
EPSILON REGULARITY UNDER SCALAR CURVATURE AND ENTROPY

LOWER BOUNDS AND VOLUME UPPER BOUNDS

ROBIN NEUMAYER

Abstract. Examples show that Riemannian manifolds with almost-Euclidean lower bounds on
scalar curvature and Perelman entropy need not be close to Euclidean space in any metric space
sense. Here we show that if one additionally assumes an almost-Euclidean upper bound on volumes
of geodesic balls, then unit balls in such a space are Gromov-Hausdorff close, and in fact bi-Hölder
and bi-W 1,p homeomorphic, to Euclidean balls. We prove a compactness and limit space structure
theorem under the same assumptions.

1. Introduction

The scalar curvature of a Riemannian manifold (Mn, g) governs volumes of geodesic balls of
asymptotically small radii. More specifically, for x ∈M and r > 0,

volg(Bg(x, r)) = ωnr
n

{
1− Rg(x)

6(n+ 2)
r2 +O(r4)

}
. (1.1)

Here Bg(x, r) is a geodesic ball, ωnr
n is the volume of a Euclidean ball of radius r, and Rg(x) is

the scalar curvature of (M, g) at x. For a Riemannian manifold with a lower bound Rg ≥ −δ on
the scalar curvature, this Taylor expansion gives an upper bound

volg(Bg(x, r)) ≤ (1 + δ)ωnr
n (1.2)

for the volumes of balls of sufficiently small radii. However, the error term O(r4) in (1.1) and hence
the threshold of “sufficiently small” in (1.2) depends not only on the scalar curvature, but on the
full curvature tensor of the metric g. This means that in practice, (1.1) and (1.2) have limited
utility in the study of spaces with lower bounds on scalar curvature.

On the other hand, lower bounds on the Ricci curvature lead to volumes control for geodesic
balls of all radii. In particular, for small δ > 0, a lower bound Ricg ≥ −cnδ on the Ricci curvature
implies that the upper bound (1.2) holds for all scales r ∈ (0, 1] thanks to the Bishop-Gromov
inequality. Furthermore, if a unit ball in such a space has an almost-Euclidean “noncollapsing”
bound volg(Bg(x, 1)) ≥ (1 − δ)ωn, then Bg(x, r) has almost-Euclidean volume for every scale r ∈
(0, 1], again by Bishop-Gromov. Cheeger and Colding [Col97, CC97] proved the following epsilon
regularity theorem in this context, which serves as a starting point for the structure and regularity
theory for Riemannian manifolds with Ricci curvature lower bounds and their limit spaces [CC97,
CC00a, CC00b, CC96, CN13, CJN21].

Theorem 1.1 (Cheeger-Colding). Fix n ≥ 2 and ε > 0. There exists δ = δ(n, ε) > 0 such that
if (M, g) is a Riemannian manifold with Ricg ≥ −δ and volg(Bg(x, 1)) ≥ (1 − δ)ωn for a given
x ∈M , then dGH(Bg(x, 1), Bgeuc(0

n, 1)) < ε.

Here dGH is the Gromov-Hausdorff distance; see for instance [Pet98, Chapter 10].

In [LNNb], Lee, Naber and the author sought to formulate and prove an analogous epsilon
regularity theorem with lower bounds on scalar curvature in place of Ricci curvature. It turns out
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that the Gromov-Hausdorff control of Theorem 1.1 is false in that context, even when one assumes
an almost Euclidean bound ν(g, 2) ≥ −δ on the Perleman entropy, which is a stronger type of
noncollapsing condition. (We define the Perelman entropy precisely and discuss its relation to the
volume noncollapsing condition in section 2.) We construct examples in [LNNb] (see also [LNNa]
and [LT22]) showing that Riemannian manifolds with almost-Euclidean lower bounds on scalar
curvature and Perelman entropy can have metric space structures that are far from Euclidean.

Theorem 1.2 (Lee-Naber-N.). Fix n ≥ 4. There exists C = C(n) such that for every δ > 0 there
exists a complete Riemannian manifold with bounded curvature such that Rg ≥ −δ and ν(g, 2) ≥ −δ,
but dGH(Bg(x, 1), Beuc(0

n, 1)) ≥ C.

The simplest example of Theorem 1.2 comes from a family of metrics gi on Rn that are Euclidean
away from a line {x1 = · · · = xn=1 = 0} and become increasingly degenerate along this line; in
the pointed Gromov-Hausdorff limit the entire line collapses to a point. In a related example, we
paste copies of this family onto a flat torus to construct a sequence of metrics gi on the torus whose
volumes converge to the volume v of the initial flat torus but that converge in the Gromov-Hausdorff
topology to a single point.

In both of these examples, the “sufficiently small” scale up to which (1.2) holds degenerates to
zero along the sequence. For the first, the volumes volgi(Bgi(0

n, r)) tend to infinity as i → ∞
for any fixed r; in the global Euclidean chart in which the gi are defined, gi-geodesic balls look
increasingly elongated along the central fiber. In the second, the volumes of gi-balls of any radius
converge to v as i→∞.

In this note we show that if the upper bound (1.2) holds up to a definite scale, then distance
functions cannot degenerate. With this additional assumption, we recover Gromov-Hausdorff a
priori regularity analogous to Theorem 1.1, and in fact bi-Hölder and bi-W 1,p estimates, as well
as measured Gromov-Hausdorff compactness and several structural properties of limit spaces. We
begin with the epsilon regularity theorem:

Theorem 1.3. Fix n > 2 and ε > 0, α ∈ (0, 1) and p ≥ 1. There exists δ = δ(n, ε, α, p) > 0 such
that the following holds. Let (M,g) be a complete Riemannian n-manifold with bounded curvature
such that

Rg ≥ −δ, ν(g, 2) ≥ −δ (1.3)

and

volg(Bg(x, r)) ≤ (1 + δ)ωnr
n ∀r ∈ (0, 2]. (1.4)

Then for any x ∈M , there is a smooth diffeomorphism ψ : Bg(x, 1)→ U ⊂ Rn with ψ(x) = 0 and
Bgeuc(0, 1− ε) ⊂ U ⊂ Bgeuc(0, 1 + ε) satisfying the bi-Hölder estimates

(1− ε)dg(y, z)1/α ≤ |ψ(y)− ψ(z)| ≤ (1 + ε)dg(y, z)
α (1.5)

for all y, z ∈ Bg(x, 1/2) and the W 1,p estimates 
U

∣∣(ψ−1)∗g − geuc
∣∣p dy ≤ ε,  

Bg(x,1)
|ψ∗geuc − g|p dvolg ≤ ε (1.6)

The assumption (1.3) implies that volg(Bg(x, r)) ≥ (1− ε)ωnrn for all x ∈M and r ∈ (0, 1], i.e.
balls are non-collapsing up to scale one with an almost-Euclidean volume ratio; see Lemma 2.3.
In particular, the assumptions (1.3) and (1.4) together imply that the volume measure is doubling
up to scale one. In (1.6), | · | denotes the tensor norm with respect to g and geuc respectively.
The estimate (1.6) is equivalent to

ffl
Bg(x,1) |dψ|

p dvolg ≤ 1 + ε and
ffl
U |dψ

−1|p dy ≤ 1 + ε, i.e. they
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are W 1,p estimates for the map ψ and its inverse. Theorem 1.3 in particular implies that for any
x ∈M , we have dGH (Bg(x, 1), Bgeuc(0

n, 1)) ≤ ε .
Theorem 1.3 is closely related to the work of Bing Wang in [Wan20], and in fact the first con-

clusion (1.5) can be deduced from results there. In [Wan20] and the companion paper [Wan18],
Wang introduces and proves localized versions of many of Perelman’s fundamental Ricci flow con-
cepts, included entropy functionals, no-local collapsing theorems, and pseudo-locality theorems. In
[Wan20, Section 5], he points out the key ideas, which are already present in [TW15], that “when
the volume element is decreasing and the distance is expanding, we shall have a rough distance
distortion estimate along the [Ricci] flow, if the initial volume ratio has an upper bound,” and that
such an estimate can be refined using an integral estimate for the scalar curvature. The conclu-
sion (1.5) in Theorem 1.3 can be shown by combining Proposition 5.3 and Theorem 5.4 of Wang’s
[Wan20] with Lemma 2.1 below. Instead we give a slightly different (though fundamentally similar)
proof, which is self contained apart from a few facts pulled from [LNNb]. The conclusion (1.6) does
not follow from [Wan20] and rests upon a decomposition theorem proven by Lee, Naber and the
author in [LNNb]. The overall proof scheme of Theorem 1.3 is similar to the proof of the main
epsilon regularity theorem in [LNNb, Theorem 1.1].

Next, we have a compactness result and structure theorem for limit spaces under the same
assumptions of Theorems 1.3.

Theorem 1.4. Fix n ≥ 2, ε > 0, C0 > 0, r0 > 0, and τ0 > 0. There exists δ = δ(n, ε) > 0 such
that the following holds. Let {(Mi, gi, xi)} be a sequence of complete pointed Riemannian manifolds
with bounded curvature satisfying

Rgi ≥ −C0, ν(gi, τ0) ≥ −δ , and volgi(Bgi(x, r)) ≤ (1 + δ)ωnr
n (1.7)

for all x ∈Mi and r ∈ (0, r0]. Then, up to a subsequence, (Mi, gi, xi, dvolgi) converges in the pointed
measured Gromov-Hausdorff topology to a pointed metric measure space (X, d, x∞,m) satisfying the
following properties:

(1) X is an n-dimensional manifold.
(2) For each x ∈ X and r ∈ (0, ρ0), where ρ2

0 := min{δ/C0, τ0/2, r
2
0/4} we have

(1− ε)ωnrn ≤ m(Bd(y, r)) ≤ (1 + δ)ωnr
n. (1.8)

(3) The measure m and the n-dimensional Hausdorff measure Hn are mutually absolutely con-
tinuous, with m = fHn for a function f satisfying (1− ε) ≤ f ≤ (1 + δ).

(4) X is Hn-rectifiable and m-rectifiable.

Recall that a metric space X is m-rectifiable if there is a countable collection of m-measurable
subsets Fk ⊂ X and bi-Lipschitz maps ψk : Fk → Uk ⊂ Rn such that m(X \ ∪kFk) = 0.

Let us make some comments regarding the theorems above.

(1) In view of recent work of Liang Cheng in [Che22], as well as Wang’s work in [Wan18, Wan20],
it is likely possible to establish local versions of Theorems 1.3 and 1.4. We will pursue this
in upcoming work.

(2) In Theorem 1.4, one is led to wonder whether the measure m is equal to the n-dimensional
Hausdorff measure Hn. We are not sure. If one replaces the volume growth assumption
in (1.7) with the stronger assumption volgi(Bgi(x, r)) ≤ (1 + σ(r))ωnr

n for all x ∈ Mi and
r ∈ (0, r0] for some modulus of continuity σ that is uniform in i, then indeed one can show
that m = Hn using a refinement of the decomposition theorem in Lemma 2.5.

(3) In [LNNb, Theorem 1.15], we prove a different type of compactness and limit structure
theorem for sequences satisfying only the first two conditions of (1.7) in Theorem 1.4. In
view of the examples discussed above, the objects that arise as limit spaces are not metric
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spaces. Instead, we show in [LNNb] for any p > n, one can choose δ = δ(n, p) small enough
so that such sequences converge in the pointed dp sense to a so-called pointed rectifiable
Riemannian space that has certain nice structural properties. Without getting too far into
details, we mention that it would be interesting to systematically investigate the relationship
and compatibility between the limits of Theorem 1.4 and [LNNb, Theorem 1.15].

(4) In [LNNb, Theorem 1.11], we prove that under only assumption (1.3), the metric enjoys
W 1,p estimates of a similar form to (1.6) (with the important distinction that in [LNNb]
the domain of ψ and of the second integral in (1.6) is not Bg(x, 1) but rather a “dp ball”).
Theorem 1.3 shows that with the additional assumption (1.4) of control from above on the
volumes of balls, these estimates (which give Lp estimates for the metric coefficients) can
be upgraded to control on the distance functions. Although their results are not directly
applicable here, we point out that similar themes are present in [AS20, All21], where various
conditions are given allowing one can upgrade from Lp control on metric coefficients to
control of the distance functions, and in [APS20] where upper volume control combined
with one-sided control of distance functions is shown to imply volume preserving intrinsic
flat convergence.

Acknowledgements: The author is partially supported by NSF Grant DMS-2155054 and the Gregg
Zeitlin Early Career Professorship at CMU, and is grateful to Aaron Naber and Man-Chun Lee
for many enlightening discussions over the years, and to the latter for pointing out the reference
[Che22]. Part of this work was carried out while the author was visiting the Fields Institute.

2. Preliminaries

The Perelman entropy was introduced by Perelman in [Per02] as a monotone quantity for the
Ricci flow, and is defined in the following way. For a function f ∈ C∞(M) and real number τ > 0,
Perelman’s W -functional is defined by

W(g, f, τ) =
1

(4πτ)n/2

ˆ
M

{
τ(|∇f |2 +Rg) + f − n

}
e−f dvolg . (2.1)

The Perelman entropy µ(g, τ) is

µ(g, τ) = inf

{
W(g, f, τ) :

1

(4πτ)n/2

ˆ
M
e−f dvolg = 1

}
. (2.2)

This quantity can be viewed as the optimal constant in a log-Sobolev inequality on (M, g) at

scale τ1/2; on Euclidean space, Gross’s log-Sobolev inequality [Gro75] is equivalent to the fact that
µ(geuc, τ) = 0 for every τ > 0. Perelman’s ν-functional is defined by

ν(g, τ) = inf{µ(g, τ̂) : τ̂ ∈ (0, τ)}.

An important feature of this functional is that it is extremized by Euclidean space: for any complete
Riemannian manifold (M, g) with bounded curvature, ν(g, τ) ≤ 0 for every τ > 0, and equality
holds for some τ > 0 if and only if (M, g) is isometric to Euclidean space. We will assume, for a
given δ > 0, that ν(g, 2) ≥ −δ.

Recall that (M, g(t))t∈(0,T ) is a solution to the Ricci flow if ∂tgt = −2Ricg(t). The scalar curvature

evolves along the Ricci flow as (∂t −∆g(t))Rg(t) = 2|Ricg(t)|2, and in particular as a supersolution
to the heat equation, its lower bounds are preserved along the flow. This feature, together with
its regularizing properties, make the Ricci flow useful tool for studying spaces with lower bounds
on scalar curvature; see [LNNb, Bam16, BG19, BG] for instance. The volume form evolves via
∂tdvolg(t) = −Rg(t)dvolg(t) along the Ricci flow. So, if an initial metric g(0) satisfies Rg(0) ≥ −δ,
then the same lower bound persists and volumes do not expand too much along the flow: dvolg(t) ≤
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exp{δ(t − s)}dvolg(s) for all s ≤ t. So, provided δ ≤ 1/2, a Taylor expansion shows that for all
0 ≤ s ≤ t ≤ min{1, T},

dvolg(t) ≤ {1 + 2δ(t− s)} dvolg(s). (2.3)

The Perelman entropy interacts naturally Ricci flow as well, by design. The following lemma
highlights some of the basic Ricci flow facts that will be useful in our setting.

Lemma 2.1. Fix n ≥ 2, λ > 0 and ε > 0. There exists δ = δ(n, λ, ε) such that if (M, g) is a
complete Riemannian manifold with bounded curvature with ν(g, 2) ≥ −δ, then the smooth Ricci
flow (M, g(t)) with g(0) = g exists for t ∈ (0, 1] and has the scale-invariant curvature estimates

|Rmg(t)| 6
λ

t
for all t ∈ (0, 1]. (2.4)

Moreover, for any x ∈ M and t ∈ (0, 1], we may find a diffeomorphism ψ : Bg(t)(x, 16t1/2)→ Ω ⊂
Rn such that ψ(0) = x and

(1− ε)geuc ≤ ψ∗g(t) ≤ (1 + ε)geuc (2.5)

for all y ∈ Ω. In particular, for any r ∈ (0, 16t1/2) we have

(1− ε)ωnrn ≤ volg(t)(Bg(t)(x, r)) ≤ (1 + ε)ωnr
n (2.6)

Proof. The uniform existence time and scale invariant curvature estimates (2.4) were proven in
[LNNb, Theorem 3.2], and the proof there is essentially from Hein and Naber [HN14]. The proof
is a contradiction argument using Shi’s derivative estimates [Shi89] and the rigidity of Euclidean
space as a maximizer of the entropy.

Next, Perelman’s no local collapsing theorem implies that balls are noncollapsing below scale
t1/2 in the sense that volg(t)(Bg(t)(x, r)) ≥ κrn for all x ∈ M and r ≤ t1/2 ≤ 1 for a uniform
constant κ = κ(n, λ, δ); see [Per02]. Together with the curvature estimates (2.4), this implies that

the injectivity radius of (M, g(t)) is bounded below by i0t
1/2 for a number i0 = i0(n, δ, λ) > 0; see

[Pet98, Chapter 10, Lemma 53]. A further contradiction argument using the rigidity of Euclidean
space for the entropy as in the proof of [LNNb, Theorem 3.2] shows that, that up to decreasing δ,
we may assume that i0 ≥ 16. In turn, this implies the second part of the lemma, say in normal
coordinate charts. Though we won’t directly need it here, it is worth noting that Shi’s derivative
estimates actually tell us that Bg(t)(x, 16t1/2) is smoothly close to a Euclidean ball. �

In view of Lemma 2.1, under the hypotheses of Theorem 1.3 we may assume that the Ricci flow
(M, g(t)) with g(0) = g exists for all t ∈ (0, 1] and Bg(1)(x, 16) is smoothly close to a Euclidean ball

for any x ∈M . To prove Theorem 1.3, then, it suffices prove bi-Hölder and bi-W 1,p estimates for the
identity map between t = 0 and t = 1. In particular we will need to compare the distance functions
along the flow. One direction of this comparison comes essentially for free by combining the scale-
invariant curvature estimates (2.4) with the following one-sided distance distortion estimate due
to Hamilton. We state it only in the form needed here; see [Ham95, Theorem 17.1] or [CLN06,
Lemma 8.33].

Lemma 2.2 (Hamilton). Let (M, g(t))t∈(0,1] be a smooth Ricci flow satisfying (2.4). Then for any
x, y ∈M , and 0 ≤ s ≤ t ≤ 1 we have

dg(t)(x, y) ≥ dg(s)(x, y)− 8
√

(n− 1)λt. (2.7)

Let us observe that (2.7) implies that for any ρ > 0 and 0 ≤ s ≤ t ≤ 1, setting C2 = 64(n− 1),
we have

Bg(t) (x, ρ) ⊆ Bg(s)
(
x, ρ+

√
Cλt

)
. (2.8)



6 ROBIN NEUMAYER

By choosing s = 0 and λ (hence δ) sufficiently small depending on ε, Lemma 2.2 implies

Bg(t)(x, ρ) ⊂ Bg(0)(x, (1 + ε)ρ) (2.9)

for any ρ ≥ t1/2/100.

Lemma 2.2 asserts that distances cannot decrease too much along the flow when (2.4) is in force.
On the other hand, the evolution of the volume form shows that volumes cannot increase too much
along the flow under the lower scalar bound. The interplay between these two estimates implies
that under a scalar curvature lower bound, the entropy noncollapsing condition ν(g, 2) ≥ −δ implies
the volume noncollapsing condition (2.10) at every point.

Lemma 2.3 (Entropy noncollapsing implies volume noncollapsing). Fix n ≥ 2 and ε > 0. There
exists δ = δ(n, ε) > 0 such that the following holds. Suppose that (M, g) is a complete Riemannian
manifold with bounded curvature such that Rg ≥ −δ and ν(g, 2) ≥ −δ. Then for every r ∈ (0, 1],

volg(Bg(x, r)) ≥ (1− ε)ωnrn . (2.10)

More generally, if (M, g(t))t∈(0,1] is the Ricci flow with g(0) = g, whose existence is guaranteed by
Lemma 2.1, then for every t ∈ [0, 1] and r ∈ (0, 1],

volg(t)(Bg(t)(x, r)) ≥ (1− ε)ωnrn . (2.11)

Proof. Fix t ∈ [0, 1] and r ∈ (0, 1]. If r ≤ t1/2, then (2.11) is a consequence of (2.6). Next

consider the case when r ∈ (t1/2, 1]. We apply (2.8), taking s = t and t = r2, and ρ = r −
√
Cλt

where C is the constant in (2.8). Provided λ, and hence δ, is sufficiently small, we find that
Bg(r2)(x, (1− ε)r) ⊆ Bg(t)(x, r). In particular,

volg(t)(Bg(t)(x, r)) ≥ volg(t)(Bg(r2)(x, (1− ε)r)). (2.12)

Then, since R ≥ −δ, by (2.3), we see that

volg(t)(Bg(r2)(x, (1− ε)r)) ≥ (1− ε)volg(r2)(Bg(r2)(x, (1− ε)r)) . (2.13)

We appeal to (2.6) once more to conclude. �

Wang shows in [Wan20, Theorem 5.9] that under a lower bound on the Ricci curvature, the local
versions of these two conditions are equivalent, and are also equivalent to an almost-Euclidean local
isoperimetric constant.

We will use the following elementary lemma that follows from integrating the scale-invariant
curvature estimate (2.4) along the Ricci flow; see [LNNb, Lemma 3.8].

Lemma 2.4. Fix n ≥ 2 and β ∈ (0, 1/4). There exists λ = λ(n, β) small enough such that if
(M, g(t))t∈(0,1] is a Ricci flow satsifying (2.4), then for any x ∈M and 0 < s1 ≤ s2 ≤ 1, we have(s1

s2

)β
g(s1) ≤ g(s2) ≤

(s1

s2

)−β
g(s1). (2.14)

Consequently, for any r > 0,

Bg(s)(x, rs
1/2) ⊂ Bg(t)(x, rt1/2) for all 0 ≤ s ≤ t ≤ 1 .

Moreover, for t0 ∈ (0, 1), r0 ∈ (0, 1) and ε > 0 fixed, there is λ small enough such that

Bg(t0)(x, r0) ⊂ Bg(1) (x, (1 + ε)r0) . (2.15)

Finally, we recall the decomposition theorem from [LNNb, Theorem 5.1] for a Riemannian man-
ifold with almost-Euclidean lower bounds on scalar curvature and Perelman entropy, which decom-
poses a ball Bg(1)(x, 8) into a countable union of sets {Gk}k∈N with volumes decaying geometrically
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in k and on which the metric tensors g(0) and g(1) are pointwise comparable up to (1 ± ε)k-
multiplicative constants.

Lemma 2.5 (Decomposition theorem). For each ε > 0 there exists δ = δ(n, ε) > 0, such that the
following holds. Let (M, g(t))t∈(0,1] be a complete Ricci flow with bounded curvature with g = g(0)

satisfying (1.3). Fix x0 ∈M . The ball Bg(1)(x0, 8) can be decomposed into good sets Gk and a bad
set A in the following way:

Bg(1)(x0, 8) =

∞⋃
k=1

Gk ∪ A (2.16)

where

(1) volg(0)(A) = 0.

(2) For all x ∈ Gk and for all s, t ∈ (0, 1], the metrics satisfy

(1− ε)kg(s) ≤ g(t) ≤ (1 + ε)kg(s) (2.17)

(3) For each k ≥ 2, we have volg(0)(Gk) ≤ (1 + ε)kεk−1.

(4) For each k ∈ N, let Ak = Bg(1)(x0, 8)
∖ ⋃k

`=1 G` be the complement of the first k good sets.

There is a countable collection Ck and a mapping y 7→ ty for y ∈ Ck such that

Ak ⊆
⋃
y∈Ck

Bg(ty)(y, 12t1/2y ) with
∑
y∈Ck

tn/2y ≤ εk. (2.18)

3. Epsilon Regularity

In this section, we prove Theorem 1.3. To begin, we show that if (M, g) satisfies the assumptions
of Theorem 1.3 and (M, g(t))t∈(0,1] is the Ricci flow with g(0) = g (whose existence is guaranteed
by Lemma 2.1), then

Bg(0)(x, 1− ε) ⊂ Bg(1)(x, 1) (3.1)

provided δ is chosen sufficiently small. Once this is shown, we can apply this and the opposite
containment (2.9) and iterate at all points and scales to show (1.5). Moreover, the containment
(3.1) will allow us to decompose the ball Bg(0)(x, 1) according to Lemma 2.5 to prove the W 1,p

estimates (1.6). While all of the results in section 2 hold under only the lower bounds on scalar
curvature and entropy, the proofs in this section necessarily make use of the upper bounds (1.4) on
the volumes of balls: examples in [LNNb, LNNa] show the containment (3.1) is false in the absence
of assumption (1.4), even with 1− ε replaced by a tiny radius c > 0.

The containment (3.1) follows from the distance distortion estimates shown in [Wan20], which
in turn call on results from [TW15]. Here we give a slightly different proof, which combines two in-
gredients: lower density estimates and volume control. The lower density estimate, Proposition 3.1
below, says that if (3.1) fails to hold, i.e. Bg(0)(x, 1 − ε) is not entirely contained in Bg(1)(x, 1),
then there is a g(0) ball of definite size that lies inside the slightly bigger ball Bg(0)(x, 1− ε/2) and
outside the slightly smaller ball Bg(1)(x, 1− ε/2).

Proposition 3.1. Fix n ≥ 2 and ε > 0. There exist δ = δ(n, ε) > 0 such that the follow-
ing holds. Let (M, g) satisfy the hypotheses of Theorem 1.3. Then for any x ∈ M and y ∈
Bg(0) (x, 1− ε) \Bg(1) (x, 1), we have

Bg(0)

(
y, ε/20

)
⊂ Bg(0)

(
x, 1− ε/2

)∖
Bg(1)

(
x, 1− ε/2

)
.
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So, if (3.1) fails for some x, then a g(0) ball of definite radius—thus of definite g(0) volume by
Lemma 2.3—is contained in a g(0) ball of radius ρ0 = 1− ε/2 and the complement of a g(1) ball of
the same radius and center. This possibility is ruled out by the volume control of Proposition 3.2,
which says that the set difference between a g(0) ball and a g(1) ball with the same radius and
center must have very small volume for sufficiently small δ. This fact strongly uses the almost-
Euclidean volume assumption (1.4), as well as a lemma from [LNNb] letting us compare g(0) and
g(1) volumes of a fixed set.

Proposition 3.2. Fix n ≥ 2 and η > 0.There exists δ = δ(n, η) such that if (M, g) satisfies the
hypotheses of Theorem 1.3, then for any x ∈M and ρ0 ∈ [1/5, 1],

volg(0)

(
Bg(0)(x, ρ0) \Bg(1)(x, ρ0)

)
≤ η. (3.2)

We prove Propositions 3.1 and 3.2 in sections 3.1 and 3.2 respectively, and complete the proof
of Theorem 1.3 in section 3.3.

3.1. Lower density estimate. To prove Proposition 3.1, we first prove the rough containment
Bg(0)(x, 1) ⊂ Bg(1)(x, 5). Here, we crucially use the control (1.4) on volumes of balls, although in
this step it is not essential that the contant is almost-Euclidean. The proof uses a known Ricci
flow argument (see for instance [CW12, BZ17]) estimating the number of g(t)-balls needed to cover
g(0)-geodesics, using the volume bounds (1.4) and noncollapsing of Lemma 2.3.

Lemma 3.3. Fix n ≥ 2. There exist δ = δ(n) > 0 such that the following holds. Let (M, g) satisfy
the hypotheses of Theorem 1.3 and let (M, g(t))t∈(0,1] be the Ricci flow with g(0) = g. For each

t ∈ (0, 1] and x, y ∈M with dg(0)(x, y) ≥ t1/2,

dg(t)(x, y) ≤ 4dg(0)(x, y) (3.3)

and

Bg(0)

(
x, t1/2

)
⊆ Bg(t)

(
x, 5t1/2

)
. (3.4)

Proof. Fix t ∈ (0, 1] and fix x, y ∈M satisfying dg(0)(x, y) ≥ t1/2, and set d0 = dg(0)(x, y).

Case 1: d0 ≤ 1/2. Let γ be a minimizing geodesic from x to y with respect to the metric g(0).
Consider a maximal subset {yi}Ni=1 of Im(γ) such that the balls Bg(t)(yi, d0) are pairwise disjoint.

In this way, the collection {Bg(t)(yi, 2d0)}Ni=1 is a covering of Im(γ) and thus

dg(t)(x, y) ≤ Lg(t)(γ) ≤ 4d0N . (3.5)

Here Lg(t)(γ) denotes the length of γ with respect to the metric g(t). We will show that N = 1
provided δ is chosen sufficiently small. Indeed, let ε = ε(n) > 0 be a fixed small number to be
specified below. Taking δ, small enough depending on ε and n, we find from (2.9) that for each
i ∈ {1, . . . , N},

Bg(t)(yi, d0) ⊆ Bg(0)

(
yi, (1 + ε)d0

)
. (3.6)

In particular, since the balls on the left-hand side of (3.6) are pairwise disjoint,

N∑
i=1

volg(t)(Bg(t)(yi, d0)) ≤ volg(t)
(
Bg(0)(x, (1 + ε)d0)

)
. (3.7)

The lower bound on scalar curvature and (2.3) ensure that dvolg(t) ≤ (1+ε)dvolg(0) for all t ∈ (0, 1],
provided we choose δ > 0 small enough in terms of ε. Therefore, keeping in mind that d0 ≤ 1/2 so
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(1 + ε)d0 < 1, we can apply the volume growth assumption (1.4) to bound right-hand side of (3.7)
above:

volg(t)
(
Bg(0)(x, (1 + ε)d0)

)
≤ (1 + ε)volg(0)

(
Bg(0)(x, (1 + ε)d0)

)
≤ ωn(1 + ε)n+1dn0 .

(3.8)

On the other hand, up to further decreasing δ depending on n and ε, Lemma 2.3 tells us the balls
Bg(t)(yi, d0) on the left-hand side of (3.7) each have g(t)-volume at least (1 − ε)ωndn0 . Using this
and (3.8) to bound the left- and right-hand sides of (3.7) respectively, we have

N(1− ε)ωndn0 ≤ ωn(1 + ε)n+1dn0 .

Dividing through by ωnd
n
0 and taking ε > 0 small enough depending on n, we determine that

N < 2. So, recalling (3.5) and the definition of d0, we conclude that (3.3) holds in this case.

Case 2: d0 ≥ 1/2. Let γ : [0, d0] → M be a minimizing geodesic from x to y with respect to the

metric g(0) parameterized by arclength. Let ρ = d0
d2d0e . Note that ρ ∈ [1/4, 1/2], so in particular

4ρ ≥ t1/2 for any t ∈ (0, 1]. For i = 0, . . . , d2d0e, set xi = γ(iρ). By applying Case 1 to the
g(0)-geodesic segments from xi−1 to xi, we find that

d =

d2d0e∑
i=1

dg(0)(xi−1, xi) ≥
1

4

d2d0e∑
i=1

dg(t)(xi−1, xi) ≥
1

4
dg(t)(x, y) . (3.9)

This completes the proof of (3.3).

To see how the containment of balls (3.4) follows, fix any y ∈ Bg(0)(x, t
1/2). Again letting

d0 = dg(0)(x, y) (so that now d0 < t1/2), we apply (3.3) at the time slice d2
0 to see that y ∈

Bg(d20)(x, 4(1 + ε)d0). Next, by Lemma 2.4, we have

Bg(d20)

(
x, 4(1 + ε)d0

)
⊆ Bg(t)

(
x, 4(1 + ε)2t1/2

)
(3.10)

since d2
0 ≤ t. Choosing ε > 0 small enough so that 4(1 + ε)2 ≤ 5 completes the proof. �

Now we use Lemma 3.3 to prove the lower density estimate.

Proof of Proposition 3.1. Suppose that we may find some y as in the statement of the proposition,
i.e. such that dg(0)(y, x) ≤ 1− ε and dg(1)(y, x) > 1. We claim that

Bg(0)(y, ε/20) ⊂ Bg(0)(x, 1− ε/2) (3.11)

and Bg(0)(y, ε/20) ⊂M \Bg(1)(x, 1− ε/2) . (3.12)

The first containment (3.11) is immediate from the triangle inequality: for z ∈ Bg(0)(y, ε/20),

dg(0)(z, y) ≤ dg(0)(z, y) + dg(0)(y, x) ≤ ε/20 + (1− ε) ≤ 1− ε/2.
Toward showing (3.12), we claim that for δ = δ(n, ε) sufficiently small, we have

Bg(0)(x, ε/20) ⊆ Bg(1)(x, ε/2) (3.13)

for each x ∈M. Indeed, let t0 = ε2/400. Applying Lemma 3.3 at scale t0 tells us thatBg(0)(x, ε/20) ⊂
Bg(t0)(x, ε/4). Next, by Lemma 2.4, we can choose λ and thus δ sufficiently small depending on t0
(thus ε) and n to find that Bg(t0)(x, ε/4) ⊂ Bg(1)(x, ε/2) for every x ∈M . This yields (3.13).

So, thanks to (3.13), to show (3.12) it suffices to show that Bg(1)(y, ε/2) ⊂M \Bg(1)(x, 1− ε/2).
Again, this just follows from the triangle inequality: for z ∈ Bg(1)(y, ε/2), we have

dg(1)(z, x) ≥ dg(1)(x, y)− dg(1)(y, z) ≥ 1− dg(1)(z, y) ≥ 1− ε/2.
This completes the proof. �
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3.2. Volume control. Using only the first iteration of the decomposition theorem, Lemma 2.5,
i.e. just splitting Bg(1)(x, 8) into the first “good set” G1 and its complement of small volume, we
have the following volume control lemma.

Lemma 3.4. Fix n ≥ 2 and η > 0. There exists δ = δ(n, η) such that, for any Ω ⊂ M with
diamg(1)(Ω) ≤ 8, ∣∣volg(0)(Ω)− volg(1)(Ω)

∣∣ ≤ η .
This lemma is one of the tools in the proof of Proposition 3.2.

Proof of Proposition 3.2. Let V0 = volg(0)

(
Bg(0)(x, ρ0)\Bg(1)(x, ρ0)

)
, so we aim to show that V0 ≤ η.

To this end, we first slightly enlarge the g(0) ball appearing on the left-hand side of (3.2): thanks
to the containment (2.9) and the assumption ρ0 ≥ 1/5, we can take δ = δ(n, η) sufficiently small
so that Bg(1)(x, ρ0) ⊂ Bg(0)(x, (1 + η)ρ0). So, letting V0 denote the left-hand side of (3.2), we have

V0 ≤ volg(0)

(
Bg(0)(x, (1 + η)ρ0) \Bg(1)(x, ρ0)

)
= volg(0)

(
Bg(0)(x, (1 + η)ρ0)

)
− volg(0)

(
Bg(1)(x, ρ0)

)
.

We bound the first term on the right-hand side using the assumption (1.4) of an almost-Euclidean
upper bound for volumes of g(0) balls:

volg(0)

(
Bg(0)(x, (1 + η)ρ0)

)
≤ (1 + δ)(1 + η)nωnρ

n
0 .

To bound the second term below, we apply Proposition 3.4, allowing us to compare g(0) and g(1)
volumes, followed by the volume noncollapsing of Lemma 2.3:

volg(0)

(
Bg(1)(x, ρ0)

)
≥ (1− η)volg(1)(Bg(1)(x, ρ0)) ≥ (1− 2η)ωnρ

n
0 .

Putting these facts together we see that

V0 ≤ ωnρn0
(
(1 + δ)(1 + η)n − (1− 2η)

)
≤ ωnρn0Cnη = Cnη.

Here we have assumed without loss of generality that δ ≤ η and have used that ρ0 ≤ 1. Repeating
this argument with η′ = η/Cn proves the proposition. �

3.3. Conclusion. Now we prove Theorem 1.3.

Proof of Theorem 1.3. Let (M, g(t))t∈(0,1] be the Ricci flow with g(0) = g, whose existence is guar-
anteed by Lemma 2.1. Fix x ∈M .

Step 1: First, we show (3.1), that is, we claim that

Bg(0)(x, 1− ε) ⊂ Bg(1)(x, 1),

for δ sufficiently small depending on n and ε. Let η > 0 be a fixed number depending on n and ε to
be specified below. Choose δ = δ(n, ε, η) small enough according to Propositions 3.1 and 3.2 and
Lemma 3.3. Set ρ0 = 1 − ε/2. If ρ0 < 1/5, the claim follows from Lemma 3.3, so we assume that
ρ0 ≥ 1/5. Suppose there is some point y ∈ Bg(0)(x, 1 − ε) with y 6∈ Bg(1)(x, 1). The lower density
estimate of Proposition 3.1 then implies that

Bg(0)(y, ε/20) ⊂ Bg(0)(x, ρ0) \Bg(1)(x, ρ0),

and thus Proposition 3.2 implies that

volg(0)

(
Bg(0)(y, ε/20)

)
≤ 100η (3.14)

by containment. On the other hand, by Lemma 2.3, the right-hand side of this expression is
bounded below by ωnε

n/21n for δ = δ(n, ε) > 0 small enough. Choosing η ≤ ωnεn/21n, we see that
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such a point y cannot exist and thus the claim holds. Since all hypotheses are preserved under
rescaling the metric g 7→ t−1g for t ∈ (0, 1], we note that this claim shows that

Bg(0)(x, (1− ε)t1/2) ⊂ Bg(t)(x, t1/2)

for all t ∈ (0, 1] and x ∈M ; up to further decreasing δ we may assume this holds for all t ∈ (0, 2].

Step 2: Together step 1 and (2.9) tell us that, up to further decreasing δ > 0, we have

Bg(t)
(
x, (1− ε)t1/2

)
⊆ Bg(0)(x, t

1/2) ⊆ Bg(t)
(
x, (1 + ε)t1/2

)
(3.15)

for all x ∈ M and t ∈ (0, 2]. By Lemma 2.1, we have a smooth diffeomorphism ψ : Bg(1)(x, 16) →
Ω ⊂ Rn, with inverse φ = ψ−1 such that ψ(x) = 0 and

(1− ε)geuc ≤ φ∗g(1) ≤ (1 + ε)geuc (3.16)

for all x ∈ Ω, as long as λ (and hence δ) has been chosen to be sufficiently small depending on ε
and n. Set U = ψ(Bg(0)(x, 1)). By (3.15) with t = 1 and (3.16), we have

B(0, 1− ε) ⊆ U ⊆ B(0, 1 + ε). (3.17)

Let us establish the bi-Hölder estimates (1.5), which is standard from (3.15). Thanks to (3.16),
it suffices to show that the identity map is a bi-Hölder between g and g(1) satisfying

(1− ε)dg(y, z)1/α ≤ dg(1)(y, z) ≤ (1 + ε)dg(y, z)
α (3.18)

for all y, z ∈ Bg(x, 1/2). To this end, fix any such y, z and let d = dg(y, z) ≤ 1. By (3.15) at scale
t = d2, we have

(1− ε)d ≤ dg(d2)(x, y) ≤ (1 + ε)d. (3.19)

Let 2β = 1 − α. Up to further decreasing λ (and thus δ) to comply with Lemma 2.4, we see that
(2.14) yields

(1− ε)d2βdg(d2)(x, y) ≤ dg(1)(x, y) ≤ (1 + ε)d−2βdg(d2)(x, y). (3.20)

Combining these two estimates (3.19) and (3.20) establishes (3.18). We have thus shown (1.5).

Finally, we can repeat the proof of theorem 1.11 in [LNNb, Section 6] identically, with the key
improvement that the decomposition of Lemma 2.5 now holds on Bg(0, 1) thanks to step 1, to
conclude the W 1,p estimates (1.6). �

4. Limit spaces

In this section we establish Theorem 1.4. We first prove the compactness and properties (1)
and (2) of Theorem 1.4 in section 4.1, then introduce two additional lemmas in section 4.2 before
proving properties (3) and (4) in section 4.3.

4.1. Compactness, topological structure, and measure of balls. We start by proving that
sequences of pointed Riemannian manifolds as in the statement of Theorem 1.4 have pointed mea-
sured Gromov-Hausdorff limits, that the limit space X is a topological manifold, and that the
measure of balls up to scale one in the limit space are almost equal to the volume of Euclidean
balls of the same radius.

Proof of Theorem 1.4. Take δ = δ(n, ε) > 0 as in Theorem 1.3. Up to replacing each gi by the
rescaled metric ρ−2

0 gi where ρ2
0 = min{δ/C0, τ0/2, r

2
0/4}, we may assume that C0 = δ, τ0 = 2, and

r0 = 2 in (1.7). In this way, each (Mi, gi, xi) satisfies the hypotheses of Theorem 1.3. At various
points in the proof, we will pass to subsequences, which we will not relabel.
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Step 0. We first show that the sequence {(Mi, gi, xi, dvolgi)} has a convergent subsequence in
the pointed measured Gromov-Hausdorff topology. At a fixed y ∈ Mi, we let CovR(r) denote
the minimum number of balls of radius r needed to cover Bgi(y,R). As a direct consequence of
Theorem 1.3, we find that Cov1(r) is bounded above by a function N1(r) = N1(r, n, ε, δ). Further-
more, we have assumed that volgi(Bgi(y, r)) is bounded above by a function V (r) = V (r, n, ε, δ)
for each r ≤ 1. As this holds at every point, a simple induction argument then establishes that
CovR(r) is bounded above by a function NR(r) = NR(r, n, ε, δ) for R ≥ 1 as well, and consequently,
volgiBgi(y,R) is bounded above by a function V (R) = V (R,n, ε, δ) for all R ≥ 1 as well. Hence, the
sequence {(Mi, gi, xi, dvolgi)} is precompact in the pointed measured Gromov-Hausdorff sense and
a subsequence converges to a proper pointed metric measure space (X, d, x∞,m); see for instance
[HKST15, Theorem 11.4.7].

Step 1. Next we establish the manifold structure of X by constructing an atlas of charts, proving
part (1) of the theorem. We follow Petersen’s presentation of Cheeger’s fundamental theorem of
convergence theory, [Pet98, Chapter 10, Theorem 72]. For each fixed i, Theorem 1.3 establishes
the existence of an atlas of charts φi` : Bgeuc(0, 1) → Ui` ⊂ Mi, where each φi` is a bi-Hölder
homeomorphism with uniform bounds on the bi-Hölder norms. Without loss of generality, we
may assume that the index set {`} is the same for all i, and that we have indexed the charts in
such a way that xi ∈ Ui1, and that B(p,R) is covered by the first NR(1) charts. For each `, the
uniform bi-Hölder estimates ensure that, up to a subsequence, {φi`} converges to a bi-Hölder map
φ` : Bgeuc(0, 1) → U` ⊂ X. In particular, φ` is a homeomorphism. Up to selecting a diagonal
subsequence, this convergence occurs for all ` ∈ N. Finally, it is easy to check from the Gromov-
Hausdorff convergence that every x ∈ X is contained in U` for some `. Therefore, the collection of
maps {φ`} provides an atlas of topological charts for X.

Step 2. We now show the bound (1.8) for the m measure of balls to establish part (2) of the
theorem. The initial rescaling makes r0 = 1, and up to further rescaling, it suffices to take r = 1
in (1.8). Any ball B∞ := Bd(x, 1) ⊂ X is the Gromov-Hausdorff limit of balls Bi := Bgi(xi, 1) ⊂
(Mi, gi), and as in the previous step comes equipped with a bi-Hölder map φ : Bgeuc(0, 1) → B∞
arising as the limit of the maps φi : Bgeuc(0, 1)→ Bi of Theorem 1.3. We denote by ψi and ψ the
inverses of φi and φ respectively. We claim that

m(B∞) = lim
i→∞

volgi(Bi). (4.1)

Then (1.8) follows immediately from (4.1), because assumption (1.7) and Lemma 2.3 ensure that
(1 − ε)ωn ≤ volgi(Bi) ≤ (1 + δ)ωn. To prove (4.1), note that (up to a subsequence) the map
Fi = φ ◦ ψi : Bi → B∞ is a 1/i Gromov-Hausdorff approximation. So, for a fixed function
f ∈ Cc(B∞), we have limi→∞

´
Mi
fj ◦Fi dvolgi →

´
X fj dm from the weak convergence of measures.

Take a sequence of functions fj ∈ Cc(B∞) converging in L1(X;m) to the characteristic function of
B∞. We have

lim
j→∞

lim
i→∞

ˆ
Mi

fj ◦ Fi dvolgi = lim
j→∞

ˆ
X
fj dm = m(B∞). (4.2)

Now, we claim that the integrals on the left-hand side are uniformly bounded with respect to i and
j, so we may exchange the limits. We can assume that fj ≤ χB∞ , so, letting νi := (ψi)]mi for
dmi = dvolgi be a sequence of measures defined on Bgeuc(0, 1), it suffices to show that νi(Bgeuc(0, 1))
is uniformly bounded in i. This fact then follows directly from Lemma 2.1 and the volume control
of Lemma 3.4. So, we may exchange order of the limits with respect to i and j in (4.2). Next,
applying the dominated convergence theorem and recalling the definition of Fi, we find that

lim
i→∞

lim
j→∞

ˆ
Mi

fj ◦ Fi dvolgi = lim
i→∞

volgi(F
−1
i (B∞)) = lim

i→∞
volgi(Bi). (4.3)
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Together (4.2) and (4.3) imply (4.1). We have thus proven the pointed measured Gromov-Hausdorff
compactness part of Theorem 1.4 and the properties (1) and (2) of the limiting pointed metric
measure spaces. �

4.2. Intermediate lemmas. Toward proving the remaining two properties (3) and (4) of limit
spaces in Theorem 1.4, we first prove two intermediate lemmas. The first lemma will directly lead
to property (3):

Lemma 4.1. Fix ε > 0, ε′ > 0 and r0 > 0. Let (X, d) be a locally compact separable metric space,
and let m be a Radon measure on X satisfying

(1− ε)ωnrn ≤ m(Bd(x, r)) ≤ (1 + ε′)ωnr
n (4.4)

for every Bd(x, r) ⊂ Bd(x0, r0). Then m and Hn are mutually absolutely continuous in Bd(x0, r0),
and m = fHn with 1− ε ≤ f ≤ 1 + ε′.

Proof. We show that for any m-measurable set Ω ⊆ Bd(x0, r0), we have

(1− ε)Hn(Ω) ≤ m(Ω) ≤ (1 + ε′)Hn(Ω). (4.5)

First we prove the upper bound in (4.5). Since m is a Radon measure, it suffices to assume that
Ω is compact, and hence Ω ⊆ Bd(x0, r0 − δ0) for some δ0 > 0. Fix δ < δ0. From the definition of
Hausdorff measure, we may find a covering {Ω`}∞`=1 of Ω with r` := diam(Ω`)/2 ≤ δ and such that

Hn(Ω) ≥ ωn
∞∑
`=1

rn` − δ. (4.6)

For each `, the set Ω` is contained in Bd(x`, r`) for some x` ∈ B(x0, r0), and thus {Bd(x`, r`)} is a
covering of Ω as well. From the second inequality in (4.4), we thus have

ωn

∞∑
`=1

rn` − δ ≥
1

1 + ε′

∞∑
`=1

m(Bd(x`, r`))− δ ≥
1

1 + ε′
m(Ω)− δ. (4.7)

Taking δ → 0 proves the upper bound in (4.5).

Now we show the lower bound in (4.5). As m is a Radon measure, it suffices to consider Ω
open. Fix δ > 0 and let B = {Bd(x, r) : Bd(x, r) ⊂ Ω, r ≤ 2δ}, which is a covering of Ω. We
have assumed X is locally compact and separable and m is doubling in Bd(x0, r0) by (4.4). So, by
[Sim83, Remark 4.5(1)], Bd(x0, r0) has the symmetric Vitali property with respect to m, in other
words we may find a countable pairwise disjoint subcollection B′ = {Bd(x`, r`)} ⊂ B covering Ω up
to an m-negligible set. Therefore, applying the first inequality in (4.4), we have

m(Ω) =
∞∑
`=1

m(Bd(x`, r`)) ≥ (1− ε)ωn
∞∑
`=1

rn` ≥ (1− ε)Hnδ (Ω). (4.8)

Taking δ → 0 concludes the proof of the lower bound in (4.5) and thus of the lemma. �

In the next lemma, we let (M, g(t))t∈(0,1] be the Ricci flow starting from g, whose existence is
guaranteed by Lemma 2.1. Thanks to (the proof of) Theorem 1.3, we know in particular that
Bg(x, 2) ⊂ Bg(1)(x, 8) for any x ∈ M and so the decomposition of Lemma 2.5 applies to Bg(x, 2).

We use the notation Gk and Ak for the kth good and bad sets in Lemma 2.5, and can always assume
they are intersected with Bg(x, 1).

The idea of Lemma 4.2 below is that, when restricted to the set Gk in Lemma 2.5, the identity
map from (Bg(x, 1), g(0)) to Bg(x, 1), g(1)) is (1 + ε)k bi-Lipchitz. In turn, this implies that the

map ψ in Theorem 1.3 is a (1 + 2ε)k bi-Lipschitz map when restricted to the set Fk = ∪k`=1G`
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by Lemma 2.1. In fact, in order to pass these Lipschitz maps to the limit toward proving the
rectifiability of limit spaces, we need to extend this bi-Lipschitz property to some of the points
outside of Gk. To this end, and using the notation of Lemma 2.5, let

rk(x) =

{
0 if x ∈ Fk
max{t1/2y : y ∈ Ck and x ∈ Bg(ty)(y, 12t

1/2
y )} else.

(4.9)

Lemma 4.2. Fix n ≥ 2 and ε > 0. There exists δ = δ(n, ε) > 0 such that the following holds. Fix
(M, g) satisfying the assumptions of Theorem 1.3 and x0 ∈ M . Fix k ∈ N and let rk be as defined
in (4.9). For any pair of points x1, x2 ∈ Bg(x0, 1) such that dg(0)(x1, x2) ≥ εmax{rk(x1), rk(x2)},
we have

(1− ε)kdg(0)(x1, x2) ≤ dg(1)(x1, x2) ≤ (1 + ε)kdg(0)(x1, x2). (4.10)

Proof. Choose δ = δ(n, ε) > 0 small enough to apply Theorem 1.3 (for any choice of α, p) and
Lemma 2.5. Let d = dg(0)(x1, x2). We prove the case when k = 1; the case k ≥ 1 then follows by
induction as in the proof of Lemma 2.5 (see [LNNb, Theorem 5.1]). First, we apply the distance
distortion estimates (3.15) at scale d2 with ε/2 in place of ε (by further decreasing δ) to see that

(1− ε/2)d ≤ dg(d2)(x1, x2) ≤ (1 + ε/2)d. (4.11)

Now, if rk(x1) = rk(x2) = 0, let ȳ = x1. Otherwise, suppose without loss of generality that

r̄ := rk(x1) ≥ rk(x2) and let ȳ ∈ Ck be such that rk(x1) = t
1/2
ȳ . We claim that in either case,

x1, x2 ∈ Bg(d2)(ȳ, 15d). (4.12)

Once (4.12) is shown, then [LNNb, Proposition 5.6(2)] ensures that

(1− ε/2)dg(d2)(x1, x2) ≤ dg(1)(x1, x2) ≤ (1 + ε/2)dg(d2)(x1, x2); (4.13)

this estimate essentially comes from the way the decomposition is defined and parabolic estimates
for the Ricci flow, and for the case k > 1 the multiplicative factors 1± ε/2 become (1± ε/2)k. Once
this is shown, together (4.11) and (4.13) establish (4.10).

So, it remains to show the containment (4.12). In the case when ȳ = x1 this is immediate
for x1 and follows from (4.13) for x2 (with 1 + ε/2 in place of 15). We focus on the second case
where x1 ∈ Bg(r̄2)(ȳ, 12r̄). In this case, we see as a direct consequence of (2.8) and Lemma 2.4 that
x1 ∈ Bg(d2)(ȳ, (1 + 2ε)12d). So, the containment (4.12) holds for x1 in this case. For x2, we have
from (4.11) that

dg(d2)(x2, ȳ) ≤ dg(d2)(x1, ȳ) + dg(d2)(x1, x2)

≤ (1 + 2ε)12d+ (1 + ε/2)d ≤ 15d.

This completes the proof. �

Remark 4.3. Note also that if we let ψ be the map from Theorem 1.3, then Lemma 4.2 and
Lemma 2.1 together imply that

(1− ε)k+1dg(x1, x2) ≤ |ψ(x1)− ψ(x2)| ≤ (1 + ε)k+1dg(x1, x2) (4.14)

for any pair of points as in Lemma 4.2.

4.3. Mutual absolute continuity and rectifiability. We now complete the proof of Theorem 1.4
by showing properties (3) and (4) for limit spaces.

Proof of Theorem 1.4, continued. We continue with the same notation used in the first part of the
proof of Theorem 1.4 above. The limit pointed metric measure space (X,m, x∞, d) is proper (e.g.
by [HKST15, Theorem 11.4.7]), thus in particular locally compact and separable. Moreover, by
[HKST15, Corollary 3.3.47], the limit measure m is a Radon measure. So, thanks to (1.8), we are in
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a position to apply Lemma 4.1 with ε′ = δ to any unit ball B∞ in (X, d, x∞,m). Lemma 4.1 shows
that m and Hn are mutually absolutely continuous (in every ball unit B∞ and thus globally), with
m = fHn satisfying (1− ε) ≤ f ≤ (1 + δ). This proves (3).

Next, we show that X is m-rectifiable and Hn-rectifiable. As rectifiability is a local property,
it suffices to show that B∞ is m- and Hn-rectifiable. For i fixed, let Bi = ∪∞k=1Gki ∪ Ai be the

decomposition given by Lemma 2.5 applied to Bi ⊂ Bgi(1)(x, 8) ⊂ Mi, and let Fki :=
⋃k
`=1 G`i . By

Lemma 2.5, for fixed k, we have

Bi \ Fki ⊂
∞⋃
a=1

Bgi(ya,i, 15t
1/2
a,i ),

∞∑
a=1

t
n/2
a,i ≤ ε

k. (4.15)

Note that on the right-hand side of the inclusion, we have replaced balls with respect to gi(t
1/2
ai ) in

Lemma 2.5(4) by balls of slightly larger radii with respect to gi = gi(0) using (2.9). For each fixed

k, after passing to a diagonal subsequence, we have yi,a → ya ∈ B∞ and ta,i → ta ∈ [0, ε2k/n] for
each a ∈ N. (Here the convergence of points is meant with respect to the metric on X q (qMi) in
which the Hausdorff convergence of the spaces occurs.) Define the set Ck = {ya ∈ B∞ : ta > 0},
and define

Fk = B∞ \
⋃

ya∈Ck
Bd(xa, t

1/2
a ). (4.16)

Since Fk is a Borel set, it is m-measurable and Hn-measurable. Observe that
∑

a∈Ck t
n/2
a ≤ εk, and

thus applying (1.8), we find that

m(B∞ \ Fk) ≤ (1 + δ)ωnε
k.

Thanks to property (3) of the theorem, we also get Hn(B∞ \ Fk) ≤ (1 + δ)2ωnε
k. So, in particular

Hn(X \ ∪kFk) = m(X \ ∪kFk) = 0. (4.17)

We claim that ψ|Fk is a (1 + ε)k bi-Lipschitz map onto its image. In view of (4.17) and the mea-
surability of the Fk, this will show that B∞ is m-rectifiable and Hn-rectifiable, thereby completing
the proof. To this end, for any x, y ∈ Fk, we may find sequences xi, yi ∈ Mi such that xi → x
and yi → y and with di := dgi(xi, yi) → d := d(x, y). From the definition of Fk, we see that for i

sufficiently large, either xi ∈ Fki , or else xi ∈ Bgi(ya,i, t
1/2
a,i ) with ta,i → 0 as i→∞. The same holds

for yi. In either case, dgi(xi, yi) ≥ εmin{rk(xi), rk(yi)} for i sufficiently large, where rk is defined in
(4.9) above. The claim then follows from Lemma 4.2, Remark 4.3, and the Arzelà-Ascoli theorem.
This completes the proof. �
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