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Abstract. The classical Sobolev and Escobar inequalities are embedded into the same one-
parameter family of sharp trace-Sobolev inequalities on half-spaces. Equality cases are charac-
terized for each inequality in this family by tweaking a well-known mass transportation argument
and lead to a new comparison theorem for trace Sobolev inequalities. The case p = 2 corre-
sponds to a family of variational problems on conformally flat metrics which was previously
settled by Carlen and Loss with their method of competing symmetries. In this case minimizers
interpolate between conformally flat spherical and hyperbolic geometries, passing through the
Euclidean geometry defined by the fundamental solution of the Laplacian.

1. Introduction

1.1. A variational problem interpolating the Sobolev and Escobar inequalities. The
goal of this paper is to illustrate a strong link between the Sobolev inequality on Rn

∥∇u∥Lp(Rn) ≥ S ∥u∥Lp⋆ (Rn) p⋆ =
np

n− p
, (1.1)

and the Escobar inequality on the half-space H = {x1 > 0}

∥∇u∥Lp(H) ≥ E ∥u∥
Lp# (∂H)

p# =
(n− 1)p

n− p
, (1.2)

where n ≥ 2, p ∈ [1, n), and S and E denote the optimal constants. These classical sharp
inequalities both arise as particular cases of the variational problem

Φ(T ) = Φ(p)(T ) = inf
{
∥∇u∥Lp(H) : ∥u∥Lp⋆ (H) = 1 , ∥u∥

Lp# (∂H)
= T

}
T ≥ 0 , (1.3)

with T = 0 in the case of (1.1), and with T = TE for a suitable TE > 0 in the case of (1.2). Our
main result (consisting of Theorems 1.1 and 1.2 below) characterizes the minimizers of Φ(T ) for
every T > 0 and allows one to describe the behavior of Φ(T ) for every T > 0.

The cases p = 2 and p = 1 have interpretations in conformal geometry and in capillarity
theory respectively. In particular, when p = 2, (1.3) amounts to minimizing a total curvature
functional among conformally flat metrics on H – see (1.26) below. An interesting feature of this
problem is that the corresponding minimizing geometries change their character from spherical
(for T ∈ (0, TE)) to hyperbolic (for T > TE).

The characterization of minimizers in (1.3) when p = 2 is due to Carlen and Loss. In [CL94]
they deduce this result by an elegant application of their method of competing symmetries.
The competing symmetries in play are: (1) the operation of spherical decreasing rearrangement,
and (2) the composition of a pull-back by inverse stereographic projection from Rn to the n-
dimensional sphere Sn, a rotation on Sn, and a final push-forward by stereographic projection.
The use of conformal invariance seems to pose a non-trivial obstacle to the applicability of this
approach when p ̸= 2. From this point of view, our use of mass transportation for extending
the Carlen–Loss result to the full range p ∈ (1, n) seems appropriate.

Let us start by setting our terminology and framework, focusing on the case p ∈ (1, n). We
work with locally summable functions u ∈ L1

loc(Rn) that are vanishing at infinity, that is, |{|u| >
t}| < ∞ for every t > 0. If Du denotes the distributional gradient of u, then the minimization
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in (1.3) is over functions with Du = ∇u dx for ∇u ∈ Lp(H;Rn). For every such function, the
Sobolev inequality (1.1) implies that u ∈ Lp⋆(Rn). The constant S = S(n, p) > 0 appearing in
(1.1) is, by definition, the largest possible constant. It can be computed by exploiting the fact,
proven in [Aub76, Tal76], that equality holds in (1.1) if and only if there exist λ > 0 and z ∈ Rn

such that

u(x) = λ(n−p)/p US(λ(x− z)) ∀x ∈ Rn , (1.4)

where

US(x) = (1 + |x|p′)(p−n)/p x ∈ Rn . (1.5)

(Here, as usual, p′ = p/(p−1).) The Escobar inequality has a similar meaning, with H replacing
Rn. Again, E = E(n, p) > 0 denotes the largest admissible constant in (1.2). Equality holds in
(1.2) if and only if there exist λ > 0 and z ∈ Rn with z1 < 0 such that

u(x) = λ(n−p)/p UE(λ(x− z)) ∀x ∈ H , (1.6)

where UE is the fundamental solution of the p-Laplacian on Rn:

UE(x) = |x|(p−n)/(p−1) , x ∈ Rn \ {0} . (1.7)

Inequality (1.6) for p = 2 was proved in its sharp form, and roughly at the same time, by
Beckner in unpublished work (later appearing in expanded form as [Bec93]) and by Escobar in
[Esc88]. In [Naz06], by means of mass transportation techniques, the sharp inequality is proven
by Nazaret for every p ∈ (1, n). The characterization result is still missing in [Naz06], but this
only depends on some minor technical points that are filled here. Our terminology of calling
(1.6) the Escobar inequality is thus partially informative of the actual history of the problem,
and is just motivated by the facts that Escobar conjectured in [Esc88] the optimal functions for
every p ∈ (1, n) and that in [Esc92] he developed the geometric applications of (1.6).

Referring to the monograph [Maz11] for a broader picture on Sobolev-type inequalities, we
now pass to the starting point of our analysis, which is the realization that (1.1) and (1.2) can
be “embedded” in the family of variational problems (1.3). Indeed:

(a) The Sobolev inequality is essentially equivalent to the variational problem Φ(T ) with the
choice T = 0. Indeed, if u = 0 on ∂H, then by applying (1.1) to the zero extension of u outside
of H, we find that Φ(0) ≥ S. Next, by considering an appropriate sequence of scalings as in
(1.4) multiplied by smooth cutoff functions, we actually find that

Φ(0) = S .

The characterization of equality cases in (1.1) implies that Φ(0) does not admit minimizers. How-
ever, a concentration-compactness argument shows that every minimizing sequence is asymp-
totically close to a sequence of optimal functions in the Sobolev inequality that is either con-
centrating at an interior point of H or whose peaks have distance from ∂H diverging to infinity.
From this point of view, we consider the variational problem

S = inf
{
∥∇u∥Lp(Rn) : ∥u∥Lp⋆ (Rn) = 1

}
to be essentially equivalent to Φ(0).

(b) The Escobar inequality boils down to the variational problem Φ(T ) corresponding to T = TE
for the constant

TE = TE(n, p) =
∥UE∥Lp# ({x1=1})

∥UE∥Lp⋆ ({x1>1})
. (1.8)

Indeed, a simple scaling argument shows that, for every function u(x) as in (1.6), one has

∥u∥
Lp# (∂H)

∥u∥Lp⋆ (H)

= TE
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independently of the choices of λ and, more surprisingly, of z. Thus, by the definition of TE and
the characterization of equality cases in (1.2), we have

∥u∥
Lp# (∂H)

= TE for every u optimal function in (1.2) with ∥u∥Lp⋆ (H) = 1 .

As a consequence,

Φ(TE) = E ,

and (the variational problem defined by) the Escobar inequality is equivalent to (1.3) with
T = TE .

1.2. What is known about Φ(T ). As already noticed in Section 1.1, a full characterization
of Φ(T ) in the important case p = 2 was already given by Carlen and Loss in [CL94]. The
situation is quite different when p ̸= 2. We now collect the information that, to the best of our
knowledge, is all that is presently known about Φ(T ). As we have just seen, Φ(0) = S by the
Sobolev inequality, and we have a global linear lower bound

Φ(T ) ≥ E T ∀T ≥ 0 , (1.9)

with equality if T = TE , thanks to the Escobar inequality. Another piece of information comes
from the validity of the gradient domain inequality (see [MV08, Section 7.2] for the terminology
adopted here) on H:

∥∇u∥Lp(H) ≥ 2−1/n S ∥u∥Lp⋆ (H) , (1.10)

with equality if and only if there exists λ > 0 such that

u(x) = λ(n−p)/p US(λx) ∀x ∈ Rn .

The validity of (1.10), with equality cases, follows immediately by applying the Sobolev in-
equality (1.1) to the extension by reflection of u to Rn. The gradient domain inequality implies
that

Φ(T ) ≥ 2−1/n S , ∀T ≥ 0 (1.11)

with equality if and only if T = T0 where

T0 =
∥US∥Lp# (∂H)

∥US∥Lp⋆ (H)

.

As we will prove later on (see Proposition 3.2(i)),

T0 < TE ,

while clearly (by applying (1.10) to an optimal function for (1.2))

Φ(T0) = 2−1/n S < E = Φ(TE) . (1.12)

Next, we notice that, thanks to the divergence theorem and Hölder’s inequality, for every non-
negative u that is admissible in Φ(T ), we have∫

∂H
up

#
=

∫
∂H

up
#
(−e1) · νH = p#

∫
H
up

#−1(−∇u) · e1 < p#∥∇u∥Lp(H) ∥u∥
p⋆/p′

Lp⋆ (H)

where Hölder’s inequality must be strict (otherwise, u would just depend on x1, and thus could
not satisfy u ∈ Lp⋆(H)). As a consequence, we find that, with strict inequality,

Φ(T ) >
T p#

p#
∀T > 0 . (1.13)

Finally, given any open connected Lipschitz set Ω ⊂ Rn, let us set

ΦΩ(T ) = inf
{
∥∇u∥Lp(Ω) : ∥u∥Lp⋆ (Ω) = 1 , ∥u∥

Lp# (∂Ω)
= T

}
T ≥ 0 ,
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(so that ΦH = Φ by (1.3)), and define

ISO (Ω) =
P (Ω)

|Ω|(n−1)/n
,

where P (Ω) and |Ω| denote the perimeter (i.e., the (n−1)-dimensional measure of the boundary)
and volume of Ω. With this notation, the Euclidean isoperimetric inequality takes the form

ISO (Ω) ≥ ISO (B1) , (1.14)

with equality if and only if Ω = BR(x) = {y ∈ Rn : |y − x| < R} for some x ∈ Rn and R > 0.
The following trace-Sobolev comparison theorem was proved in [MV05]:

ΦΩ(T ) ≥ ΦB1(T ) , ∀T ∈
[
0, ISO (B1)

1/p#
]
, (1.15)

with the additional information that: (i) if 0 < T ≤ ISO (B1)
1/p# , ΦΩ(T ) = ΦB1(T ), and

ΦΩ(T ) admits a minimizer, then Ω is a ball; (ii) ΦB1 is strictly concave (and decreasing) on

[0, ISO (B1)
1/p# ]. Notice that (1.15) cannot hold on a larger interval of T s: indeed, ΦB1(T ) = 0

forces T = ISO (B1)
1/p# , and so if Ω is not a ball and thus ISO (Ω) > ISO (B1), then

ΦB1(ISO (Ω)1/p
#
) > 0 = ΦΩ(ISO (Ω)1/p

#
) .

This said, we can apply (1.15) with Ω = H to obtain an additional lower bound on Φ on the

interval [0, ISO (B1)
1/p# ].

The constant lower bound given in (1.11) is actually stronger than the other three lower
bounds for some values of T . Indeed, there exists δ > 0 such that

Φ(T0) > max
{
1
[0,ISO (B1)1/p

#
]
(T )ΦB1(T ) , ET ,

T p#

p#

}
if |T − T0| < δ . (1.16)

By continuity, it suffices to check this assertion at T = T0, and since (1.13) is strict for every
T > 0, we only need to worry about (1.9) and (1.15). The fact that Φ(T0) > ΦB1(T0) if

T0 ≤ ISO (B1)
1/p# follows by property (i) after (1.15) and from the existence of a minimizer

for Φ(T0) shown in Theorem 1.1 below. At the same time, Φ(T0) > E T0, for otherwise, the
explicit minimizer in Φ(T0), that is the “half-Sobolev optimizer” US,0 (see (1.17) below), would
be optimal in (1.2), contradicting the characterization of equality cases for (1.2) (which is already
implicitly contained in [Naz06], and is rigorously established in here). This proves (1.16). We
thus find the qualitative picture of the known lower bounds on Φ(T ) depicted in Figure 1.

1.3. Main results. Our main result consists of characterizing minimizers in Φ(T ) for every
T > 0, and then using this knowledge to give a qualitative description of the behavior of Φ(T ).
The characterization result involves the following three families of functions:

Sobolev family: Let US be defined as in (1.5) and set, for every t ∈ R,

US,t(x) =
US(x− t e1)

∥US(id− t e1)∥Lp⋆ (H)

x ∈ H , (1.17)

and
TS(t) = ∥US,t∥Lp# (∂H)

, GS(t) = ∥∇US,t∥Lp(H) . (1.18)

Thus, US,t corresponds to translating the optimal function US in the Sobolev inequality so that
its maximum point lies at signed distance t from ∂H, then multiplying the translated function
by a constant factor to normalize the Lp⋆-norm in H to be 1.

Escobar family: Letting UE be as in (1.7), we set for every t < 0

UE,t(x) =
UE(x− t e1)

∥UE(id− t e1)∥Lp⋆ (H)

x ∈ H . (1.19)
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TTEISO (B1)
1/p#

S

2−1/n S

T0

G = ΦB1(T )

G = T p#

/p#

G

G = ET

G = 2−1/n S

T = 0

Figure 1. A qualitative picture of the known lower bounds on Φ(T ). By combining

the Sobolev and Escobar inequalities with the gradient domain inequality (1.10), the

divergence theorem lower bound (1.13), and the trace-Sobolev comparison theorem (1.15)

we conclude that Φ(T ) lies above the gray region. The picture gives sharp information

only for three values of T , namely 0, T0, and TE , which are depicted by black squares.

We also mention that numerical computations indicate the validity of T0 < ISO (B1)
1/p#

for every n and p. We shall not give a formal proof of this fact, as it plays no role in our

analysis.

As noticed before, a simple computation (factoring out |t| from |x − t e1| and then changing
variables y = −x/t) shows that the trace and gradient norms of the UE,t are independent of
t < 0, and we set

∥UE,t∥Lp# (∂H)
= TE , ∥∇UE,t∥Lp(H) = GE (1.20)

for these constant values. Each function UE,t is thus obtained by centering the fundamental

solution of the p-Laplacian outside of H, and then by normalizing its Lp⋆-norm in H.

Beyond-Escobar family: We consider the function

UBE(x) = (|x|p′ − 1)(p−n)/p |x| > 1 , (1.21)

and define, for every t < −1,

UBE,t(x) =
UBE(x− t e1)

∥UBE(id− t e1)∥Lp⋆ (H)

x ∈ H .

Correspondingly, for every t < −1, we set

TBE(t) = ∥UBE,t∥Lp# (∂H)
, GBE(t) = ∥∇UBE,t∥Lp(H) . (1.22)

As the name of this family of functions suggests, we later prove that TBE(t) > TE for every
t < −1, so that {UBE(t)}t<−1 enters the description of Φ(T ) for T > TE . Notice that (1.21)
defines a function on the complement of the unit ball. The function UBE,t is thus obtained by
centering this unit ball outside of H, precisely at distance |t| from ∂H, and the by normalizing
its tail to have unit Lp⋆-norm in H.

Theorem 1.1 (Characterization of minimizers of Φ(T )). If n ≥ 2 and p ∈ (1, n), then for
every T > 0, there exists a minimizer in Φ(T ) that is unique up to dilations and translations
orthogonal to e1. More precisely:



6 MAGGI AND NEUMAYER

G = Φ(T )

TE T

G

ISO (B1)
1/p#

G = ET

2−1/n S

S

G = T p#

/p#

T0

G = 2−1/n S

T = 0

Figure 2. A qualitative picture of Theorem 1.2, which improves on the situation de-

picted in Figure 1. First, since in Theorem 1.1 we have proved that Φ(T ) always admits

minimizers, we are sure that Φ(T ) > ΦB1(T ) for every T ∈ [0, ISO (B1)
1/p#

], that is to

say, the comparison theorem (1.15) is never optimal (but at T = 0). Notice also that

the divergence theorem lower bound (1.13) turns out to be sharp, and is asymptotically

saturated by the functions UBE,t as t→ 1−.

(i) the function TS(t) is strictly decreasing on R with range (0, TE) and with TS(0) = T0 <
TE; in particular, for every T ∈ (0, TE), there exists a unique t ∈ R such that

T = TS(t) Φ(T ) = GS(t) (1.23)

and US,t uniquely minimizes Φ(T ) up to dilations and translations orthogonal to e1;
(ii) if T = TE, then, up to dilations and translations orthogonal to e1, {UE,t : t < 0} is the

unique family of minimizers of Φ(TE);
(iii) the function TBE(t) is strictly increasing on (−∞,−1) with range (TE ,+∞); in partic-

ular, for every T > TE there exists a unique t < −1 such that

T = TBE(t) Φ(T ) = GBE(t) (1.24)

and UBE,t uniquely minimizes Φ(T ) up to dilations and translations orthogonal to e1.

Theorem 1.1 provides an implicit description of Φ on [0,∞), and extends the Carlen–Loss
theorem [CL94] from the case p = 2 to the full range p ∈ (1, n). Notice that an implicit

description of ΦB1 on the interval [0, ISO (B1)
1/p# ] was obtained in [MV05], and was at the

basis of the further results obtained therein. (No characterization of ΦB1 for T > ISO (B1)
1/p#

seems to be known.) Starting from the characterization of Φ obtained in Theorem 1.1, we can
obtain a quite complete picture of its properties, which is stated in the next result and illustrated
in Figure 2.

Theorem 1.2 (Properties of Φ(T )). If n ≥ 2 and p ∈ (1, n), then Φ(T ) is differentiable on

(0,∞), it is strictly decreasing on (0, T0) with Φ(0) = S and Φ(T0) = 2−1/n S and strictly
increasing on (T0,∞) with

Φ(T ) =
T p#

p#
+ o(1) as T → ∞ . (1.25)

Moreover, Φ(T ) is strictly convex on (T0,+∞), and there exists T∗ ∈ (0, T0) such that Φ(T ) is
strictly concave on (0, T∗).

We see from (1.25) that the lower bound (1.13) is saturated asymptotically as T → ∞. A
simple but interesting corollary of the characterization result obtained in Theorem 1.1 is the
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following comparison theorem, which is somehow complementary to (1.15), the main result in
[MV05].

Corollary 1.3 (Half-spaces have the best Sobolev inequalities). If Ω is a non-empty open set
with Lipschitz boundary on Rn, then

ΦΩ(T ) ≤ Φ(T ) ∀T ≥ 0 .

As it may be expected, the proof of Theorem 1.1 is based on a mass transportation argument
in the spirit of [CENV04]. As we give more details on this point at the beginning of Section 2,
we now comment on the meaning of these theorems in the geometrically relevant cases p = 2
and p = 1.

1.4. The special case p = 2. In this case, which implicitly requires n ≥ 3, (1.3) can be
reformulated as a family of minimization problems on conformally flat metrics on H,

Ψ(P ) = inf
{∫

H
Ru dvol u+2 (n−1)

∫
∂H

hu dσu : vol u(H) = 1 , Pu(H) = P
}

P ≥ 0 , (1.26)

which is related to the Yamabe problem on manifolds with boundary studied in the classical pa-
pers [Esc88, Esc92]. Here, we view H as a conformally flat Riemannian manifold with boundary,

endowed with the metric u4/(n−2) dx. The volume and perimeter of a set Ω ⊂ H with respect
to this metric are computed as

vol u(Ω) =

∫
Ω
u2

⋆
dx, Pu(Ω) =

∫
∂Ω

u2
♯
dHn−1 , (1.27)

while Ru(x) and hu(x) stand, respectively, for the scalar curvature of (H,u
4/(n−2) dx) at x ∈ H,

and the mean curvature of ∂H in (H,u4/(n−2) dx) at x ∈ ∂H computed with respect to the outer
unit normal νH to H. Explicitly,

Ru = −4(n− 1)

n− 2

∆u

u(n+2)/(n−2)
, hu = − 2

n− 2

1

un/(n−2)

∂u

∂x1
. (1.28)

An integration by parts thus gives∫
H
|∇u|2 = −

∫
H
u∆u−

∫
∂H

u
∂u

∂x1

=
n− 2

4(n− 1)

∫
H
Ru dvol u +

n− 2

2

∫
∂H

hu dσu .

In this way, we see the equivalence of the problems (1.3) when p = 2 and (1.26) through the
identities

Φ(2)(T ) =
( n− 2

4(n− 1)

)1/2
Ψ(T 2♯)1/2 Ψ(P ) =

4(n− 1)

n− 2
Φ(2)(P 1/2♯)2 ,

A standard argument shows that if u is a positive minimizer for Φ(T ) (with a generic p ∈ (1, n)),
then there exist λ, σ ∈ R such that{

−∆pu = λup
⋆−1 in H

−|∇u|p−2∂x1u = σup
#−1 on ∂H .

This basic fact, applied with p = 2, implies that every minimizer in the variational problem
(1.26) is a conformally flat metric on H with constant scalar curvature and with boundary of
constant mean curvature. By [CL94, Theorem 3.1], or with an alternative proof, by Theorem 1.1
with p = 2, every minimizer actually has constant sectional curvature. Indeed, as a by-product
of the characterization of minimizers of {Φ(T )}T≥0, we deduce that, as P increases from 0 to

PE = T 2♯

E , minimizing metrics in (1.26) correspond to spherical caps of decreasing radii rescaled
to unit volume. Their sectional curvature will be constant and positive along the way, while
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the constant mean curvature of the boundaries will initially be negative and then change sign

in correspondence to hemispheres (P = P0 = T 2♯
0 ). Then, as P increases from PE to +∞,

minimizing metrics in (1.26) correspond to suitable sections of the hyperbolic space, all with
constant negative sectional curvature and constant positive mean curvature of the boundary.
Thus, we have a transition from spherical to hyperbolic geometry along minimizing metrics in
(1.26). These results are summarized in the following statement:

Theorem 1.4 (Theorem 3.1 in [CL94] or Theorem 1.1 with p = 2). For each P > 0, a minimiz-
ing conformal metric gP exists in (1.26) and is given, uniquely up to dilations and translations
orthogonal to e1, by

U
4/(n−2)
S,t dx for some t ∈ R if P ∈ (0, PE) ,

U
4/(n−2)
E,t dx for any t < 0 if P = PE ,

U
4/(n−2)
BE,t dx for some t < −1 if P ∈ (PE ,∞) .

For P ∈ (0, PE), (H, gP ) is isometric to a spherical cap (Σ, g) with the standard metric
induced by the embedding Sn ↪→ Rn+1 whose radius is determined by P ; consequently, it has
constant positive sectional curvature. The mean curvature of ∂H is constant and negative for

0 < P < P0 = T 2♯
0 and is constant and positive for P0 < P < PE.

For P = PE, (H, gP ) has zero sectional curvature and constant positive mean curvature of
∂H.

For P ∈ (PE ,∞), (H, gP ) has constant negative sectional curvature and is therefore a model
for hyperbolic space. The mean curvature of ∂H is constant and positive.

1.5. The special case p = 1. In this case, the minimization in (1.3) takes place in the class of
those u ∈ L1

loc(H), vanishing at infinity, and whose distributional gradient Du is a measure on
H with finite total variation, |Du|(H) <∞. We thus consider the problems

Φ(T ) = inf
{
|Du|(H) : ∥u∥Ln/(n−1)(H) = 1 , ∥u∥L1(∂H) = T

}
T ≥ 0 . (1.29)

In the restricted class of characteristic functions u = 1X for X ⊂ H, this is the relative isoperi-
metric problem in H with an additional constraint (aside from the unit volume constraint) on
the contact region between the boundary of X and the boundary of H. In the notation of
distributional perimeters, this restricted problem takes the form

Φsets(T ) = inf
{
P (X;H) : X ⊂ H , |X| = 1 , P (X; ∂H) = T

}
T ≥ 0 , (1.30)

where P (X;A) = Hn−1(A ∩ ∂X) whenever X is an open set with Lipschitz boundary. The
unique minimizers in (1.30) are obtained by intersecting H with balls (of suitable radius and
centered at suitable distance from ∂H); see, e.g., [Mag12, Theorem 19.15], which also describes
the relevance of (1.30) in capillarity theory. In the original problem (1.29), one obtains scaled
versions of the characteristic functions of these sets as minimizers; precisely, u is a minimizer in
(1.29) if and only if u(x) = λn−1 1X(λx) for some λ > 0 and X a minimizer in (1.30). When
T = 0, (1.30) is simply the Euclidean isoperimetric problem, and (1.29) is the Sobolev inequality
on functions of bounded variation. Notice that the Escobar inequality, in the case p = 1, takes
the simple form

|Du|(H) ≥ ∥u∥L1(∂H) (1.31)

or, in more geometric terms, that is, for u = 1X with X ⊂ H,

P (X;H) ≥ P (X; ∂H) .
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Along the lines of (1.13), this follows by simply applying the divergence theorem on X to the
constant vector field T (x) = e1 to get

0 =

∫
X
div (e1) =

∫
H∩∂X

νX · e1 +
∫
∂H∩∂X

(−e1) · e1 < P (X;H)− P (X; ∂H)

where the inequality is strict as soon as |X| > 0. The proof of (1.31) is analogous, and in
particular, there is no equality case in (1.31) (i.e., a non-zero function realizing equality). In the
case p = 1, Theorems 1.1 and Theorem 1.2 take the following form.

Theorem 1.5. For every n ≥ 2 and T > 0 there exists a minimizer in (1.29), which is given,
uniquely up to dilations and translations orthogonal to e1, by

US,t(x) =
1B1(x− t e1)

∥1B1(· − t e1)∥Ln′ (H)

x ∈ H

for some t ∈ (−1, 1). The function Φ(T ) defined by (1.29) is a smooth function of T > 0 given
by the parametric curve

Φ(TS(t)) = GS(t) − 1 < t < −1 ,

where TS(t) = ∥US,t∥L1(∂H) and GS(t) = |DUS,t|(H). If we set T0 = TS(0), then Φ(T ) is
strictly decreasing on (0, T0) and strictly increasing on (T0,∞), with Φ(0) = ISO (B1) and

Φ(T0) = 2−1/nISO (B1). Moreover, Φ is strictly convex on (T0,∞), there exists T∗ ∈ (0, T0)
such that Φ(T ) is strictly concave on (0, T∗), and Φ(T ) = T + o(1) as T → ∞.

We note that in the case p = 1, we have a single minimizing family, corresponding to the
Sobolev family of the case p ∈ (1, n), but no Escobar or beyond-Escobar families. This is a
reflection of the fact that, as it can be easily proved,

lim
p→1+

TE(n, p) = ∞ .

This fact indicates that no analogues of the Escobar or beyond-Escobar families exist for p = 1.
In the same vein, one notices that the Φ curve asymptotically has the same slope (equal to 1)
as the (limit position as p→ 1+ of the) Escobar line.

1.6. Organization of the paper. In Section 2, we use a mass transportation argument to
prove a family of inequalities which will serve as a key tool for proving the main results. In
Section 3, we prove Theorems 1.1, 1.2, and 1.5. Finally, in Appendix A, we address some
technical points related to the mass transportation argument.

Acknowledgments. We thank Eric Carlen and Michael Loss for their advice concerning [CL94],
and an anonymous referee for some valuable suggestions. RN supported by the NSF Graduate
Research Fellowship under Grant DGE-1110007. FM supported by the NSF Grants DMS-
1265910 and DMS-1361122.

2. Mass transportation argument

The starting point of our analysis is the mass transportation proof of the Sobolev inequal-
ity from [CENV04]. This argument, whose origin can be traced back to [Kno57, MS86], was
exploited in [MV05] to prove a parameterized “mother family” of trace Sobolev inequalities
on arbitrary Lipschitz domains, leading to the sharp comparison theorem stated in (1.15). In
[Naz06], this method of proof is adapted to obtain the Escobar inequality for every p ∈ (1, n). It
is important to mention that, as already shown in [CENV04] (see also [AGK04, MV08, Ngu15]),
this optimal transportation argument can also be applied to a very interesting special family
of Gagliardo–Nirenberg inequalities, having some Faber-Krahn and log-Sobolev inequalities as
limit cases. We also recall that mass transportation arguments work for proving Sobolev-type
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inequalities not only on half-spaces, but also on convex cones; see for example [FI13] in the case
p = 1, and [MV08, Theorem 6] and [Naz10] when p ∈ (1, n).

At the core of this paper is a new iteration of this by-now-classical mass transportation
argument. This iteration lies in between the ones of [MV05] and [Naz06]. In Theorem 2.1 we
implement the same trick introduced in [Naz06], namely subtracting a unit vector from the
Brenier map, but with the seemingly harmless addition of an intensity parameter t. (To be
precise, the argument in [Naz06] corresponds to the choice t = −1 in the proof of Theorem 2.1.)
This simple expedient leads to obtain a new parameterized “mother family” of trace-Sobolev
inequalities on the half-space, whose equality cases (see Theorem 2.3 below) are given by the
functions US,t, UE,t and UBE,t introduced in (1.17), (1.19) and (1.21). This means that each
inequality in the mother family provides a sharp trace-Sobolev bound, which thus agrees with
Φ(T ) for a specific value of T depending on t. By adopting the same point of view of [MV05],
where the Φ-function of the ball was computed for a special range of T , in Section 3 we exploit
this implicit description of Φ(T ) in order to prove Theorem 1.1.

Let us now recall some facts from the theory of optimal transportation. Given a (Borel
regular) probability measure µ on Rn and a Borel measurable map T : Rn → Rn, the push-
forward of µ through T is the probability measure defined by

T#µ(A) = µ(T−1(A)) ∀A ⊂ Rn.

As a consequence of this definition, for every Borel measurable function ξ : Rn → [0,∞] we have∫
Rn

ξ dT#µ =

∫
Rn

ξ ◦ T dµ . (2.1)

If F dx and Gdx are absolutely continuous probability measures on Rn, then the Brenier-
McCann theorem (see [Bre91, McC97] or [Vil03, Cor. 2.30]) ensures the existence of a lower
semicontinuous convex function φ : Rn → R ∪ {+∞} such that

(∇φ)#F dx = Gdx . (2.2)

By convexity, φ is differentiable a.e. on the open convex set Ω defined as the interior of {φ <∞},
its gradient satisfies

∇φ ∈ (BV ∩ L∞)loc(Ω;Rn) ,

and F dx is concentrated on Ω with

spt(Gdx) = ∇φ(spt(F dx)) , (2.3)

thanks to (2.2). The map T = ∇φ is called the Brenier map between F dx and Gdx, and, as
shown in [McC97] (cf. [Vil03, Theorem 4.8]), it satisfies the Monge-Ampere equation

F (x) = G(∇φ(x)) det∇2φ(x) a.e. on spt(F dx) . (2.4)

Notice that the distributional gradient DT of T is an n × n-symmetric tensor valued Radon
measure on Ω. In (2.4) we have set ∇2φ = ∇T where DT = ∇T dx+DsT is the decomposition
of DT with respect to the Lebesgue measure on Ω. Notice that ∇T dx ≤ DT on Ω, and thus,
setting div T = tr(∇T ) and denoting by Div T the distributional divergence of T , we have

div T dx ≤ Div T as measures on Ω .

Since ∇T (x) is positive semidefinite, by the arithmetic-geometric mean inequality

(det∇2φ(x))1/n = (det∇T (x))1/n ≤ div T (x)

n
for a.e. x ∈ Ω ,

we finally conclude that

(det∇2φ)1/n dx ≤ Div T

n
as measures on Ω . (2.5)
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Theorem 2.1. If n ≥ 2, p ∈ [1, n), and f and g are non-negative functions in L1
loc(H), vanishing

at infinity, with 
∫
H |∇f |p <∞ and

∫
H |x|p′gp⋆ <∞ if p > 1

|Df |(H) <∞ and spt g ⊂⊂ H if p = 1

∥f∥Lp⋆ (H) = ∥g∥Lp⋆ (H) = 1

(2.6)

then for every t ∈ R, we have

n

∫
H
gp

#
dx ≤ p#∥∇f∥Lp(H)Y (t, g) + t

∫
∂H

fp
#
dHn−1 (2.7)

where we let

Y (t, g) =


(∫

H gp
⋆ |x− t e1|p

′
dx

)1/p′

if p > 1 ,

sup{|x− t e1| : x ∈ spt(g)} if p = 1 ,
(2.8)

and where ∥∇f∥Lp(H) is replaced by |Df |(H) when p = 1.

Remark 2.2. Let us first recall that the assumption that f is vanishing at infinity means that

|{f > t}| < ∞ for every t > 0. Next we notice that, by (1.2), (2.6) implies f ∈ Lp#(∂H), so
that the multiplication by a possibly negative t on the right-hand side of (2.7) is of no concern.

Finally, we notice that (2.7) implies that g ∈ Lp#(H), but this fact can be more directly deduced
by means of Hölder’s inequality from the assumptions on g stated in (2.6).

Proof. Arguing by approximation, it suffices to prove (2.7) when f ∈ C1
c (H) (that is, f admits an

extension in C1
c (Rn)). Let us set F = 1H fp

⋆
and G = 1H gp

⋆
and consider the Brenier map ∇φ

between the probability measures F dx and Gdx. In this way, T = ∇φ ∈ (BV ∩ L∞)loc(Ω;Rn)
with Ω defined as above and F dx is concentrated on Ω. By (2.2), (2.1) (applied with ξ =

1{G>0}G
−1/n), (2.4) and (2.5) respectively, we have∫

H
gp

#
=

∫
Rn

G1−1/n =

∫
Rn

G(∇φ)−1/nF =

∫
Rn

(det∇2φ)1/nF 1−1/n ≤ 1

n

∫
Rn

F 1−1/n d(div T ) .

(2.9)
By a slight modification of [Naz06], we subtract the divergence-free vector field t e1 from T ,∫

Rn

F 1−1/n d(Div T ) =

∫
H
fp

#
d(DivS) , S = T − t e1 ,

where S ∈ (BV ∩ L∞)loc(Ω;Rn). By the trace theorem for BV functions (see e.g. [EG92,
Theorem 1, p.177]), S has a trace S ∈ L1

loc(Ω ∩ ∂H) such that∫
H
ψ d(DivS) = −

∫
H

∇ψ · S −
∫
∂H

ψ (S · e1) , ∀ψ ∈ C1
c (Ω ∩H) .

We now use the assumption that f ∈ C1
c (H) (together with the fact that F dx is concentrated

on Ω) to apply this identity with ψ = fp
#
. In this way, we find∫

H
fp

#
d(divS) = −p#

∫
H
fp

#−1∇f · S dx−
∫
∂H

fp
#
S · e1dHn−1 .

Since T (spt(F dx)) = spt(Gdx) ⊂ H, by standard properties of the trace operator we have
S(x) · (−e1) ≤ t for Hn−1-a.e. on x ∈ spt(f) ∩ ∂H. Thus, in summary,

n

∫
H
gp

# ≤ −p#
∫
H
fp

#−1∇f · (T − t e1) + t

∫
∂H

fp
#
dHn−1 . (2.10)
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Finally, we bound the first term on the right hand side of (2.10). In the case that p ∈ (1, n), by
using Hölder’s inequality and the transport condition (2.1) we find

−p#
∫
H
fp

#−1∇f · (T − t e1) ≤ p#∥∇f∥Lp(H)

(∫
H
fp

⋆ |T (x)− t e1|p
′
dx

)1/p′

= p#∥∇f∥Lp(H)

(∫
H
gp

⋆ |x− t e1|p
′
dx

)1/p′

. (2.11)

Combining this with (2.10) implies (2.7). In the case p = 1, in place of Hölder’s inequality, we
simply use (2.3) and the fact that p# = 1 to bound the left-hand side of (2.11) by Y (t, g) |Df |(H).

�

In order to analyze the mother family of inequalities of Theorem 2.1 we will need a char-
acterization of the corresponding equality cases, which involves the functions US,t, UE,t and
UBE,t previously introduced in (1.17), (1.19) and (1.21). Following [CENV04], given two non-
negative measurable functions f and g, we call f a dilation-translation image of g if there exist
C > 0, λ ̸= 0, and x0 ∈ Rn such that f(x) = Cg(λ(x− x0)). Since (2.7) is not invariant with re-
spect to translations in the e1 direction, we distinguish that f is a dilation-translation image of g
orthogonal to e1 if f is a dilation-translation image of g with x0 · e1 = 0. If

∫
H fp

⋆
dx =

∫
H gp

⋆
dx

and f is a dilation-translation image of g orthogonal to e1, then C must be equal to λ(n−p)/n, and
the Brenier map pushing forward fp

⋆
dx onto gp

⋆
dx satisfies ∇φ = λ(Id− x0) with x0 · e1 = 0.

With this terminology at hand, we state the required characterization theorem:

Theorem 2.3. Under the same assumptions of Theorem 2.1, suppose that

n

∫
H
gp

#
dx = p#∥∇f∥Lp(H)Y (t, g) + t

∫
∂H

fp
#
dHn−1 ,

∫
∂H

fp
#
> 0 , (2.12)

where |Df |(H) replaces ∥∇f∥Lp(H) when p = 1.

If p ∈ (1, n), then (2.12) holds for t ≥ 0 if and only if f and g are both dilation-translation
images orthogonal to e1 of US,t; and for t < 0 if and only if f and g are both dilation-translation
images orthogonal to e1 of either US,t, UE,t, or UBE,t.

If p = 1, then (2.12) can hold only for t ∈ (−1, 1). For such t, (2.12) holds if and only if f and
g are dilation-translation images orthogonal to e1 of US,t.

Since the proof of Theorem 2.3 is just a technical variant of a similar argument from
[CENV04], we postpone its discussion to the appendix.

3. Study of Φ

By Theorem 2.3, if equality is achieved in the mother inequality (2.7) by a triple (t, f, g)

with
∫
∂H fp

#
> 0, then we either have f = g = US,t when t ≥ 0, or

f = g = US,t or f = g = UE,t or f = g = UBE,t

when t < 0 (with the third possibility only when t < −1). The same scaling argument used
to show that GE(t) = GE and TE(t) = TE for every t < 0 (see (1.20)) serves to check that
Y (t, UE,t) = |t|YE , where we let YE = Y (−1, UE,−1) and Y (t, g) be as defined in (2.8). Therefore,
recalling the notation introduced in (1.20), equality in (2.7) for the Escobar family implies that

n

∫
H
Up#

E,t dx = −tp#GEYE + t T p#

E ∀t < 0 . (3.1)

Similarly, let us define the functions

YS(t) = Y (t, US,t) and YBE(t) = Y (t, UBE,t) .
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Then, recalling the definitions in (1.18) and (1.22), equality in (2.7) for the Sobolev and beyond-
Escobar families implies the identities

n

∫
H
Up#

S,t dx = p#GS(t)YS(t) + t TS(t)
p# ∀t ∈ R ,

n

∫
H
Up#

BE,t dx = p#GBE(t)YBE(t) + t TBE(t)
p# ∀t < −1 .

(3.2)

From (3.1) and (3.2), Theorems 2.1 and 2.3 yield the following corollary.

Corollary 3.1. If h ∈ L1
loc(H) is a non-negative function vanishing at infinity with ∇h ∈

Lp(H;Rn) and ∥h∥Lp⋆ (H) = 1, then,

p#YS(t)GS(t) + t TS(t)
p# ≤ p#YS(t)∥∇h∥Lp(H) + t ∥h∥p

#

Lp# (∂H)
∀t ∈ R , (3.3)

p#YBE(t)GBE(t) + t TBE(t)
p# ≤ p#YBE(t)∥∇h∥Lp(H) + t ∥h∥p

#

Lp# (∂H)
∀t < −1 , (3.4)

p#YEGE − T p#

E ≤ p#YE∥∇h∥Lp(H) − ∥h∥p
#

Lp# (∂H)
. (3.5)

Furthermore, equality in (3.3) (resp. (3.4), (3.5)) is attained if and only if h is a dilation-
translation image orthogonal to e1 of US,t (resp. UBE,t, UE,t). Particularly,

∥h∥
Lp# (∂H)

= TS(t) =⇒ GS(t) ≤ ∥∇h∥Lp(H) ;

∥h∥
Lp# (∂H)

= TBE(t) =⇒ GBE(t) ≤ ∥∇h∥Lp(H) ;

∥h∥
Lp# (∂H)

= TE =⇒ GE ≤ ∥∇h∥Lp(H) ,

and the following identities hold

Φ(TS(t)) = GS(t) ∀t ∈ R , Φ(TBE(t)) = GBE(t) ∀t < 0 , Φ(TE) = GE . (3.6)

Next, we prove some properties of the Sobolev and beyond-Escobar families.

Proposition 3.2. The following properties hold:

(i) TS is strictly decreasing on R with range (0, TE), and TS(0) = T0 < TE;

(ii) GS is strictly increasing on [0,∞) with range [2−1/nS,GE), and is strictly decreasing on

(−∞, 0) with range (2−1/nS,GE);
(iii) TBE(t) is strictly increasing for t < −1 with range (TE ,∞);
(iv) GBE(t) is strictly increasing for t < −1 with range (GE ,∞).

Proof. Step 1: Monotonicity of TS(t) and TBE(t). Fix t1, t2 ∈ R and suppose TS(t1) = TS(t2) =
T. Then, (3.3) implies that

p#YS(t1)GS(t1) + t1T
p# ≤ p#YS(t1)GS(t2) + t1T

p# , thus GS(t1) ≤ GS(t2), and

p#YS(t2)GS(t2) + t2T
p# ≤ p#YS(t2)GS(t1) + t2T

p# , thus GS(t2) ≤ GS(t1).

That is, GS(t1) = GS(t2) = G. Hence, US,t2 attains equality in (3.3) with t = t1. Uniqueness in
(3.3) then implies that t1 = t2. We conclude that TS(t) is injective, and, as TS(t) is continuous,
it is strictly monotone for t ∈ R. The identical argument using (3.4) shows that TBE is strictly
monotone for all t < −1.

Step 2: Piecewise monotonicity of GS(t) and GBE(t). Fix t1, t2 ≥ 0 and suppose that GS(t1) =
GS(t2) = G. Then, (3.3) implies that

p#YS(t1)G+ t1TS(t1)
p# ≤ p#YS(t1)G+ t1TS(t2)

p# , thus TS(t1) ≤ TS(t2), and

p#YS(t2)G+ t2TS(t2)
p# ≤ p#YS(t2)G+ t2TS(t1)

p# , thus TS(t2) ≤ TS(t1).
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Since TS(t) is injective, we conclude that t1 = t2. Thus, GS(t) is strictly monotone for t ≥ 0.
The analogous argument shows that GS(t) is strictly monotone for t < 0 and that GBE(t) is
strictly monotone for t < −1.

Step 3: Limit values of TS(t) and GS(t). As US,t is a renormalized translation of the optimal
function US in (1.1), centered at t e1, it is clear that TS(t) → 0 and GS(t) → S as t → ∞. To
compute the limit as t→ −∞, let us set

γt(x) = (1 + |x− t e1|p
′
)−1 = |t|−p′ (|t|−p′ + |y + e1|p

′
)−1

for t < 0 and y = −x/t. With this notation,

TS(t) =

( ∫
∂H γn−1

t dHn−1
)1/p#( ∫

H γnt dx
)1/p⋆ , GS(t) =

(n− p)
( ∫

H γnt |x− t e1|p
′
dx

)1/p
(p− 1)

( ∫
H γnt dx

)1/p⋆ . (3.7)

Now, suppose t < 0 and let σ = −(n−p)/(p−1). After factoring out −t and changing variables,
we find that ∫

∂H
γn−1
t dHn−1 = |t|−p′(n−1)+(n−1)

∫
∂H

(|t|−p′ + |y + e1|p
′
)−(n−1) dHn−1

y ,∫
H
γnt dx = |t|−p′n+n

∫
H
(|t|−p′ + |y + e1|p

′
)−n dy ,∫

H
γnt |x− t e1|p

′
dx = |t|−p′n+p′+n

∫
H
(|t|−p′ + |y + e1|p

′
)−n|y + e1|p

′
dy .

Since

−p′(n− 1) + (n− 1)

p#
− −p′n+ n

p⋆
= 0

−p′n+ p′ + n

p
+
p′n− n

p⋆
= 0 ,

we find that, setting

γ̄t(y) = (|t|−p′ + |y + e1|p
′
)−1 y ∈ H ,

we have

TS(t) =

( ∫
∂H γ̄n−1

t

)1/p#

( ∫
H γ̄nt

)1/p⋆
GS(t) =

(n− p)
( ∫

H γ̄nt |y + e1|p
′
dy

)1/p
(p− 1)

( ∫
H γ̄nt

)1/p⋆
By monotone convergence, we thus find that

lim
t→−∞

TS(t) =
∥UE(·+ e1)∥Lp# (∂H)

∥UE(·+ e1)∥Lp⋆ (H)

= TE lim
t→−∞

GS(t) =
∥∇UE(·+ e1)∥Lp(H)

∥UE(·+ e1)∥Lp⋆ (H)

= GE ,

as claimed. Having shown that TS is smooth and injective on R with TS(+∞) = 0 and TS(−∞) =
TE > 0, we deduce that TS is strictly decreasing on R with range (0, TE). Since T0 = TS(0) <
TS(−∞) = TE , we have completed the proof of statement (i). Similarly, the first part of (ii)

follows since GS(0) = 2−1/nS < S = GS(+∞) and GS is smooth and injective on [0,∞).
Similarly, the injectivity of GS on (−∞, 0) together with the fact that by (1.10) (recall (1.12))

GS(0) = 2−1/n S < E = GE = GS(−∞) implies that GS is strictly decreasing on (−∞, 0) with

range (2−1/nS,E). This proves statement (ii).

Step 4: Limit values of TBE(t) and GBE(t). With an argument identical to that given for TS
and GS , we establish that TBE(t) → TE and GBE(t) → GE as t → −∞. To compute the limit
as t→ −1+, we first notice that, for every t < −1 and setting ε = |t| − 1,∫

∂H
UBE(x− t e1)

p# ≥
∫
B|t|+ε(te1)∩∂H

dHn−1

(|x− t e1|p′ − 1)n−1
.
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Since B|t|+ε(te1) ∩ ∂H is a (n− 1)-dimensional disk of radius
√

(|t|+ ε)2 − t2 =
√
2ε |t|+ ε2 ≥

c
√
ε, and since |x− t e1|p

′ − 1 ≤ (|t|+ ε)p
′ − 1 ≤ C ε for constants c and C depending on n and

p only, we find that ∫
∂H

UBE(x− t e1)
p# ≥ c

ε(n−1)/2
=

c

|t+ 1|(n−1)/2
. (3.8)

At the same time, we have∫
H
UBE(x− t e1)

p⋆ =

∫
H
(|x− t e1|p

′ − 1)−n dx =

∫ ∞

−t
(rp

′ − 1)−nHn−1
(
H ∩ ∂Br(−t e1)

)
dr

where, thanks to the coarea formula,

Hn−1
(
H ∩ ∂Br(−t e1)

)
= c(n) rn−1

∫ 1

−t/r
(1− s2)(n−3)/2 ds .

Since 1 ≤ (1 + s)(n−3)/2 ≤ C(n) for s ∈ (−t/r, 1) and

rn−1

∫ 1

−t/r
(1− s)(n−3)/2 ds = C(n) rn−1 (1 + t/r)(n−1)/2 = C r(n−1)/2 (r + t)(n−1)/2 ,

we conclude that

c(n) ≤
Hn−1

(
H ∩ ∂Br(−t e1)

)
r(n−1)/2 (r + t)(n−1)/2

≤ C(n) , ∀r ∈ (−t,∞) . (3.9)

Hence, by p > 1, and provided t is close enough to −1∫
H
(|x− t e1|p

′ − 1)−n dx ≤ C

∫ ∞

2

r(n−1)/2 (r + t)(n−1)/2

(rp′ − 1)n
dr + C

∫ 2

−t

r(n−1)/2 (r + t)(n−1)/2

(rp′ − 1)n
dr

≤ C

∫ ∞

2

rn−1

rnp′
dr + C

∫ 2

−t

dr

(r − 1)n−(n−1)/2

≤ C
(
1 + |t+ 1|−(n−1)/2

)
≤ C |t+ 1|−(n−1)/2 .

(We also notice that, by (3.9), one also has an analogous estimate from below, that is∫
H
(|x− t e1|p

′ − 1)−n dx ≥ c |t+ 1|−(n−1)/2 for |t+ 1| small enough (3.10)

as well as∫
H
(|x− t e1|p

′ − 1)−(n−1) dx ≤ C |t+ 1|−(n−3)/2 for |t+ 1| small enough . (3.11)

Both estimates will be used in the last step of the proof of Theorem 1.2.) By combining this
last estimate with (3.8) we find that

TBE(t) ≥ c
(
|t+ 1|−(n−1)/2

)1/p#−1/p⋆

= c |t+ 1|−1/2p⋆ , (3.12)

for every t close enough to −1, where c = c(n, p) > 0. This proves that TBE(t) → +∞ as
t→ −1. Analogously, again with ε = |t+ 1|,∫

H
|∇UBE(x− t e1)|p ≥ c

∫
H∩B|t|+ε(t e1)

(|x− t e1|p
′ − 1)−n |x− t e1|p

′
dx

= c

∫ −t+ε

−t

(r2 − t2)(n−1)/2r p′

(rp′ − 1)n
dr
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so that, setting r = |t|+ s |t+ 1|, noticing that r2 − t2 ≥ c s |t+ 1| and 1 ≤ rp
′ ≤ 1 + C |t+ 1|,

we get ∫
H
|∇UBE(x− t e1)|p ≥ |t+ 1|(n−1)/2

∫ 1

0

s(n−1)/2|t+ 1| ds
|t+ 1|n

≥ c

|t+ 1|(n−1)/2
.

Hence,

GBE(t) ≥ c
(
|t+ 1|−(n−1)/2

)(1/p)−(1/p⋆)
= c |t+ 1|−(n−1)/2n , (3.13)

and
lim

p→−1+
GBE(t) = ∞ .

(We also notice, again for future use in the proof of Theorem 1.2, that together with (3.13) we
also have

GBE(t) ≤ C(n) |t+ 1|−(n−1)/2n , (3.14)

provided t is close enough to −1.) Statement (iii) and (iv) follow immediately. �
Proof of Theorem 1.1. Immediate from Theorem 2.3 and Proposition 3.2. �

We now turn to the quantitative study of Φ(T ). Let us recall that, by a classical variational
argument, if u is a minimizer in Φ(T ), then there exists constants λ and σ such that{

−∆pu = λ|u|p⋆−2u in H

−|∇u|p−2∂x1u = σ|u|p#−2u on ∂H .
(3.15)

Observe that the existence of constants λ and σ satisfying (3.15) follows by direct computation
using our characterization of minimizers. Moreover, we know that non-negative minimizers are
positive, so that there is no need for the absolute values in (3.15).

Lemma 3.3. If n ≥ 2, 1 ≤ p < n, T ∈ (0,∞) and λ and σ are the Lagrange multipliers
appearing in (3.15) and corresponding to a minimizer u in the variational problem Φ(T ), then
the following identities hold:

Φ(T )p = λ+ σ T p# Φ′(T ) =
p#T p#−1

Φ(T )p−1
σ . (3.16)

Proof. The first identity follows from an integration by parts and (3.15), so we focus on the

second one. Since T > 0 implies
∫
∂H up

#
> 0, there must be a function φ ∈ C∞

c (∂H) such that∫
∂H

up
#−1φdHn−1 = 1 . (3.17)

Similarly, there exists ξ ∈ C∞
c (H) such that∫

H
up

⋆−1 ξ = 1 .

Let ψ be any function ψ ∈ C∞
c (H) with ψ = φ on ∂H, and extend φ to H by setting

φ = ψ −
(∫

H
up

⋆−1 ψ
)
ξ .

Then φ ∈ C∞
c (H) and ∫

H
up

⋆−1φ = 0 . (3.18)

Now define a function f : R2 → [0,∞) by setting

f(ε, δ) = −1 +

∫
H
|u+ εφ+ δξ|p⋆ (ε, δ) ∈ R2 .
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Since u > 0 on H, there exists a neighborhood U of (ε, δ) = (0, 0) such that u+ εφ+ δξ > 0 on
H for every (ε, δ) ∈ U . Correspondingly, by (3.18)

f ∈ C1(U) f(0, 0) = 0
∂f

∂δ
(0, 0) = p⋆

∫
H
up

⋆−1ξ = 1 ,

and thus there exists ε0 > 0 and g : (−ε0, ε0) → R such that(ε, g(ε)) ∈ U and f(ε, g(ε)) = 0 for
every |ε| < ε0. In particular,

vε = u+ εφ+ γ(ε) ξ ∈ C∞(H; (0,∞))

∫
H
vp

⋆

ε = 1 , ∀|ε| < ε0 .

By (3.17)

d

dε

∣∣∣∣
ε=0

∫
∂H

vp
#

ε

p#
dHn−1 =

∫
∂H

up
#−1 φ = 1 , (3.19)

so that the function τ(ε) = ∥vε∥Lp# (∂H)
satisfies τ(0) = T and is strictly increasing on (−ε0, ε0),

up to possibly decreasing the value of ε0. If we set Γ(ε) =
∫
H |∇vε|p, then, by construction,

Φ(τ(ε))p ≤ Γ(ε) for every |ε| < ε0, with equality at ε = 0, and thus

d

dε

∣∣∣∣
ε=0

Φ(τ(ε))p =
d

dε

∣∣∣∣
ε=0

Γ(ε). (3.20)

We compute that

1

p

d

dε

∣∣∣∣
ε=0

Γ(ε) =

∫
H
|∇u|p−2∇u · ∇φdx = −

∫
H
∆puφ−

∫
∂H

|∇u|p−2∂x1uφdHn−1. (3.21)

From (3.15), −∆puφ = λup
⋆−1, and so the first term on the right-hand side of (3.21) is equal

to zero. Then, from (3.15) and (3.19), the right-hand side of (3.21) is equal to σ, and thus that
of (3.20) to p σ. Since, again by (3.17),

τ ′(0) =
T 1−p#

p#
,

we conclude from (3.19) that

Φ(T )p−1Φ′(T )
T 1−p#

p#
= σ ,

thus completing the proof of the lemma. �
We now prove Theorem 1.2, Corollary 1.3 and Theorem 1.5.

Proof of Theorem 1.2. Step 1: Differentiability and monotonicity. By Proposition 3.2 we know
that Φ(TBE(t)) = GBE(t) for every t ∈ (−∞,−1), where TBE is smooth and strictly increasing
on (−∞,−1) with range (TE ,∞) and GBE(t) is smooth and strictly increasing on (−∞,−1)
with range (GE ,∞). Thus, Φ is smooth on (TE ,∞) with Φ′(T ) = G′

BE(t)/T
′
BE(t) > 0 for

T = TBE(t). This shows that Φ is smooth and strictly increasing on (TE ,∞). One can compute
that

lim
T→T+

E

Φ′(T ) = lim
t→−∞

G′
BE(t)

T ′
BE(t)

=
GE

TE
= E .

Similarly, Φ(TS(t)) = GS(t) for every t ∈ R where TS is strictly decreasing on R with range
(0, TE), and TS(0) = T0 < TE , and where GS is strictly increasing on [0,∞) with range

[2−1/nS, S), and is strictly decreasing on (−∞, 0) with range (2−1/nS,E). Hence Φ is smooth
on (0, TE), and Φ′(T ) = G′

S(t)/T
′
S(t) > 0, T = TS(t), so Φ is strictly decreasing on (0, T0) and

strictly increasing on (T0, TE), and one computes

lim
T→T−

E

Φ′(T ) = lim
t→−∞

G′
S(t)

T ′
S(t)

=
GE

TE
= E .
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Hence Φ is differentiable also at T = TE , and thus on (0,∞).

Step 2: Concavity of Φ. Next, we use Lemma 3.3 to show that Φ is concave for T sufficiently
small. By (3.16) we find that for every t ∈ R,

d

dT
Φ(TS(t)) = p#

TS(t)
p#−1

GS(t)p−1
σ(US(t)) , (3.22)

where σ(US(t)) denotes the boundary Lagrange multiplier of US(t). By combining (1.17) and
(3.15), we see that

σ(US(t)) = −c(n, p) t ∥US∥p(p−1)/(n−p)

Lp⋆ ({x1>t}) ,

for a positive constant c(n, p). Thus,

d

dT
Φ(TS(t)) = −c(n, p) t

∥US∥p
#−1

Lp# ({x1=t})

∥∇US∥p−1
Lp({x1>t})

,

so, differentiating in t (recall that Φ is smooth (0, TE)), we find that

d2

dT 2
Φ(TS(t))T

′
S(t) = −c(n, p) d

dt

(
t
∥US∥p

#−1

Lp# ({x1=t})

∥∇US∥p−1
Lp({x1>t})

)
.

Since T ′
S(t) < 0 for every t ∈ R, we conclude that Φ(T ) is going to be concave on any interval

J = {TS(t) : t ∈ J ′} corresponding to an interval J ′ ⊂ R such that

d

dt
log

(
t
∥US∥p

#−1

Lp# ({x1=t})

∥∇US∥p−1
Lp({x1>t})

)
< 0 , ∀t ∈ J ′ . (3.23)

For the sake of brevity, set

h(t) =

∫
{x1=t}

Up#

S =

∫
∂H

(1 + |x− t e1|p
′
)−(n−1) dHn−1 .

We are thus looking for an interval J ′ such that

1

t
+
p# − 1

p#
h′(t)

h(t)
− p− 1

p

d
dt

∫
{x1>t} |∇US |p∫

{x1>t} |∇US |p
< 0 ∀t ∈ J ′ .

Since
∫
{x1>t} |∇US |p is trivially increasing in t, it suffices to find an interval J ′ such that

1

t
+
n(p− 1)

p(n− 1)

h′(t)

h(t)
< 0 ∀t ∈ J ′ .

If t > 0, then factoring and changing variables, we find that

h(t) = t−(n−1)/(p−1)

∫
∂H

(t−p′ + |x− e1|p
′
)−(n−1) dHn−1 .

Therefore, we compute

h′(t)

h(t)
= − n− 1

(p− 1)t
+
p′(n− 1)

∫
∂H(t−p′ + |x+ e1|p

′
)−n dHn−1

tp′+1
∫
∂H(t−p′ + |x+ e1|p′)−(n−1) dHn−1

,

where trivially t−p′ + |x+ e1|p
′
> 1 for x ∈ ∂H, and thus∫

∂H
(t−p′ + |x+ e1|p

′
)−n dHn−1 <

∫
∂H

(t−p′ + |x+ e1|p
′
)−(n−1) dHn−1 .
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We have thus proved that for every t > 0,

h′(t)

h(t)
≤ 1

t

n− 1

p− 1

(
− 1 +

p

tp′

)
,

so that
1

t
+
n(p− 1)

p(n− 1)

h′(t)

h(t)
≤ 1

t
+

1

t

n

p

(
− 1 +

p

tp′

)
.

This last quantity is negative for t > (p⋆)1/p
′
. Thus, (3.23) holds with the choice

J ′ = (−∞, (p⋆)1/p
′
)

and correspondingly Φ(T ) is strictly concave on (0, T∗) provided we set

T∗ = TS((p
⋆)1/p

′
) .

Step 3: Convexity of Φ. By (3.4) we have that for every t < −1

Φ(T ) ≥ GBE(t) + t
TBE(t)

p# − T p#

p# YBE(t)
∀T > 0 , (3.24)

with equality if and only if T = TBE(t). If we denote by Ψt(T ) the right-hand side of (3.24),
this shows that

Φ(T ) = sup
t<−1

Ψt(T ) ∀T ∈
{
TBE(t) : t < −1} = (TE ,∞) .

Since each Ψt(T ) is convex as a function of T (recall that t is negative), this proves that Φ(T ) is
convex on (TE ,∞). We can perform the same argument based on (3.3), as soon as the parameter
t ∈ R describing the Sobolev family is negative. This proves the convexity of Φ(T ) over the
interval {

TS(t) : t < 0
}
= (T0, TE) .

Since Φ(T ) is convex on (T0, TE) and on (TE ,∞), with Φ(T ) ≥ E T for every T ≥ 0 and
Φ(TE) = E TE , we conclude that Φ(T ) is convex on (T0,∞).

Step 4: Asymptotic growth of Φ. First, we claim that

lim
T→∞

p#Φ(T )

T p#
= 1 .

Having in mind (1.13), and taking into account that TBE(t) → +∞ as t → −1, it suffices to
show that

lim
t→−1

p#GBE(t)

TBE(t)p
# = 1 .

To prove this, we notice that the identity

n

∫
H
Up#

BE,t = p#GBE(t)YBE(t) + t TBE(t)
p# ∀t < −1 , (3.25)

allows us to write

p#
GBE(t)

TBE(t)p
# = − t

YBE(t)
+

n
∫
H Up#

BE,t

YBE(t)TBE(t)p
# .

It will thus be enough to prove

lim
t→−1

YBE(t) = 1 lim
t→−1

∫
H
Up#

BE,t = 0 . (3.26)

To this end, we first notice that by (3.10) and (3.11)

YBE(t)
p′ − 1 =

∫
H(|x− t e1|p

′ − 1)−(n−1)∫
H(|x− t e1|p′ − 1)−n

≤ C(n)
|t+ 1|−(n−3)/2

|t+ 1|−(n−1)/2
= C(n) |t+ 1| ,
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while∫
H
Up#

BE,t =

∫
H(|x− t e1|p

′ − 1)−(n−1)( ∫
H(|x− t e1|p′ − 1)−n

)(n−1)/n
≤ C(n)

|t+ 1|−(n−3)/2

|t+ 1|−(n−1)2/2n
= C(n) |t+ 1|(n+1)/2n

so that (3.26) is proven. Now, to prove that

lim
T→∞

Φ(T )− T p#

p#
= 0

we simply notice that, again by (3.25),

p#GBE(t)− TBE(t)
p# = p#GBE(t)

(
1 +

YBE(t)

t

)
− n

t

∫
H
Up#

BE,t .

Since |t+ YBE(t)| ≤ |t+ 1|+ |1− YBE(t)| ≤ C(n) |t+ 1|, thanks to (3.14) we have

GBE(t)
∣∣∣1 + YBE(t)

t

∣∣∣ ≤ C(n) |t+ 1|1−(n−1)/2n = C(n) |t+ 1|(n+1)/2n → 0 .

This completes the proof of Theorem 1.2. �

Proof of Corollary 1.3. Since Ω is a set of locally finite perimeter in Rn [Mag12, Example 12.6],
there exists x0 ∈ ∂Ω such that, up to a rotation,

Ωr → H in L1
loc(Rn),

Hn−1x∂Ωr
∗
⇀ Hn−1x∂H as Radon measures on Rn.

(3.27)

where we have set Ωr = (Ω − x0)/r, r > 0. Precisely, every x0 in the reduced boundary of Ω
satisfies (3.27) up to a rotation, see e.g. [Mag12, Theorem 15.5].

We now define a function wT depending on T as follows. If T ∈ (0, TE), setting t = T−1
S (T ),

we let

wT (x) = US,t(x) ∀x ∈ Rn ;

if T = TE , we set t = −1 and let

wT (x) = UE,t(x) ∀x ∈ Rn \ {e1} ;

finally, if T > TE , then, setting t = T−1
BE(T ) < −1, we let

wT (x) = UBE,t(x) ∀x ∈ Rn \B1(t e1) .

Notice that in each case, there exists a compact set KT with KT ∩ H = ∅ such that wT ∈
Lp⋆(Rn \ U) and ∇wT ∈ Lp(Rn \ U) for every open neighborhood U of KT . In particular, for
ε > 0 small enough depending on T , we have {x1 > −ε} ∩KT = ∅. We pick ζ ∈ C∞(Rn) such
that ζ = 1 on {x1 > −ε} and ζ = 0 on KT , and define vT = ζ wT on the whole Rn. Then

vT ∈ Lp⋆(Rn) ∇vT ∈ Lp(Rn) vT = wT on H . (3.28)

Next, we fix R > 0 and consider ψR ∈ C∞
c (B2R; [0, 1]) with ψR = 1 on BR. Finally, for each

r > 0, we define

ur(x) = r1−n/p (ψR vT )
(x− x0

r

)
x ∈ Ω .

By (3.27), (3.28) and ψR ∈ C∞
c (B2R; [0, 1]) we can exploit dominated convergence to find that∫

Ω
up

⋆

r =

∫
Rn

1Ωr(ψRvT )
p⋆ →

∫
H
(ψRvT )

p⋆ =

∫
H
(ψRwT )

p⋆∫
Ω
|∇ur|p →

∫
H
|∇(ψR wT )|p ,
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as r → 0+. Similarly, since (ψR vT )
p# ∈ C0

c (Rn), by (3.27) we have∫
∂Ω
up

#

r dHn−1 =

∫
Rn

(ψR vT )
p# d(Hn−1x∂Ωr) →

∫
∂H

(ψR vT )
p# dHn−1 =

∫
∂H

(ψR wT )
p# dHn−1

as r → 0+. Since ∫
H
wp⋆

T = 1 ,

∫
∂H

wp#

T = T p# ,

∫
H
|∇wT |p = Φ(T )p ,

for every δ > 0 there exists r small enough and R large enough such that∣∣∣ ∫
Ω
up

⋆

r − 1
∣∣∣+ ∣∣∣ ∫

Ω
|∇ur|p − Φ(T )p

∣∣∣+ ∣∣∣ ∫
∂Ω
up

#

r − T p#
∣∣∣ < δ .

In particular, we can find {ξr}r>0 ⊂ C∞
c (Ω) such that

∥ur + ξr∥Lp# (∂Ω)

∥ur + ξr∥Lp⋆ (Ω)

=
∥ur∥Lp# (∂Ω)

∥ur + ξr∥Lp⋆ (Ω)

= T ∀r > 0 ,

and ∥ξr∥Lp⋆ (Ω) → 0 and ∥∇ξr∥Lp(Ω) → 0 as r → 0+. Then, for r sufficiently small,

ΦΩ(T ) ≤
∥∇ur +∇ξr∥Lp(Ω)

∥ur + ξr∥Lp⋆ (Ω)

≤ (1 + C δ)Φ(T )

for a constant C = C(n, p). �

Proof of Theorem 1.5. With the same reasoning as given in Corollary 3.1, we find that

YS(t)GS(t) + tTS(T ) ≤ YS(t)|Dh|(H) + t∥h∥L1(∂H)

for any t ∈ (−1, 1) and any non-negative h, vanishing at infinity, with |Dh|(H) < ∞, and with
equality if and only if h is a dilation translation image of US,t orthogonal to e1. In particular, if
additionally ∥h∥L1(∂H) = TS(t), then

GS(t) ≤ |Dh|(H).

From this, we deduce that

Φ(TS(t)) = GS(t)

for t ∈ (−1, 1). The same arguments given in the proof of Proposition 3.2 imply that TS(t) is
a strictly decreasing function with range [0,∞), and that GS(t) is strictly increasing for t > 0

with range (2−1/nS, S) and is strictly decreasing for t < 0 with range (2−1/nS,∞). Finally, the
same proof as that of Theorem 1.2 shows that Φ(T ) is a smooth function of T that is decreasing
for T ∈ (0, T0) and concave for T ∈ (0, T∗) for some 0 < T∗ < T0 and increasing and convex for
T ∈ (T0,∞). Finally, to show that Φ(T ) = T + o(1) as T → ∞, we will equivalently show that
GS(t) = TS(t) + o(1) as t → −1. Indeed, since Y (t, US,t) = 1 for all −1 < t < 1 when p = 1,
(3.2) implies that

GS(t) = n

∫
H
US,t − t TS(t) = TS(t) + n

∫
H
US,t − (t+ 1)TS(t).

Note that ∫
H
US,t =

|B1(t e1) ∩H|
|B1(t e1) ∩H|(n−1)/n

= |B1(t e1) ∩H|1/n = o(1)

as t→ −1. Furthermore, since

T (t) =
ωn−1(1− t2)(n−1)/2

|B1(t e1) ∩H|(n−1)/n
,
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and we easily estimate that

|B1(t e1) ∩H| = ωn−1

∫ 1

−t
(1− s2)(n−1)/2 ds ≥ c

∫ 1

−t
(1− s)(n−1)/2 ≥ C|1 + t|(n+1)/2

for t < 0, we see that

|t+ 1|T (t) ≤ |t+ 1|1−(n+1)/2n = o(1).

Hence, GS(t) = TS(t) + o(1) as t→ −1 and the proof is complete. �

Appendix A. Proof of Theorem 2.3

In this appendix, we prove Theorem 2.3, which aims to characterize the equality cases in
Theorem 2.1. The main step is to prove the validity of (2.10) (see the proof of Theorem 2.1)
without the assumption that f ∈ C1

c (H). This is the content of the following lemma, whose
proof resembles [CENV04, Theorem 7].

Lemma A.1. If n ≥ 2, p ∈ [1, n), and f and g are non-negative functions in L1
loc(H), vanishing

at infinity, with 
∫
H |∇f |p <∞ and

∫
H |x|p′gp⋆ <∞ if p > 1

|Df |(H) <∞ and spt g ⊂⊂ H if p = 1

∥f∥Lp⋆ (H) = ∥g∥Lp⋆ (H) = 1

(A.1)

then (2.10) holds for every t ∈ R, that is

n

∫
H
gp

# ≤ −p#
∫
H
fp

#−1∇f · (T − t e1) + t

∫
∂H

fp
#
, ∀t ∈ R . (A.2)

Here T = ∇φ is the Brenier map from fp
⋆
dx and gp

⋆
dx.

Proof. We let Ω be the interior of {φ <∞}, and recall that T ∈ (BV ∩L∞)loc(Ω;Rn) with F dx
concentrated on H ∩ Ω. With the same argument as in Theorem 2.1, see (2.9), one finds that∫

H
gp

#
=

∫
H
(det∇2φ)1/nfp

#
, (A.3)

also holds in the present setting where we just have f ∈ L1
loc(H).

We first let p ∈ (1, n). By a translation orthogonal to e1, we may assume that 0 ∈ Ω. For
ε > 0 let ηε ∈ C∞

c (B2/ε; [0, 1]) with ηε = 1 on B1/ε and ηε ↑ 1 pointwise on Rn as ε → 0+, and
set

fε(x) = min
{
f
( x

1− ε

)
, f(x)ηε(x)

}
1Hε(x), x ∈ H ,

where Hε = {x1 > ε}. By standard arguments one sees that{
fε → f in Lp⋆(H) and a.e. on H

1Hε ∇fε → ∇f in Lp(H)
as ε→ 0+ . (A.4)

Moreover, as 0 ∈ Ω and f = 0 a.e. on Ωc, there exists an open set Ωε ⊂⊂ Ω such that
spt(fε) ⊂⊂ Ωε. We can thus find {fε,k}k∈N ⊂ C1

c (Ωε ∩Hε) such that{
fε,k → fε in Lp⋆(Hε) and a.e. on Hε

∇fε,k → ∇fε in Lp(Hε)
as k → ∞ . (A.5)

Since fε,k ∈ C1
c (Hε), arguing as in Theorem 2.1 we find that

n

∫
Hε

(det∇2φ)1/nfp
#

ε,k ≤ −p#
∫
Hε

fp
#−1

ε,k ∇fε,k · Sdx+ t

∫
∂Hε

fp
#

ε,k dH
n−1 (A.6)
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where S = T − t e1 ∈ L∞
loc(Ω;Rn). Since S is bounded on Ωε, where the fε,k are uniformly

supported in, and since p# − 1 = p⋆/p′, by (A.5) we find

lim
k→∞

∫
Hε

fp
#−1

ε,k ∇fε,k · Sdx =

∫
Hε

fp
#−1

ε ∇fε · Sdx .

Moreover, by the trace inequality

∥u∥
Lp# (∂A)

≤ C(A)
(
∥∇u∥Lp(A) + ∥u∥L1(A)

)
,

which is valid whenever A is an open bounded Lipschitz set (see, for example, [MV05]), and
again by the uniform support property, (A.5) implies

lim
k→∞

∫
∂Hε

fp
#

ε,k dH
n−1 =

∫
∂Hε

fp
#

ε dHn−1 .

Hence, by pointwise convergence and Fatou’s lemma, (A.6) implies

n

∫
Hε

(det∇2φ)1/nfp
#

ε ≤ −p#
∫
Hε

fp
#−1

ε ∇fε · S + t

∫
∂Hε

fp
#

ε dHn−1 . (A.7)

In order to take the limit ε→ 0+ in (A.7), we first notice that fε ≤ f everywhere on H. Hence,
by (2.1) and (A.1), we find∫

H
|fp#−1

ε S|p′ ≤
∫
H
fp

⋆ |S|p′ =
∫
H
gp

⋆ |x− t e1|p
′
<∞ .

Since fε → f a.e. on H, it must be fp
#−1

ε S ⇀ fp
#−1S in Lp′(H) as ε→ 0+. By combining this

last fact with the strong convergence 1H ∇fε → ∇f in Lp(H), we conclude that∫
Hε

fp
#−1

ε ∇fε · Sdx =

∫
H
fp

#−1
ε ∇fε · S →

∫
H
fp

#−1∇f · S (A.8)

as ε→ 0+. Next, let us set hε(x) = fε(x+ ε e1) for x ∈ H, so that 1Hε∇fε → ∇f in Lp(H) and
the density of C0

c (H) in Lp(H) gives us ∇hε → ∇f in Lp(H). By applying (1.2) to hε − f we

find that hε → f in Lp#(H), which clearly implies

lim
ε→0+

∫
∂Hε

fp
#

ε dHn−1 =

∫
∂H

fp
#
dHn−1 .

By combining this last fact with (A.8) with the fact that 1Hεf
p#
ε → 1H fp

#
a.e. on Rn and with

Fatou’s lemma, we deduce from (A.7) that

n

∫
H
(det∇2φ)1/nfp

# ≤ −p#
∫
H
fp

#−1∇f · S + t

∫
∂H

fp
#
dHn−1 .

Combining this inequality with (A.3), we complete the proof of the lemma in the case p ∈ (1, n).
We now consider the case p = 1. We now have |Df |(H) < ∞ and spt g bounded. Thanks

to the latter property, by arguing as in [MV05, pg. 96] we can assume that S = T − t e1 ∈
(BVloc ∩ L∞)(H;Rn). Setting fk = 1Bk

min{f, k}, k ∈ N, then fk S ∈ BV (Rn;Rn) and by the
divergence theorem

div (fk S)(H) =

∫
∂H

fk S · (−e1) =

∫
∂H

fk T · (−e1) + t

∫
∂H

f ≤ t

∫
∂H

f .

If we identify fk and S with their precise representatives, we have

div (fk S)(H) =

∫
H
fk d(divS) +

∫
H
S ·Dfk
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where, of course, ∫
H
fk d(divS) =

∫
H
fk d(div T ) ≥ n

∫
H
fk (det∇2φ)1/n .

We have thus proved

n

∫
H
fk (det∇2φ)1/n ≤ −

∫
H
S ·Dfk + t

∫
∂H

fk dHn−1 . (A.9)

By monotone convergence
∫
∂H fk →

∫
∂H f , while (2.3) and the boundedness of sptg imply the

existence of R > 0 such that |S| ≤ R on spt(Df), and thus∣∣∣ ∫
H
S ·Dfk −

∫
H
S ·Dfk

∣∣∣ ≤ R |Df |
(
H \ (Bk ∪ {f < k}(1)

)
where E(1) denotes the set of density points of a Borel set E ⊂ Rn and we have used
D(1E f)(K) = Df(E(1) ∩ K) for every K ⊂ Rn. Since |Df |(H) < ∞, letting k → ∞ and
finally exploiting Fatou’s lemma we deduce from (A.9)

−
∫
H
S ·Df + t

∫
∂H

f dHn−1 ≥ n

∫
H
f (det∇2φ)1/n = n

∫
H
g ,

where in the last inequality we have used (A.3). The proof is complete. �
Proof of Theorem 2.3. Let us consider two functions f and g as in Lemma A.1 such that, for
some t ∈ R,

n

∫
H
gp

#
= p#∥∇f∥Lp(H) Y (t, g) + t

∫
∂H

fp
#

with

∫
∂H

fp
#
> 0 . (A.10)

where |Df |(H) replaces ∥∇f∥Lp(H) if p = 1. By arguing as in the proof of [CENV04, Proposition
6] in the case p ∈ (1, n), and as in [FMP10, Theorem A.1] if p = 1, we find that T (x) = ∇φ(x) =
λ(x− x0) for some λ > 0 and x0 ∈ Rn.

We claim that x0 · e1 = 0. Keeping the proof of Lemma A.1 in mind, (A.10) implies that

lim
ε→0+

lim
k→∞

∫
∂Hε

(T · e1) fp
#

ε,k dH
n−1 = 0 ,

where T = λ(x− x0) gives∫
∂Hε

(T · e1) fp
#

ε,k = λ(ε− x0 · e1)
∫
∂Hε

fp
#

ε,k .

Since we have proved that

lim
ε→0+

lim
k→∞

∫
∂Hε

fp
#

ε,k dH
n−1 =

∫
∂H

fp
#
dHn−1 ,

where the latter quantity is assumed positive, we conclude that x0 · e1 = 0, as claimed. Up to
a translation and up to apply an Lp⋆-norm preserving dilation to f , we can now assume that
x0 = 0 and λ = 1, that is T (x) = x.

We first consider the case p ∈ (1, n). By combining (A.2) and (A.10) we find that we have
an equality case in the Hölder’s inequality

∫
H A ·B dx ≤ ∥A∥Lp(H) ∥B∥Lp′ (H) with

A = −∇f B = fp
#−1(x− t e1) .

In particular, there exist Borel functions v : H → Rn and a, b : H → [0,∞) such that A = a v,

B = b v, and a = c b1/(p−1) for some constant c > 0. Hence, if we set r = |x − t e1| and
v = (x− t e1)/r, there exists a Borel function u : [0,∞) → [0,∞) such that

f(x) = u(r) −∇f(x) = −u′(r) x− t e1
|x− t e1|

,
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and the above conditions hold with a = −u′(r) and b = ru(r)p
#−1. In particular,

−u′(r) = c (ru(r)p
#−1)1/(p−1) for a.e. r > 0 ,

and consequently, for some c1 > 0 and c2 ∈ R

u(r) = (c1r
p′ + c2)

−n/p⋆

+ ∀r > 0 ,

where x+ = max{x, 0}. In terms of f , this means that

f(x) = (c1|x− te1|p
′
+ c2)

−n/p⋆

+ ∀x ∈ H .

The cases where c2 is positive, zero, and negative correspond, respectively, to f being a dilation-
translation image of US , UE , and UBE . If t > 0, the finiteness of the Lp⋆(H)-norm of f excludes
the possibilities that f is a dilation-translation image orthogonal to e1 of UE and UBE .

Let us now consider the case p = 1. Recall that we have already set T (x) = x, so that f = g
and the combination of (A.2) and (A.10) gives

−
∫
H
(x− t e1) ·Df = ∥ · −t e1∥L∞(spt(Df))|Df |(H) , (A.11)

that is

−Df =
x− t e1
|x− t e1|

|Df | as measures on H .

By [Mag12, Exercise 15.19], there exists µ > 0 such that f = c 1H∩Bµ(t e1), as required. �
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