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Abstract

In recent decades, developments in the theory of mass transportation have
led to proofs of many sharp functional inequalities. We present some of these
results, including ones due to F. Maggi and the author, and discuss related open
problems.

1 Sobolev inequalities and mass transportation meth-

ods

Sobolev inequalities are among the most fundamental tools in analysis and geometry.
Determining the value of the corresponding sharp constants and characterizing the
associated extremal functions in these inequalities often provides interesting geometric
information. For instance, for the Sobolev inequality on Rn for n ≥ 2, which says that

‖∇u‖Lp(Rn) ≥ S‖u‖Lp? (Rn) , p? =
np

n− p
, (1.1)

for any 1 ≤ p < n and u ∈ Ẇ 1,p(Rn), the sharp constant and extremals played
a crucial role in the solution of the Yamabe problem in Riemannian geometry (see
[Yam60, Tru68, Aub76a, Sch84] and the survey [LP87]). It was with this motivation
that Aubin showed in [Aub76b] (see also [Tal76]) that all equality cases in (1.1) are
given by translations, dilations, and constant multiples of the function

US(x) =
1

(1 + |x|p′)(n−p)/p
. (1.2)

In the Yamabe problem on manifolds with boundary, the role of (1.1) is played by
the Sobolev trace inequality on the half-space H = {x1 > 0} ⊂ Rn for n ≥ 2, which
states that

‖∇u‖Lp(H) ≥ E‖u‖
Lp] (∂H)

, p] =
(n− 1)p

n− p
, (1.3)
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for all u ∈ Ẇ 1,p(H) and 1 ≤ p < n. In order to address this problem in [Esc92],
Escobar showed in [Esc88] that when p = 2, all extremal functions in (1.3) are given
by the function UE(x) = |x + e1|2−n and its invariant scalings, that is, the functions
c UE(λ(x + y)) for c ∈ R, λ ∈ R+, and y ∈ H. Beckner gave another proof in [Bec93].
Both proofs, though different in nature, crucially exploit the conformal invariance that
is specific to the case p = 2.

For the case 1 < p < n, it was not until [Naz06] that the function

UE(x) =
1

|x+ e1|(n−p)/(p−1)
. (1.4)

and its invariant scalings c UE(λ(x + y)) for c ∈ R, λ ∈ R+, and y ∈ H were shown
to be extremals of (1.3), confirming a conjecture of Escobar in [Esc88].1 Nazaret’s
proof was based on a new iteration of a mass transportation argument introduced
in [CENV04], where Cordero-Erausquin, Nazaret, and Villani gave another proof of
(1.1). This argument of [CENV04] is also the starting point of the proof of the results
presented in the Section 2, so we briefly sketch it here.

Suppose that f, g ∈ W 1,p(Rn) ∩ C∞c (Rn) are nonnegative and are normalized so
that

‖f‖Lp? (Rn) = ‖g‖Lp? (Rn) = 1 .

The Brenier-McCann theorem (see [Bre91, McC97] or [Vil03, Cor. 2.30]) from the
theory of optimal transportation provides a map T : Rn → Rn such that

• T is the gradient of a convex function ϕ : Rn → R; and

• for every Borel measurable function ξ : Rn → [0,∞], we have∫
Rn

ξ gp
?

dx =

∫
Rn

ξ ◦ T fp?dx . (1.5)

One can show that ϕ solves the Monge-Ampère equation

fp?(x) = gp
?

(∇ϕ(x)) det∇2ϕ(x) a.e. on spt(fp? dx) ; (1.6)

see [McC97] or [Vil03, Theorem 4.8]. So, using (1.5) and (1.6), we find that∫
Rn

gp
]

dx =

∫
Rn

(gp
? ◦ T )−1/n fp? dx =

∫
Rn

(det∇2ϕ)1/n fp] dx .

Since ϕ is convex, the eigenvalues of ∇2ϕ are nonnegative and the arithmetic-geometric
mean inequality implies that∫

Rn

(det∇2ϕ)1/n fp] dx ≤ 1

n

∫
Rn

∆ϕfp] dx .

1 The uniqueness of this family of extremals was left open in [Naz06], but was shown in [MN16].
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Then, integrating by parts and applying Hölder’s inequality, we find that

1

n

∫
Rn

∆ϕfp] dx = −p
]

n

∫
fp]−1∇f · ∇ϕdx

≤ p]

n
‖∇f‖Lp(Rn)

(∫
Rn

|∇ϕ|p′fp? dx
)1/p′

.

Finally, by (1.5), ∫
Rn

|∇ϕ|p′fp? dx =

∫
Rn

|x|p′gp? dx .

We have thus shown that

n

p]

∫
Rn

gp
]

dx
(∫

Rn

|x|p′gp? dx
)−1/p′

≤ ‖∇f‖Lp(Rn) .

Choosing g to be an extremal function in the Sobolev inequality, we find that the
left-hand side is equal to ‖∇g‖Lp(Rn) = S, completing the proof.

In the past two decades, the theory of optimal transport has led to the proofs of a
number of other sharp functional inequalities; see, for instance, [McC97, Bar98, OV00,
CEGH04, CE02, AGK04, MV05, MV08, LP09, Cas10, Ngu15] and the monograph
[Vil03].

2 A new family of sharp constrained Sobolev in-

equalities

Recently, in [MN16], F. Maggi and the author used a variation of the mass trans-
portation argument of [CENV04] sketched in Section 1 to prove a new family of sharp
constrained Sobolev inequalities on a half-space along with a characterization of the
equality cases. This family of inequalities provides a strong link between the Sobolev
inequality (1.1) and Sobolev trace inequality (1.3). To explain this link, let us observe
that the Sobolev inequality (1.1) is equivalent to the variational problem

inf
{
‖∇u‖Lp(Rn) : ‖u‖Lp? (Rn) = 1

}
= S .

Considering the analogous variational problem on H, that is,

inf{‖∇u‖Lp(H) : ‖u‖Lp? (H) = 1, u ≡ 0 on ∂H} = S̃ (2.1)

we immediately see that S̃ ≥ S by extending any competitor in (2.1) by zero to be
defined on Rn. On the other hand, taking a sequence of scalings of US concentrating in
H and multiplied by cut-off functions, we find that S̃ ≤ S. Hence S̃ = S, and in this
way, we see that the variational problem (2.1) is essentially equivalent to the Sobolev
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inequality (1.1). Similarly, the Sobolev trace inequality (1.3) can be equivalently ex-
pressed as the variational problem

inf{‖∇u‖Lp(H) : ‖u‖
Lp] (H)

= 1} = E . (2.2)

A key observation, based on a simple scaling argument, is that there is a constant
TE > 0 such that ‖u‖

Lp] (∂H)
= TE‖u‖Lp? (∂H) for all functions attaining equality in (1.3),

that is, for all invariant scalings of (1.4). In particular, the infimum and minimizing
functions in (2.2) are left unchanged by adding the additional constraint ‖u‖Lp? (H) =
1/TE. Or, up to multiplying by the constant TE, the following variational problem is
equivalent to (2.2):

inf{‖∇u‖Lp(H) : ‖u‖Lp? (H) = 1, ‖u‖
Lp] (∂H)

= TE} = E TE . (2.3)

In view of (2.1) and (2.3), we see that the Sobolev inequality and the Sobolev
trace inequality arise as the particular cases T = 0 and T = TE of the more general
variational problem

Φ(T ) = inf{‖∇u‖Lp(H) : ‖u‖Lp? (H) = 1, ‖u‖
Lp] (∂H)

= T} T ≥ 0 . (2.4)

Our main result consists of characterizing minimizers in (2.4) for every T > 0 and
every 1 < p < n, and then using this knowledge to give a qualitative description of the
behavior of the infimum value Φ(T ) as a function of T . The characterization result
involves the following three families of functions:

Sobolev family: Let US be defined as in (1.2) and set, for every t ∈ R,

US,t(x) =
US(x− t e1)

‖US(id− t e1)‖Lp? (H)

x ∈ H ,

and
TS(t) = ‖US,t‖Lp] (∂H)

, GS(t) = ‖∇US,t‖Lp(H) .

Thus, US,t corresponds to translating the optimal function US in the Sobolev inequality
so that its maximum point lies at signed distance t from ∂H, then multiplying the
translated function by a constant factor to normalize the Lp?-norm in H to be 1.

Escobar family: Letting UE be as in (1.4), we set for every t < 0

UE,t(x) =
UE(x− t e1)

‖UE(id− t e1)‖Lp? (H)

x ∈ H .

As pointed out above, a simple computation shows that the trace and gradient norms
of the UE,t are independent of t < 0, and we set

‖UE,t‖Lp] (∂H)
= TE , ‖∇UE,t‖Lp(H) = GE
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for these constant values. Each function UE,t is thus obtained by centering the funda-
mental solution of the p-Laplacian outside of H, and then by normalizing its Lp?-norm
in H.

Beyond-Escobar family: We consider the function

UBE(x) = (|x|p′ − 1)(p−n)/p |x| > 1 , (2.5)

and define, for every t < −1,

UBE,t(x) =
UBE(x− t e1)

‖UBE(id− t e1)‖Lp? (H)

x ∈ H .

Correspondingly, for every t < −1, we set

TBE(t) = ‖UBE,t‖Lp] (∂H)
, GBE(t) = ‖∇UBE,t‖Lp(H) .

As the name of this family of functions suggests, we show that TBE(t) > TE for every
t < −1, so that {UBE(t)}t<−1 enters the description of Φ(T ) for T > TE. Notice that
(2.5) defines a function on the complement of the unit ball. The function UBE,t is thus
obtained by centering this unit ball outside of H, precisely at distance |t| from ∂H,
and then by normalizing its tail to have unit Lp?-norm in H.

Theorem 2.1 (Existence and Characterization of Minimizers). Let n ≥ 2 and p ∈
(1, n). For every T ∈ (0,+∞), a minimizer exists in the variational problem (2.4) and
is unique up to dilations and translations orthogonal to e1. More precisely:

(i) for every T ∈ (0, TE), there exists a unique t ∈ R such that

T = TS(t) , Φ(T ) = GS(t) ,

and US,t is the uniquely minimizer in (2.4) up to dilations and translations or-
thogonal to e1;

(ii) if T = TE, then, up to dilations and translations orthogonal to e1, {UE,t : t < 0}
is the unique family of minimizers of (2.4);

(iii) for every T ∈ (TE,+∞) there exists a unique t < −1 such that

T = TBE(t) , Φ(T ) = GBE(t) , (2.6)

and UBE,t is the unique minimizer of (2.4) up to dilations and translations or-
thogonal to e1.

As a consequence of Theorem 2.1, we obtain the following family of sharp con-
strainted Sobolev inequalities and a characterization of their extremals: for any 0 <
T <∞,

‖∇u‖Lp(H) ≥ Φ(T )‖u‖Lp? (H) (2.7)
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for all u ∈ Ẇ 1,p(H) with ‖u‖
Lp] (∂H)

/‖u‖Lp? (H) = T .

Theorem 2.1 also provides an implicit description of this sharp constant Φ as a
function of T on [0,∞). Starting from this characterization, we obtain a quite complete
picture of its properties in Theorem 2.2 below. First, let us collect the previously known
information about Φ(T ). As we have seen, Φ(0) = S by (1.1), while (1.3) yields the
linear lower bound

Φ(T ) ≥ E T ∀T ≥ 0 , (2.8)

with equality if T = TE. Another piece of information comes from the following
“gradient domain” inequality, which follows by applying (1.1) to the extension by
reflection of u to Rn:

‖∇u‖Lp(H) ≥ 2−1/n S ‖u‖Lp? (H) ,

with equality if and only if u is a dilation or translation orthogonal to e1 of US. So,
this inequality implies that

Φ(T ) ≥ 2−1/n S , ∀T ≥ 0 (2.9)

with equality if and only if T = T0 where T0 = ‖US‖Lp] (∂H)
/‖US‖Lp? (H). Next, a simple

application of the divergence theorem and Hölder’s inequality imply that for every
non-negative u that is admissible in (2.4), we have∫

∂H

up
]

dHn−1 < p]‖∇u‖Lp(H) ‖u‖p
?/p′

Lp? (H)
.

As a consequence, we find that

Φ(T ) >
T p]

p]
∀T > 0 . (2.10)

Finally, given any open connected Lipschitz set Ω ⊂ Rn, let us set

ΦΩ(T ) = inf
{
‖∇u‖Lp(Ω) : ‖u‖Lp? (Ω) = 1 , ‖u‖

Lp] (∂Ω)
= T

}
T ≥ 0 ,

(so that ΦH = Φ), and define ISO (Ω) = P (Ω)/|Ω|(n−1)/n, where P (Ω) and |Ω| de-
note the perimeter and volume of Ω. With this notation, the Euclidean isoperimetric
inequality takes the form ISO (Ω) ≥ ISO (B1), with equality if and only if Ω is a trans-
lation or dilation of the unit ball B1. The following trace-Sobolev comparison theorem
was proved in [MV05]:

ΦΩ(T ) ≥ ΦB1(T ) , ∀T ∈
[
0, ISO (B1)1/p]

]
(2.11)

for any open Lipschitz domain Ω. It was also shown in the same paper that ΦB1

is strictly concave and decreasing on [0, ISO (B1)1/p] ]. Applying (2.11) with Ω = H
provides an additional lower bound on Φ(T ) on the interval [0, ISO (B1)1/p] ].
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G = Φ(T )

TE T

G

ISO (B1)1/p
]

G = ET

2−1/n S

S

G = T p]

/p]

T0

G = 2−1/n S

T = 0

Figure 1: A qualitative picture of Theorem 2.2.

Theorem 2.2 (Properties of Φ(T )). Let n ≥ 2 and p ∈ (1, n). Then Φ(T ) is differen-
tiable on (0,∞), it is strictly decreasing on (0, T0) with Φ(0) = S and Φ(T0) = 2−1/n S
and strictly increasing on (T0,∞) with

lim
T→+∞

Φ(T ) =
T p]

p]
+ o(1) as T →∞ . (2.12)

Moreover, Φ(T ) is strictly convex on (T0,+∞), and there exists T∗ ∈ (0, T0) such that
Φ(T ) is strictly concave on (0, T∗).

Theorem 2.2 and the information gathered from (2.8) through (2.11) is summarized
in Figure 1. In terms of the sharp constrained Sobolev inequalities (2.7), Figure 1 can
be interpreted in the following way: for any function u ∈ W 1,p(H), the point(‖u‖

Lp] (∂H)

‖u‖Lp? (H)

,
‖∇u‖Lp(H))

‖u‖Lp? (H)

)
plotted in the (T,G)-plane must lie above the curve G = Φ(T ). We note that the
information provided by (2.8) and (2.9) is sharp at only the single points T = TE and
T = T0 respectively. Furthermore, the bound given by (2.11) is only sharp at T = 0.
Finally, we see from (2.12) that the lower bound (2.10) is saturated asymptotically as
T →∞.

3 Remarks and open problems

The minimization problem (2.4) was first considered by Carlen and Loss for the case
p = 2 in [CL94]. There, they used the method of competing symmetries developed
in [CL90b, CL90a, CL92] to give a characterization of the minimizers for all values of
T > 0. Hence, Theorem 2.1 can be seen as a generalization of [CL94] from the case
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p = 2 to the full range p ∈ (1, n). This method, like the results of [Esc88] and [Bec93]
characterizing extremals in (1.3), relies in an essential way on the conformal invariance
that is present only in the case p = 2. Outside of this case, these methods cannot be
applied, and the mass transportation methods employed in our proof of Theorem 2.1
provide an effective approach.

As discussed in Section 2, a related variational problem is

ΦΩ(T ) = inf{‖∇u‖Lp(Ω) : ‖u‖Lp? (Ω) = 1, ‖u‖
Lp] (∂Ω)

= T} T ≥ 0 (3.1)

for any suitably regular open domain Ω ⊂ Rn. The main result of [MV05] is the trace-
Sobolev comparison theorem (2.11). Theorem 2.1 can be seen as a complementary
trace-Sobolev comparison theorem, providing an upper bound on ΦΩ(T ) for any open
Lipschitz domain Ω:

Corollary 3.1 (Half-spaces have the best Sobolev inequalities). If Ω is a non-empty
open set with Lipschitz boundary on Rn, then

ΦΩ(T ) ≤ Φ(T ) ∀T ≥ 0 .

Notice that, while Corollary 3.1 provides an upper bound for any T ≥ 0, the lower
bound (2.11) cannot hold on a larger interval. Indeed, ΦB1(T ) > 0 for T 6= ISO (B1)1/p] .
Hence, if Ω is not a ball and thus ISO (Ω) > ISO (B1), then

ΦB1(ISO (Ω)1/p]) > 0 = ΦΩ(ISO (Ω)1/p]) .

A number of open questions remain. First of all, what is the behavior of ΦB1(T )
for T > ISO (B1)1/p]? Are there minimizers in the variational problem for this range
of T , and if so, can one characterize these minimizers? For more general domains Ω,
can one find lower bounds on ΦΩ(T ) for T > ISO (Ω)1/p]?

In [MV05], it is also shown that the trace-Sobolev comparison theorem (2.11) holds
with strict inequality if the variational problem (3.1) admits a minimizer and the
domain Ω is connected and not homothetic to B1. However, the problem of existence
of of minimizers in (3.1) for T > 0 is open, to the author’s knowledge, even for the case
p = 2. We remark that mass transportation methods may be too rigid for a general
domain and it would likely be more effective to prove existence using a concentration
compactness argument as in [Lio85].

That said, it would also be interesting to see if there are domains other than the
half-space and the ball for which one could give an explicit description of minimizers.
For instance, in [MV08], mass transportation methods were used to prove Sobolev
inequalities on a certain class of cones. It is natural to ask whether one could prove an
analogue of Theorem 2.1 for these domains.
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