtain properties from nonsplitting. Moreover, the

threshold cardinal µ is very high (fixed points of the beth function) in order to

use the no-order property.

(b) Using nonsplitting (Fact 3.3), [Vas17c, Lemma A.14] sketched that it can be ex-

tended to a nonforking relation that satisfies the sufficient conditions. However,

the details were sparse (about two paragraphs) and he invoked technical results

from [Vas16a, Sections 1-10], which have numerous definitions and go back and

forth between coheir and nonsplitting.

We will adopt approach 2(b), but give an alternative proof that such nonforking relation

satisfies the desired properties. In particular we do not need [Vas16a] in this section but

refer to the simple construction in Fact 3.3(2). Our starting cardinal is µ+ for the same

reason as the successor cardinal in Fact 3.3(2). Meanwhile [Vas17c, Lemma A.14] starts

at µ, but we cannot verify the claims there. At the end it does not affect the categoricity

transfer by virtue of Fact 6.12(2).

Definition 3.5. Let K be an AEC with a monster model, µ = 2LS(K) and assume K is

LS(K)-short and superstable in LS(K).

1. Since shortness implies tameness (Remark 2.5), we can define the nonforking re-

lation as in Fact 3.3(2) but for < (LS(K)+)-types (instead of 1-types). This is a

(< LS(K)+,≥ µ+)-nonforking relation |⌣ over the µ+-saturated models.
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2. Extend |⌣ to a (< ∞,≥ µ+)-nonforking relation |̄⌣ by coheir : a |̄⌣
M0

M1 iff for any

subsequence a′ ⊆ a of length < LS(K)+, we have a′ |⌣
M0

M1.

The following collection of facts helps us establish local character properties. The sec-

ond item below is from [Bon17, Theorem 3.5], which was usually cited as [Bon17, Theorem

3.1] (the issue was clarified in [Leu21b, Theorem 2.2]). The statement of the third item

can be found in [Vas17c, Lemma A.12] and is essentially [GV06b, Fact 4.6].

Fact 3.6. Let K be an AEC with a monster model, µ ≥ LS(K) and α ≥ 1.

1. [She99, Lemma 3.3] If K is stable in µ, M ∈ K≥µ and p ∈ gS(M), then there is

M0 ≤K M , ∥M∥ = µ such that p does not µ-split over M0.

2. If K is stable in µ and µ = µα, then it is α-stable in µ.

3. If κ satisfies µ = µ<κ, then item (1) is still true for p ∈ gS<κ(M).

Proof. We sketch (3): by stability and (2), K is (< κ)-stable in µ. The proof of (1) shows

that if the conclusion of (1) fails, one can build a tree of types and models to contradict

1-stability in µ, where “1” comes from l(p). The same proof goes through for (3) because

we now have (< κ)-stability in µ.

We now state the nice properties of |̄⌣ we constructed. Items (c) and (d) can be

strengthened but they are sufficient for the next section. Notice that shortness is the key

to obtain uniqueness in item (e) below.

Proposition 3.7. Let K be an AEC with a monster model, µ = 2LS(K) and assume K is

LS(K)-short and LS(K)-superstable. The relation |̄⌣ defined in Definition 3.5 satisfies the

following:

a. |̄⌣ is a (<∞,≥ µ+)-nonforking relation over the µ+-saturated models.

b. When restricted to 1-types, |̄⌣ is a good (≥ µ+)-frame.

c. For n ≥ 2, Kµ+n-sat is an AEC with LS(Kµ+n-sat) = µ+n.
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d. For n ≥ 2, |̄⌣ restricted to (≤ µ+n)-types has local character for chains of length

≥ µ+(n+1). Namely, for any a of length (≤ µ+n), any regular δ ≥ µ+(n+1), any

increasing and continuous chain ⟨Mi : i ≤ δ⟩ ⊆ Kµ+-sat, there is i < δ such that

a |̄⌣
Mi

Mδ.

e. |̄⌣ has uniqueness.

f. |̄⌣ has the left (≤ µ+)-witness property: a |̄⌣
M0

M1 iff for any a′ ⊆ a of length ≤ µ+, we

have a′ |̄⌣
M0

M1.

g. |̄⌣ has the right (≤ µ+)-model witness property: a |̄⌣
M0

M iff for any M1 ∈ Kµ+-sat with

M0 ≤K M1 ≤K M , ∥M1∥ ≤ µ+, we have a |̄⌣
M0

M1.

Proof. Items (a) and (b) follow from the construction of |̄⌣ which extends the original

frame. Item (c) is by Fact 3.3(1).

For item (d), we first assume that a has length < LS(K)+. Since µ = µ<LS(K)+ , by

Fact 3.6(3) there is M∗ ≤K Mδ, ∥M∗∥ = µ such that gtp(a/Mδ) does not µ-split over M
∗.

Since δ ≥ µ+n > µ, there is i < δ such that M∗ ≤K Mi. Since Mi is ∥M∗∥+-saturated, by

Remark 3.2 Mi is universal over M
∗. By definition, a |⌣

Mi

Mδ as desired. Now for general a

of length (≤ µ+n), there are at most (µ+n)LS(K), which is µ+n many subsequences of length

< LS(K)+, therefore we can take the maximum i from the previous case, which is still less

than δ by a cofinality argument.

For item (e), let M ≤K N ∈ Kµ+-sat, p, q ∈ gS<∞(N) both do not fork over M

and p ↾ M = q ↾ M . By shortness we may assume that p, q ∈ gS<LS(K)+(N). Then

the uniqueness proof for the case of 1-types in Fact 3.3(2) goes through, because it uses

universal extensions only and our types p, q have length < LS(K)+ less than the sizes of

the models.

Item (f) is true by coheir in the construction, in particular we have (≤ LS(K))-witness

property which is stronger. We show the backward direction of item (g): by coheir and

monotonicity, it suffices to consider the case l(a) < LS(K)+. By Fact 3.6(3), there is

M∗ ≤K M , ∥M∗∥ = µ such that gtp(a/M) does not µ-split over M∗. Pick N0 ∈ Kµ+-sat
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such that M0 ≤K N0 ≤K M and N0 is a universal extension over M∗. By definition,

gtp(a/M) does not fork over N0. Since ∥N0∥ = µ+, by assumption gtp(a/N0) does not fork

over M0. Now we can quote the transitivity proof for the case of 1-types in Fact 3.3(2),

which generalizes to < LS(K)+-types for the same reason as in the previous paragraph.

Thus we have gtp(a/M) does not fork over M0 as desired.

4 A WEAKLY SUCCESSFUL FRAME

By Proposition 3.7, we will show that the nonforking relation in Definition 3.5 satisfies

[Vas16a, Hypothesis 11.1]. This allows us to quote results from [Vas16a, Sections 11,

12] and conclude that the underlying good (≥ (2LS(K))+)-frame is weakly successful, can

be extended by NF, is ω-successful and has full model continuity (in the third successor

cardinal). This will allow us to do categoricity transfer in Section 6. On the other hand, we

compare our extended frame with the results in [Vas16a, Section 15], which was constructed

from coheir (instead of nonsplitting).

Proposition 4.1. Let K be an AEC with a monster model, µ = 2LS(K) and assume K

is LS(K)-short and LS(K)-superstable. The relation |̄⌣ defined in Definition 3.5 satisfies

[Vas16a, Hypothesis 11.1].

Proof. The hypothesis is a list of requirements on the nonforking relation |̄⌣. By substi-

tuting “λ” and “µ” there by µ++ and µ+ respectively. We check the items in the same

numbering as in the hypothesis.

1. This is exactly Proposition 3.7(a). There they use the term “independence relation”

to allow the right hand side of |̄⌣ to be sets (instead of models), which is just a

generalization and does not affect the rest of the proof.

2. This is Proposition 3.7(b).

3. By the substitution above, clearly µ++ > µ+.

4. This is Proposition 3.7(c)(d).

5. Base monotonicity is built in our definition of nonforking relation. Uniqueness is by

Proposition 3.7(e).

15



6. This is Proposition 3.7(f)(g).

Under [Vas16a, Hypothesis 11.1], Vasey imitated the proofs in [MS90] and showed

that the underlying good (≥ µ++)-frame has domination triples (see Definition 4.2). Then

he connected domination triples with uniqueness triples, which allowed him to conclude

that the frame is weakly successful. In the following we state the relevant definitions and

results.

The term “domination triples” came from the later [Vas17c, Definition A.17] and

[Vas17a, Definition 2.9] even though [Vas16a, Definition 11.5] had already investigated the

idea of domination.

Definition 4.2. Let λ > LS(K) and |⌣ be a (< ∞,≥ λ)-nonforking relation over the

λ-saturated models.

1. A triple (a,M,N) is a domination triple if M ≤K N both λ-saturated, a ∈ |N |\|M |

and for any λ-saturated N ′, a |⌣
M

N ′ implies N |⌣
M

N ′.

2. |⌣ has the λ-existence property for domination triples if for any M saturated in Kλ,

any nonalgebraic p ∈ gS(M), there exists a domination triple (a,M,N) such that

p = gtp(a/M ;N).

The following fact [Vas16a, Lemma 11.12] shows the existence property for domination

triples. It will be applied to Corollary 5.3 to show that the sufficiently saturated models

have primes.

Fact 4.3. In Proposition 4.1, for λ > µ+, |̄⌣ has the λ-existence property for domination

triples.

Now we look at uniqueness triples and weak successfulness.

Definition 4.4. [Vas16a, Definition 11.4]. Let λ > LS(K) and |⌣ be a good λ-frame over

the saturated models in Kλ. Let M0 ≤K M1 and M0 ≤K M2 all λ-saturated.
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1. An amalgam of M1 and M2 over M0 is a triple (f1, f2, N) such that N is λ-saturated,

fi :Mi −−→
M0

N for i = 1, 2.

2. Two amalgams (fa
1 , f

a
2 , N

a), (f b
1 , f

b
2 , N

b) ofM1 andM2 overM0 are equivalent if there

are N ∈ Kλ-sat
λ , fa : Na → N and fa : Na → N such that the following diagram

commutes:

N b N

M1 Na

M0 M2

fb

fa
1

fb
1

fa

fb
2

fa
2

3. A triple (a,M,N) is a uniqueness triple if M,N are saturated models in Kλ, a ∈

|N |\|M | and for any M1 saturated in Kλ, there exists an amalgam (f1, f2, N1) of

N and M1 over M such that gtp(f1(a)/f2[M1];N1) does not fork over M and the

amalgam is unique up to equivalence (see item (2)).

4. |⌣ is weakly successful if it has the existence property for uniqueness triples: for any

M saturated in Kλ, any nonalgebraic p ∈ gS(M), we can find a uniqueness triple

(a,M,N) such that p = gtp(a/M ;N).

The following fact translates [Vas16a, Theorem 11.13] into our context.

Fact 4.5. Under [Vas16a, Hypothesis 11.1], the relation |̄⌣ defined in Definition 3.5 (when

restricted to 1-types and µ++-saturated models) induces a weakly successful good µ++-

frame over the µ++-saturated models.

Corollary 4.6. Let K be an AEC with a monster model and µ = 2LS(K). Suppose K is

LS(K)-short and superstable in LS(K). Then the good (≥ µ+)-frame defined in Fact 3.3(2)

induces a weakly successful good µ++-frame over the µ++-saturated models.

Proof. Since K is LS(K)-short and superstable in LS(K), it is also µ-short and superstable

in µ and we can use Fact 3.3(2) to build a good (≥ µ+)-frame |⌣. By Definition 3.5,

Proposition 3.7 and Proposition 4.1, we can extend |⌣ to a nonforking relation |̄⌣ that
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satisfies [Vas16a, Hypothesis 11.1]. By Fact 4.5, |̄⌣ induces a weakly successful good µ++-

frame over the µ++-saturated models. But this frame is just |⌣ restricted to µ++-saturated

models.

One more ingredient for categoricity transfer is the property of full model continuity.

Vasey drew results from [She09, JS13, Jar16] and showed that the weakly successful frame

we obtained is ω-successful. And if we move up by three successors (so we consider µ+5-

saturated models), then it can be extended to a good frame with full model continuity.

Definition 4.7. Let K be an AEC with a monster model, λ ≥ LS(K) and |⌣ be a

(< ∞,≥ λ)-nonforking relation on K≥λ. |⌣ has full model continuity if the following

holds: for any limit ordinal δ, any ⟨Mk
i : i ≤ δ⟩ increasing and continuous in K≥λ where

k = 0, 1, 2, if M1
i |⌣

M0
i

M2
i for each i < δ, then M1

δ
|⌣

M0
δ

M2
δ .

We sum up the previous paragraph in the following fact. The original results were

from [Vas16a, Sections 11, 12] but applied them to our context (in the same spirit as

Corollary 4.6). In particular item (1) is from [Vas16a, Theorem 11.21]; item (2) is from

[Vas16a, Theorem 12.16]. We will not define ω-successfulness because under amalgamation

and tameness, it coincides with weak successfulness [Vas16a, Facts 11.15, 11.19]. Also,

good+ will be automatically satisfied by the new frame [Vas16a, Fact 11.17] so we skip its

definition.

Fact 4.8. Let K be an AEC with a monster model and µ = 2LS(K). Suppose K is LS(K)-

short and superstable in LS(K).

1. The weakly successful good µ++-frame from Corollary 4.6 is also ω-successful.

2. Let λ = (µ++)+3 = µ+5. The frame can be extended by NF (defined for quadruples

of models) and then closed to a good (≤ λ,≥ λ)-frame over the λ-saturated models.

Moreover, the new frame is good+ and has full model continuity.

The rest of this section discusses what happens if we combine our results with [Vas16a,

Sections 13-15]. Readers only interested in categoricity transfer can skip to Fact 5.5 which

will be used in Section 6.
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After obtaining a good (≤ λ,≥ λ)-frame with full model continuity, Vasey [Vas16a,

Sections 13,14] went on extending the right hand side of |⌣ to arbitrary sets, and then the

left hand side to arbitrary lengths. Such results still apply to our construction because

we have shortness and amalgamation in our background assumptions (see also [Vas16a,

Hypotheses 13.1, 14.1]). We first state what Vasey had obtain in [Vas16a, Theorem 15.6].

Fact 4.9. Let K be a (< κ)-short AEC with a monster model. Suppose there are λ, θ such

that

1. LS(K) < κ = ℶκ < λ = ℶλ ≤ θ;

2. cf(λ) ≥ κ;

3. K is categorical in θ;

then there is a (<∞,≥ λ+4)-good frame over the λ+4-saturated models except that exten-

sion holds over saturated models only. Moreover it has full model continuity.

We state one more fact from [She99] about categoricity. A complete proof can be

found in [BGVV17].

Fact 4.10. Let K be an AEC with a monster model. Suppose K is categorical in some

λ > LS(K), then K is superstable in LS(K).

To compare Fact 4.9 with our results, we replace our assumptions of LS(K)-shortness

by κ-shortness, and superstability in LS(K) by superstability in κ.

Corollary 4.11. Let K be a κ-short AEC with a monster model where κ ≥ LS(K). Suppose

K is categorical in some θ > κ (superstability in κ is sufficient), then there is a (< ∞,≥

(2κ)+5)-good frame over the (2κ)+5-saturated models models except that extension holds over

saturated models only. Moreover it has full model continuity.

Proof sketch. By categoricity and Fact 4.10, K is superstable in κ. By Fact 4.8 (replacing

LS(K) there by κ), there is a (< (2κ)+5,≥ (2κ)+5)-good frame over the (2κ)+5-saturated

models. Extend the frame to arbitrarily long types as in [Vas16a, Sections 13,14].
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As we can see, using nonsplitting to build a good frame has a much lower threshold

than using coheir in obtaining Fact 4.9. The fixed points of beth function are to guarantee

no order property (see [Vas16a, Fact 2.21]), which currently lacks a good upper bound

(under amalgamation and stability). [Vas17c, Corollary A.16] claimed a result similar to

our corollary and we highlight the differences here:

1. The threshold he obtained is (LS(K)<κ)+5 while ours is (2κ)+5.

2. He used (< κ)-shortness directly but we weakened it to κ-shortness. We did so both

for convenience and to readily apply Fact 4.8.

3. In verifying [Vas16a, Hypothesis 11.1], he drew heavy machineries from [Vas16a,

Sections 1-10] but we proved them directly in Proposition 4.1.

5 PRIMES FOR SATURATED MODELS

We will combine the results from the previous section and Fact 5.2 below to conclude

thatK has primes for saturated models. However, it is not clear whether this implies primes

for models in general, so we cannot invoke categoricity transfer of AECs with primes and

amalgamation. Readers only interested in categoricity transfer can skip to Fact 5.5 which

will be used in the next section.

Definition 5.1. [Vas17a, Definition 2.13] Let K be an AEC.

1. A triple (a,M,N) is a prime triple ifM ≤K N , a ∈ |N |\|M |, and the following holds:

for any N ′ ∈ K with a′ ∈ |N ′| and gtp(a/M ;N) = gtp(a′/M ;N ′) then there exists

f : N −→
M

N ′ such that f(a) = a′.

2. K has primes if for each M ∈ K and each nonalgebraic p ∈ gS(M), there exists a

prime triple (a,M,N) such that p = gtp(a/M ;N).

The original statement of the following fact is about K∗ only but we strengthen the

monster model assumption to K. Vasey allowed the right hand side of |⌣ to be sets (and

had extra axioms) but we stick to models (see also the proof of Proposition 4.1(1)).
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Fact 5.2. [Vas17a, Theorem 3.6] Let K be an AEC with a monster model. Suppose there

is λ0 ≥ LS(K) and K∗ such that:

1. K∗ ⊆ K is a sub-AEC of K;

2. K∗ is categorical in λ0;

3. There is a good (<∞,≥ λ0)-frame with full model continuity over K∗;

4. K∗
λ0

has the λ0-existence property for domination triples (see Definition 4.2);

Then for any λ > λ0, the saturated models of K∗
λ has primes.

Corollary 5.3. Let K be an AEC with a monster model and λ0 = (2LS(K))+5. Suppose K

is LS(K)-short and superstable in LS(K), then for λ > λ0, K
λ-sat
λ has primes.

Proof. Let K∗ = Kλ0-sat. K∗ is a sub-AEC of K by Fact 3.3(1) and is categorical in λ0

by a back-and-forth argument. Substituting κ = LS(K) in Corollary 4.11, there is a good

(< ∞,≥ λ0)-frame with full model continuity over K∗. We would like to invoke Fact 4.3

(substituting λ there by λ0) and say that the good frame has λ0-existence property for

domination triples. While the good frame might not agree with the nonforking relation

in Fact 4.3 for longer types, they both extend the good (< 2,≥ λ0)-frame from Fact

3.3(2). Since domination triples are about 1-types only, we can conclude that the nonforking

relation from Fact 4.3 and hence the good frame from Corollary 4.11 has the λ0-existence

property for domination triples. By Fact 5.2, for λ > λ0, (K
∗)λ-satλ = Kλ-sat

λ has primes.

Remark 5.4. The above proof went back to the notion of domination triples (instead of

uniqueness triples) to quote Fact 4.3 because it was used in the assumptions of [Vas17a].

We suspect that one can derive a version of Fact 5.2(4) with uniqueness triples, which can

simplify the proof because we have the existence property of the latter (see Fact 4.5). In the

original construction, [Vas16a, Section 11] built domination triples and showed that they

are also uniqueness triples. [Vas16a, Remark 11.8] claimed that if the nonforking relation

has extension (to longer types), then uniqueness triples are domination triples. [Vas17c,

Fact A.18] cited [Vas16a, Lemma 11.7] without proof that it is true in general (without
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assuming extension). We cannot verify those claims so we follow the longer route to obtain

the existence property for domination triples.

It would be ideal if Corollary 5.3 concluded that Kλ, instead of Kλ-sat
λ , has primes,

because we have the following fact:

Fact 5.5. [Vas17b, Corollary 10.9] Let K∗ be an LS(K∗)-tame AEC with primes and

arbitrarily large models. If K∗ is categorical in some λ > LS(K∗), then it categorical in all

λ′ ≥ min(λ, h(LS(K∗))).

The main component of the proof came from [Vas17c] (or see [Vas18a] for a written-up

version). The idea is that K to show categoricity λ′ > λ, one can pick a bigger categorical

cardinal λ′′ (guaranteed by [Vas17b, Theorem 9.8]). Suppose K∗
λ′ is not categorical, then

one can use primes to transfer non-saturation from λ′ to λ′′. Since we cannot assume K∗
λ′

is categorical in the first place, we need primes for K∗
λ′ rather than the saturated models

of K∗
λ′ .

Question 5.6. Using the assumptions in Corollary 5.3 (or more), is it possible to obtain

primeness for sufficiently saturated models? A positive answer will simplify the rest of the

proof and remove the assumption of amalgamation over sets to obtain categoricity transfer.

6 AP OVER SETS AND MULTIDIMENSIONAL DIAGRAMS

In this section, we will add the extra assumption of amalgamation over sets (Definition

2.1) to obtain excellence (Definition 6.8) over sufficiently saturated models. This allows us

to use [SV18] and show that those models have primes. Then we can invoke Fact 5.5 to do

categoricity transfer.

In [SV18, Section 7], given a categorical good λ-frame (for example a good frame over

the λ-saturated models), they defined when a frame reflects down, is extendible, very good

etc. We do not need the precise definitions but only the following fact:

Fact 6.1. Let K be a LS(K)-short AEC with a monster model. Suppose K is superstable

in LS(K) and let λ = (2κ)+5, then there is a (< ω)-extendible categorical good (≥ λ)-frame

over the λ-saturated models.
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Proof sketch. Readers familiar with [SV18] and Vasey’s papers can consult [SV18, Fact

7.21], which applied the same idea on compact AECs. Notice that “LS(K)+6” there should

be κ+6.

Alternatively, we use the frame from Corollary 4.11 and verify directly the extra conditions

(see [SV18, Section 7] for relevant definitions):

1. There is a two-dimensional nonforking relation that extends our frame: this is wit-

nessed by NF in Fact 4.8(2).

2. The two-dimensional nonforking relation is good : namely the frame it extends is a

good frame; the nonforking relation has long transitivity and local character. Our

NF satisfies these by [Vas16a, Facts 12.2, 12.10].

3. The two-dimensional nonforking relation reflects down: by [SV18, Remark 7.8] it

suffices to check that it is good and extends to λ+. This is true again by Fact 4.8(2).

4. The two-dimensional nonforking relation has full model continuity (which makes the

relation very good). This is true by Fact 4.8(2).

5. The frame is (< ω)-extendible: by [SV18, Fact 7.20], it suffices to show that it is

ω-successful and good+, which is true by Fact 4.8(1)(2).

Given a (< ω)-extendible good frame, [SV18, Sections 8-11] went on to build multi-

dimensional independence relations from the two-dimensional nonforking relation (which

extends the good frame). Basically a multidimensional independence relation takes in

models indexed by a general partial order instead of P(2) as in a two-dimensional nonfork-

ing relation (see [SV18, Definition 8.11] for a precise definition). We state some relevant

definitions:

Definition 6.2. Let K be an abstract class and (I,≤) be a partial order.

1. [SV18, Definition 8.1] An (I,K)-system is a sequence m = ⟨Mu : u ∈ I⟩ such that

u ≤ v ⇒ Mu ≤K Mv. We omit K if the context is clear. Usually I = P(n) or

I = P(n)\{n} for some n < ω.
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2. [SV18, Definition 8.8] The language of (I,K)-systems is τ I := L(K) ∪ {Pi : i ∈ I}

where each Pi is a unary predicate. The abstract class of (I,K)-systems is KI =

(KI ,≤KI ) where for each m ∈ KI , ⟨(Pi)
M : i ∈ I⟩ forms a disjoint system and the

models in KI are ordered by disjoint extensions (see [SV18, Definition 8.6]).

Remark 6.3. For our purpose, we only need to know that if m ∈ KP(n), then ⟨(Pi)
m : i ∈

P(n)⟩ is an P(n)-system whose models are at least ordered by ≤K.

We now define a generalized version of amalgamation as well as higher-dimensional

uniqueness properties. These were key to establish excellence and to build primes.

Definition 6.4. 1. [SV18, Definition 5.6] Let K be an abstract class in τ and let ϕ be

a first-order quantifier-free formula in τ .

(a) M,N ∈ K are ϕ-equal if ϕ(M) = ϕ(N) and the induced partial τ -structures

by ϕ on M,N are equal: for each relation and function symbol R ∈ τ , RM ↾

ϕ(M) = RN ↾ ϕ(N).

(b) A ϕ-span is a triple (M0,M1,M2) such thatM0 ≤K M1,M0 ≤K M2; andM1,M2

are ϕ-equal.

(c) A ϕ-amalgam of a ϕ-span (M0,M1,M2) is a triple (N, f1, f2) such that N ∈ K,

fi :Mi −−→
M0

N for i = 1, 2 and f1 ↾ ϕ(M1) = f2 ↾ ϕ(M2).

(d) M ∈ K is a ϕ-amalgamation base if every ϕ-span of the form (M,M1,M2) has

a ϕ-amalgam.

2. [SV18, Definition 10.14] For n < ω, let ϕn be the formula in the language of (n,K)-

systems such that for any m = ⟨Mu : u ∈ P(n)⟩, a ∈ |m|, we have m ⊨ ϕn[a] iff

a ∈
⋃

u∈P(n)\{n}Mu.

3. [SV18, Definition 10.2]

(a) For n < ω, let In be the class of all partial orders isomorphic to an initial

segment of P(n) and let I<ω =
⋃

n<ω In.
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(b) Let i be a multidimensional independence relation and P be either existence,

extension or uniqueness (see [SV18, Definitions 8.11, 8.16]; we do not need the

precise descriptions here). Let I ⊆ I<ω be a partial order and λ ≥ LS(K).

i. i has n-P if I is defined on P(n)-systems and i ↾ In has P .

ii. i has (λ, n)-P if i ↾ Kλ has n-P .

We will adapt the proof of item (2) below to transfer uniqueness to higher dimensions.

They used WGCH and we will replace it by amalgamation over sets. The construction of

Kproper,∗
i,i∗,P(n) is very complicated and spans several sections. We only need to know that it is a

sub-abstract class of KP(n).

Fact 6.5. Let n < ω, i be a very good (see [SV18, Definition 11.2]) multidimensional

independence relation defined on P(n + 1)-systems, i∗ be its restriction to limit models

ordered by universal extensions. Write K∗ = Kproper,∗
i,i∗,P(n).

1. [SV18, Lemma 10.15(5)] Let (m0,m1,m2) be a ϕn-span in K∗ and write mi = ⟨M i
u :

u ∈ P(n)⟩ for i = 0, 1, 2. Then (m0,m1,m2) has a ϕn-amalgam in K∗ iff there exists

N ∈ K, fi :M
i
P(n) −−→

m0
N for i = 1, 2 such that f1 ↾M1

u = f2 ↾M2
u for u ∈ P(n)\{n}.

2. [SV18, Lemma 11.16(2)] Let λ, λ+ be in the domain of i. Suppose 2λ < 2λ
+
and for

µ = λ, λ+, i∗ has (µ, n)-existence and (µ, n)-uniqueness. Then i∗ also has (λ, n + 1)-

uniqueness.

Corollary 6.6. Let n < ω, i be a very good multidimensional independence relation defined

on P(n + 1)-systems, i∗ be its restriction to limit models ordered by universal extensions.

Let λ, λ+ be in the domain of i. Suppose K has amalgamation over sets and for µ = λ, λ+,

i∗ has (µ, n)-existence and (µ, n)-uniqueness. Then i∗ also has (λ, n+ 1)-uniqueness.

Proof. WGCH was used in the proof of Fact 6.5(2) to show that there is a ϕn-amalgamation

base K∗
λ. It suffices to show that the second part of Fact 6.5(1) is always true under

amalgamation over sets, which will imply that any m0 is a ϕn-amalgamation base.

Let (m0,m1,m2) as in Fact 6.5(1). We observe the following:
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1. The models in m0 are K-substructures of M0
P(n) ≤ M i

P(n) for i = 1, 2. In particular

m0 is a common subset of the latter two.

2. Since (m0,m1,m2) is a ϕn-span, m1 and m2 agree on ϕn, which means that for

u ∈ P(n)\{n}, M1
u =M2

u .

Now take A be the union of the models in m0 as well as M i
u for u ∈ P(n)\{n}, i = 1, 2.

Then we can invoke amalgamation over sets to obtain fi : M
i
P(n) −→A N for some N ∈ K.

By (2), f1 ↾M1
u = id = f2 ↾M2

u .

Remark 6.7. 1. In the above proof, we can relax amalgamation over sets to amalga-

mation over multiple models. Namely, let ⟨Mu : u ∈ I⟩ be a finite set of models in

K. Suppose each Mu is a K-substructure of N1 and N2, then there are N ∈ K and

fi : Ni −−−−−→⋃
u∈I Mu

N for i = 1, 2. The point in the original proof of Fact 6.5(2) is to

restrict the class to a nice enough K∗ so that WGCH is sufficient.

2. A natural question is whether we can simply work in a usual monster model to

dispense with amalgamation over sets. One difficulty is in the proof of [SV18, Lemma

12.4] where they claimed to be “similar” to that of [Vas17a, Theorem 3.6]. The latter

makes use of saturated models being model-homogeneous. If we generalize this to

higher-dimensional systems, we need to justify the notion of saturation over sets or

set-homogeneity (the set comes from a system of models). While we are not able to

infer how they close this gap, a strong enough monster model (with amalgamation

over sets) is sufficient for the proof to proceed.

We will show that the frame in Fact 6.1 guarantees that the AEC of sufficiently

saturated models is excellent, has primes and hence allows categoricity transfer.

Definition 6.8. [SV18, Definition 13.1]

1. Let i be a multidimensional independence relation. i is excellent if

(a) i is defined on an AEC K∗;

(b) i is very good [SV18, Definition 11.2];
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(c) i has extension and uniqueness [SV18, Definitions 8.11, 8.16].

2. An AEC K∗ is excellent if there is an excellent multidimensional independence rela-

tion defined on K∗.

Fact 6.9. 1. [SV18, Theorem 13.6] Let K be an AEC. Suppose there is a (< ω)-

extendible categorical very good λ-frame s defined on some Ks. Let K
∗ be the AEC

generated by Ks. If WGCH holds, then K∗ is excellent.

2. [SV18, Theorem 13.9] Let K∗ be an AEC. If K∗ is excellent, then KLS(K∗)+-sat has

primes.

Corollary 6.10. Let K be a LS(K)-short AEC with amalgamation over sets and arbitrarily

large models. Suppose K is superstable in LS(K) and let λ = (2LS(K))+6, then Kλ-sat is

excellent and has primes.

Proof. Let λ− be the predecessor cardinal of λ. By Fact 6.1, there is a (< ω)-extendible

categorical very good (≥ λ−)-frame s defined on K∗ := Kλ−-sat (which is also the AEC

generated by Kλ−-sat
λ− ; see Fact 3.3(1)). In the proof of Fact 6.9(1), the only usage of

WGCH is to show Fact 6.5(2), which can be replaced by amalgamation over sets due to

Corollary 6.6. Hence K∗ is excellent. By Fact 6.9(2), Kλ-sat has primes. Restart the whole

proof with λ− replaced by λ to obtain excellence for Kλ-sat.

Remark 6.11. Excellence (a nice enough multidimensional independence relation) is an

important tool to generalize the main gap theorem to uncountable theories. [SV18, Section

1.3] already hinted that their result (with non-ZFC assumptions) satisfies (part of) the

axioms of [GL05]. Here we obtain a ZFC version of excellence by assuming amalgamation

over sets. This is perhaps not a strong assumption because we still do not have a proof of

the main gap theorem for uncountable first-order theories. Future work in this direction

could be verifying [GL05, Axioms 8-10] on regular types. Relevant results can be found in

[She09, III] but the definitions are different from those in [GL05].

We state three last facts before proving the categoricity transfer in the abstract. The

proof of the first fact uses orthogonality calculus while the proof of the second fact uses

Shelah’s omitting type theorem in [MS90] (see also [Bon20]).
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Fact 6.12. 1. [Vas17b, Theorem 0.1] Let K be an AEC and LS(K) ≤ λ < θ. Suppose

K has a (type-full) good [λ, θ]-frame and is categorical in λ, θ+, then it is categorical

in all µ ∈ [λ, θ].

2. [Vas17b, Theorem 9.8] LetK be an LS(K)-tame AEC with arbitrarily large models. If

it is categorical in some λ > LS(K), then the categoricity spectrum contains h(LS(K))

and is unbounded.

3. If an AEC K is LS(K)-tame and has amalgamation over sets, then it is LS(K)-short.

Proof sketch of (3). Let ā = ⟨ai : i < α⟩ and b̄ = ⟨bi : i < α⟩ such that gtp(ā′/∅) =

gtp(b̄′/∅) for small ā′ ⊆ ā and small b̄′ ⊆ b̄. It suffices to define ⟨fj : j < α⟩ increasing and

continuous such that fj(ai) = bi for i ≤ j < α. We handle the successor case: Suppose

fj is defined. Extend it to an automorphism of C. Observe that gtp(fj(aj+1)/fj[{ai : i ≤

j}]) = gtp(fj(aj+1)/{bi : i ≤ j}) so it remains to check that gtp(fj(aj+1)/{bi : i ≤ j}) =

gtp(bj+1/{bi : i ≤ j}). By tameness, we can replace {bi : i ≤ j} by a small subsequence c̄.

Apply a′ = ⟨aj+1⟩⌢f−1
j [c̄] and b′ = ⟨bj+1⟩⌢c̄ in the assumption.

Theorem 6.13. Let K be an AEC which is LS(K)-tame, has amalgamation over sets and

arbitrarily large models. Suppose K is categorical in some ξ > LS(K), then it is categorical

in all ξ′ ≥ min(ξ, h(LS(K))).

Proof. By Fact 6.12(3), we have LS(K)-shortness. We follow the same idea in [Vas17b,

SV18], where we obtain primes for sufficiently saturated models by the results in this sec-

tion, then transfer categoricity by Section 5 and the above fact. Categoricity also bootstraps

the original AEC to be eventually categorical.

1. By Fact 4.10, K is superstable in LS(K). Let λ = (2LS(K))+6. By Corollary 6.10,

K∗ := Kλ-sat has primes.

2. By Fact 6.12(2), we may assume that K (hence K∗) is categorical in some θ >

λ = LS(K∗). By Fact 5.5, K∗ is categorical in all λ′ ≥ min(θ, h(LS(K∗))) =

min(θ, h(LS(K))). In particular it is categroical in θ+.
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3. Since K∗ is categorical in λ (by saturation) and θ+, by Fact 6.12(1) it is categorical

in all λ′ ∈ [λ, θ]. Combining with (2), it is categorical in all λ′ ≥ λ.

4. By Fact 6.12(2), we may assume ξ ≤ h(LS(K)). We consider two cases:

(a) ξ ≥ λ: the models in Kξ are saturated, in particular λ-saturated. Hence K≥ξ =

K∗
≥ξ is totally categorical as desired.

(b) ξ < λ: by Fact 3.3(2), there is a good (≥ ξ)-frame over K∗∗ := Kξ-sat. K∗∗ is

categorical in ξ by saturation. By substituting ξ by h(LS(K)) in (a), we have

K, and hence K∗∗ is categorical in all ξ′ ≥ h(LS(K)). In particular K∗∗ is

categorical in h(LS(K))+. By the same argument as (3), K∗∗ is categorical in

all ξ′ ≥ ξ. Now we end up in the scenario of (a) with the new “λ” being ξ so

K≥ξ = K∗∗
≥ξ which is totally categorical.

We apply our theorem to prove known results:

Example 6.14. 1. Complete first-order theories: by compactness the models of a com-

plete first-order theory T satisfy amalgamation over sets, joint-embedding and no

maximal models. It has Löwenheim-Skolem number |T | and is (< ℵ0)-short. There-

fore, we can use Theorem 6.13 transfer categoricity in any µ > |T | to all µ′ ≥ µ.

However, we cannot conclude categoricity down to all µ′ > |T | as in [Mor65, She74]

which used syntactic proofs.

2. Homogeneous diagrams with a monster model: let T be a first-order theory and D be

a subset of syntactic T -types over the empty set. Let KD be the class of models of T

such that the only types over the empty set they realize are from D, where the models

are ordered by elementary substructures. Assuming the existence of a monster model

(see the precise statements in [GL02, Hypothesis 2.5] or [Vas18b, Definition 4.2]), we

have the same properties as those in (1). Hence we can transfer categoricity in any

µ > |T | to all µ′ ≥ µ. [Vas18b, Theorem 4.22] proved the same result using Fact 5.5

but also syntactic results from [She71]. Our approach is purely semantic.
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3. Classes with intersections, assuming shortness, amalgamation and arbitrarily large

models: we need to justify amalgamation over sets. Work in a monster model C, let

M,N ≤K C and A ⊆ |M | ∩ |N |. By [Vas17c, Proposition 2.14(4)], the closure of A is

the same amongM , N and C. Hence amalgamation over A amounts to amalgamation

over the closure of A, which is a model. Although this approach is more convoluted

than [Vas17c, Remark 5.3] (classes with intersections immediately have primes), we

can show the extra property of excellence which [Vas17c] could not. In the special

case of universal classes, tameness is for free [Vas17c, Theorem 3.7]. Hence we can

conclude that universal classes with amalgamation and arbitrarily large models can

transfer categoricity upwards, recovering [Vas17b, Corollary 10.11] ([Vas17d] removed

the assumption of amalgamation and arbitrarily large models, but at the expense of

a high categoricity threshold).

Our theorem does not exclude the possibility that the first categoricity cardinal to be

arbitrarily close to h(LS(K)). The following example shows such categoricity behavior but

unfortunately it fails amalgamation and joint-embedding.

Example 6.15. Let λ ≥ ℵ0 and λ ≤ α < (2λ)+. By the construction of K0 and K1

in [Leu21b, Proposition 4.1], there is Kα, an AEC that encodes the cumulative hierarchy

Vα(α). K
α is ordered by L(Kα)-substructures, LS(Kα) = λ and the models have sizes up to

ℶα(λ). Also, K
α has joint-embedding but not amalgamation. Taking the disjoint union of

Kα with a totally categorical AEC, we obtain an AEC K whose first categoricity cardinal

is ℶα(λ), but it fails amalgamation and joint-embedding.

Remark 6.16. [Vas19, Example 9.10(2)] claimed that by encoding the cumulative hierar-

chy, one could get such an example with amalgamation (which would provide a complete

list of examples for his categoricity spectra). However, he did not provide the exact en-

coding or the ordering (which amalgamation is sensitive to), so we cannot verify his claim.

A similar problem occurs in [Vas19, Example 9.10(3)] when he encoded an AEC K cate-

gorical only in [LS(K)+m,LS(K)+n] where m,n < ω. If we use L(K)-substructures as the

ordering, amalgamation again fails because the functions (see F in [Vas19, Fact 9.8]) might

be computed differently.
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Question 6.17. Let κ ≥ ℵ0. For µ < h(κ), is there an AEC K with LS(K) = κ which

is κ-short, has amalgamation over sets and arbitrarily large models such that the first

categoricity cardinal (exists and) is greater than µ? What if we replace amalgamation over

sets by the usual amalgamation property (see also table(10)(11))?
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