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Chapter 1

Introduction

Functional and geometric inequalities, and particularly those of Sobolev and isoperi-

metric type, play a key role in a number of problems arising in the calculus of vari-

ations, partial differential equations, and geometry. A prototypical example is the

classical Sobolev inequality on Rn for n ≥ 2, which says that, for 1 ≤ p < n,

‖∇u‖Lp(Rn) ≥ S‖u‖Lp? (Rn) (1.0.1)

for any u ∈ Ẇ 1,p(Rn).1 Here, p? = np/(n − p) and S = S(n, p) denotes the optimal

constant. Intimately related to Sobolev inequalities are isoperimetric inequalities,

the most ubiquitous example of which is the Euclidean isoperimetric inequality: for

n ≥ 2, one has

P (E) ≥ n|B|1/n|E|1/n′ , (1.0.2)

n′ = n/(n− 1), with equality if and only if E is a dilation or translation of the unit

ball B.

The main results of this thesis address two primary questions for certain Sobolev and

isoperimetric inqualities:

1 For p = 1, (1.0.1) holds for any u ∈ BV (Rn) with the left-hand side replaced by the total
variation |Du|(Rn).
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Problem 1: Is equality attained in the inequality? Can one characterize all extremals

in the inequality?

An inequality with suitable scaling invariance can be equivalently be viewed

variationally–for instance, (1.0.1) is equivalent to the minimization problem

inf
{
‖∇u‖Lp(Rn) : ‖u‖Lp? (Rn) = 1

}
= S . (1.0.3)

With this perspective in mind, we identify the problem of characterizing extremals

in the inequality with that of characterizing minimizers in the associated variational

problem.

If both parts of Problem 1 are answered in the affirmative for a given inequality, a

second natural question to ask is the following:

Problem 2: Suppose a function or set almost achieves equality in the inequality.

Then, is it close, in a suitable sense, to an extremal function or set?

Problem 2 addresses the stability of the inequality, or, more precisely, the quantitative

stability of the minimizers in the equivalent variational problem.

In the following two sections of the introduction, we briefly outline known stability and

minimality properties for the Sobolev and isoperimetric inequalities considered in this

thesis and present the main results that are proven in the subsequent chapters.
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1.1 Sobolev inequalities

In the eighty years since the seminal papers [Sob36, Sob38] of S.L. Sobolev, Sobolev-

type inequalities have been significantly refined and generalized and have become

central tools in modern analysis. They are used, for instance, to address the solvabil-

ity of certain boundary values problems and the structure of the spectra of elliptic

operators (see [Maz85, Chaper 6]), and, in conjunction with energy inequalities, to

prove various types of regularity results for elliptic and parabolic PDE (as in [DG57]).

Determining the value of the sharp constants and characterizing the associated ex-

tremal functions in these inequalities often provides interesting geometric information.

For example, the sharp constant and extremals in (1.0.1) played a crucial role in the

solution of the Yamabe problem in conformal geometry, which asks whether every

compact Riemannian manifold (M, g) admits a metric with constant scalar curvature

that is conformal to g (see [Yam60, Tru68, Aub76a, Sch84] and the survey [LP87]). It

was with this motivation that Aubin showed in [Aub76b], concurrently with Talenti

in [Tal76], that equality in (1.0.1) for 1 < p < n is uniquely achieved by dilations,

translations, and constant multiples of the function

US(x) =
1

(1 + |x|p′)(n−p)/p . (1.1.1)

In other words, the (n+ 2)-dimensional family of extremals is given by

M = {c US(λ(x− x0)) : c ∈ R, λ ∈ R+, x0 ∈ Rn} . (1.1.2)

Both proofs used symmetrization methods and an analysis of the Euler-Lagrange

equation associated to the variational problem (1.0.3). A quite different proof of this
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characterization is given by tracing through the argument presented in [CENV04],

which uses the Brenier-McCann theorem from the theory of mass transportation (see

Section 2.2). A remarkable feature of this proof is that does not rely on geometric

properties like symmetry and holds without modification for non-Euclidean norms on

Rn.

For p = 1, the Sobolev inequality is equivalent to the isoperimetric inequality (see

[FF60, FR60, Maz60]), and accordingly, the extremal functions are translations, di-

lations, and constant multiples of the characteristic functions of the ball.

Related to the Yamabe problem is the question of whether every compact Rie-

mannian manifold (M, g) with boundary admits a scalar flat metric conformal to

g with constant mean curvature on the boundary. In this problem, considered in

[Esc92a], the role of (1.0.1) is played by the Sobolev trace inequality on the half-

space H = {x1 > 0} ⊂ Rn for n ≥ 2, which states that

‖∇u‖Lp(H) ≥ Q ‖u‖
Lp
]
(∂H)

(1.1.3)

for all 1 ≤ p < n. Here, p] = (n − 1)p/(n − p) and Q = Q(n, p) is the optimal

constant. Escobar showed in [Esc88] that when p = 2, all extremal functions in

(1.1.3) are given by dilations, constant multiples, and translations by x0 ∈ H of the

function |x+e1|2−n. Beckner gave another proof in an unpublished note in 1987, later

expanded into [Bec93]. Both proofs, though different in nature, crucially exploit the

conformal invariance that is specific to the case p = 2. For the general case 1 < p < n,

it was not until [Naz06] that the function

UQ =
1

|x+ e1|(n−p)/(p−1)
(1.1.4)
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and its invariant scalings {c UQ(λ(x + x0)) : c ∈ R, λ ∈ R+, x0 ∈ H} were shown to

be extremals of (1.1.3), confirming a conjecture of Escobar in [Esc88].2 The proof used

a variant of the aforementioned optimal transport argument developed in [CENV04].

In Chapter 2, based on joint work with F. Maggi in [MN17], we prove a new one-

parameter family of sharp constrained Sobolev inequalities which interpolate between

the Sobolev inequality (1.0.1) and the Sobolev trace inequality (1.1.3), and charac-

terize all extremal functions in each inequality. More specifically, we consider the

following family of variational problems:

Φ(T ) = inf
{
‖∇u‖Lp(H) : ‖u‖Lp∗ (H) = 1, ‖u‖

Lp
]
(∂H)

= T
}

T ≥ 0 . (1.1.5)

We characterize minimizers in (1.1.5) for every T > 0 and every 1 ≤ p < n, and

then use this information to provide a qualitative description of the behavior of the

infimum value Φ(T ) as a function of T . For 1 < p < n, the characterization result

involves the following three families of functions:

Sobolev family: Let US be defined as in (1.1.1) and set, for every t ∈ R,

US,t(x) =
US(x− t e1)

‖US(id− t e1)‖Lp? (H)

x ∈ H ,

and

TS(t) = ‖US,t‖Lp] (∂H)
, GS(t) = ‖∇US,t‖Lp(H) .

2 The uniqueness of this family of extremals was left open in [Naz06], but was shown in [MN17];
see Appendix B.
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Escobar family: Letting UQ be as in (1.1.4), we set for every t < 0

UQ,t(x) =
UQ(x− t e1)

‖UQ(id− t e1)‖Lp? (H)

x ∈ H .

A simple computation shows that the trace and gradient norms of the UQ,t are inde-

pendent of t < 0, and we set

‖UQ,t‖Lp] (∂H)
= TQ , ‖∇UQ,t‖Lp(H) = GQ

for these constant values.

Beyond-Escobar family: We consider the function

UB(x) = (|x|p′ − 1)(p−n)/p |x| > 1 ,

and define, for every t < −1,

UB,t(x) =
UB(x− t e1)

‖UB(id− t e1)‖Lp? (H)

x ∈ H .

Correspondingly, for every t < −1, we set

TB(t) = ‖UB,t‖Lp] (∂H)
, GB(t) = ‖∇UB,t‖Lp(H) .

Theorem 1.1.1 (Existence and Characterization of Minimizers). Let n ≥ 2 and

p ∈ (1, n). For every T ∈ (0,+∞), a minimizer exists in the variational problem

(1.1.5) and is unique up to dilations and translations orthogonal to e1. More precisely:

(i) for every T ∈ (0, TQ), there exists a unique t ∈ R such that

T = TS(t) , Φ(T ) = GS(t) ,

and US,t is the uniquely minimizer in (1.1.5) up to dilations and translations

orthogonal to e1;
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(ii) if T = TQ, then, up to dilations and translations orthogonal to e1, {UQ,t : t < 0}

is the unique family of minimizers of (1.1.5);

(iii) for every T ∈ (TQ,+∞) there exists a unique t < −1 such that

T = TB(t) , Φ(T ) = GB(t) , (1.1.6)

and UB,t is the unique minimizer of (1.1.5) up to dilations and translations

orthogonal to e1.

As a consequence of Theorem 1.1.1, we obtain the sharp constants and characteriza-

tion of extremals for the following family of constrained Sobolev inequalities: for any

0 < T <∞,

‖∇u‖Lp(H) ≥ Φ(T )‖u‖Lp? (H) (1.1.7)

for all u ∈ Ẇ 1,p(H) with ‖u‖
Lp
]
(∂H)

/‖u‖Lp? (H) = T .

We also prove a qualitative description of Φ(T ) as a function of T ; see Theo-

rem 2.1.2.

Carlen and Loss first considered the variational problem (1.1.5) for p = 2 in [CL94],

where they characterize minimizers using their method of competing symmetries de-

veloped in [CL90b, CL90a, CL92]. Hence, Theorem 1.1.1 can be seen as a generaliza-

tion of [CL94] from the case p = 2 to the full range p ∈ (1, n). Their method, like the

results of [Esc88] and [Bec93] characterizing extremals in (1.1.3), relies in an essential

way on the conformal invariance that is present only in the case p = 2. In view of

these considerations, we prove Theorem 1.1.1 with a mass transportation argument

in the spirit of [CENV04].
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Chapter 3 deals with the question of stability for the Sobolev inequality on Rn, which

was first raised Brezis and Lieb in [BL85]. To quantify how close a function is to

achieving equality in (1.0.1), we define the deficit of a function u ∈ Ẇ 1,p(Rn) in the

Sobolev inequality by

δS(u) =
‖∇u‖pLp(Rn)

Sp‖u‖p
Lp∗ (Rn)

− 1.

Note that this nonnegative quantity vanishes if and only if u ∈M, withM as defined

in (1.1.2). For an appropriately defined distance d of u to the familyM, we seek an

inequality of the form

δS(u) ≥ ω(d(u)), (1.1.8)

where ω is a function such that ω(d(u))→ 0+ as d(u)→ 0+. Such an inequality can

be viewed as a quantitative form of the Sobolev inequality with ω(d(u)) serving as a

remainder term in (1.0.1): after rearranging, (1.1.8) becomes

‖∇u‖pLp(Rn) ≥ Sp‖u‖p
Lp? (Rn)

(1 + ω(d(u))) .

There are two natural distances to consider for 1 < p < n:

αS(u) = inf
U∈M

‖u− U‖Lp? (Rn)

‖u‖Lp? (Rn)

and

βS(u) = inf
U∈M

‖∇u−∇U‖Lp(Rn)

‖∇u‖Lp(Rn)

.

(1.1.9)

Note that βS(u) controls αS(u) and that βS(u) is the strongest notion of distance that

one expects to control by the deficit.

Stability for (1.0.1) was first shown by Bianchi and Egnell in [BE91] in the case p = 2.

They showed that δS(u) controls βS(u)2, providing a stability result that is optimal
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both in the strength of the distance and the rate of decay. At the core of their

proof is an analysis of the second variation of the deficit through a spectral analysis

of suitably weighted Laplace operator. Though these methods strongly exploit the

Hilbertian structure of Ẇ 1,2(Rn), we shall see in Chapter 3 that it is possible to

extend these ideas even when p 6= 2.

For p = 1, following earlier results in [Cia06] and [FMP07], it was shown in [FMP13]

that δS(u) controls the appropriate analogue3 of βS(u)2 using rearrangement tech-

niques and mass transportation theory. Again, this result is optimal both in the

strength of the distance and the exponent of decay.

The general case 1 < p < n is more difficult. In [CFMP09], Cianchi, Fusco, Maggi,

and Pratelli proved that the deficit controls αS(u) with a non-sharp exponent, combin-

ing symmetrization techniques and a one-dimensional mass transportation argument.

However, in view of [BE91] and [FMP13], one expects that the deficit should control

a power of βS(u). In Chapter 3, we show that this is true for p ≥ 2. More precisely,

the main result of the chapter, based on joint work with A. Figalli in [FN], states the

following:

Theorem 1.1.2. Let 2 ≤ p < n. There exists a constant C > 0, depending only on

p and n, such that for all u ∈ Ẇ 1,p(Rn),

βS(u)ζ ≤ CδS(u) , (1.1.10)

where ζ = p∗p
(
3 + 4p− 3p+1

n

)2
.

3 Since the extremals in (1.0.1) for p = 1 lie in the space BV (Rn) but not Ẇ 1,1(Rn), the distance
takes a slightly different form; see [FMP13].
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A key idea behind Theorem 1.1.2 is to introduce a Hilbertian structure to Ẇ 1,p(Rn)

by defining a different weighted L2-space for each U ∈M. In this way, we can analyze

the second variation using a spectral gap argument in the spirit of [BE91], though

the spectral analysis is somewhat delicate because we deal with a degenerate elliptic

operator. This approach does not directly lead to (1.1.10), since when p 6= 2, there are

certain terms in an expansion of the deficit that are in competition with the second

variation. To overcome these difficulties, we develop an interpolation argument that

makes use of the main result of [CFMP09]. We remark that ζ is likely not the optimal

rate of decay in (1.1.10), which is conjectured to be max{p, 2}; see [Fus15, Section

6].

The topic of stability for Sobolev-type inequalities has generated much interest in

recent years. In addition to the aforementioned papers, results of this type have been

addressed for the log-Sobolev inequality [IM14, BGRS14, FIL16], the higher order

Sobolev inequality [GW10, BWW03], the fractional Sobolev inequality [CFW13], the

Morrey-Sobolev inequality [Cia08] and the Gagliardo-Nirenberg-Sobolev inequality

[CF13, DT13, Ruf14, Ngu]. Apart from their intrinsic interest, these results can be

used to obtain quantitative rates of convergence for certain diffusion equations, as in

[CF13, Ngu].

1.2 Isoperimetric inequalities

Many physical phenomena are governed by the minimization of energies related to

surface area, so isoperimetric inequalities naturally come into play in a number
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of variational problems modeling these situations. In the description of systems

of an anisotropic nature, such as equilibrium configurations for solid crystals (see

[Wul01, Her51, Tay78]) and phase transitions (see [Gur85]), one must consider a gen-

eralization of the perimeter functional that is weighted to favor configurations where

the boundary of a set faces certain directions. The anisotropic surface energy of a set

E ⊂ Rn is defined by

F(E) =

∫
∂∗E

f(νE(x)) dHn−1(x)

for a convex positively 1-homogeneous function f : Rn → [0,+∞) that is positive on

Sn−1. (Here, ∂∗E is reduced boundary and the νE is the measure theoretic outer unit

normal; see Section 4.2.1.) Just as the ball minimizes perimeter among sets at fixed

volume, as expressed by (1.0.2), the surface energy is uniquely minimized among sets

of a given volume by translations and dilations of the bounded convex set K known

as the Wulff shape of F given by

K =
⋂

ν∈Sn−1

{x ∈ Rn : x · ν < f(ν)} .

The minimality of the Wulff shape is expressed by the Wulff inequality :

F(E) ≥ n|K|1/n|E|1/n′ , (1.2.1)

with equality if and only if E is a translation or dilation of K. This was first shown

in [Tay78] under certain assumptions, then in [Fon91, FM91, BM94]; see also [DP92,

DGS92]. Observe that the isoperimetric inequality is the particular case of the Wulff

inequality with f(x) = |x|.
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In the setting of the isoperimetric inequalities, the question of stability dates back

to the work of Bonnesen [Bon24] in the plane. To quantify how close a set is to

achieving equality in (4.1.1), we define the deficit of a set E to be the scaling invariant

quantity

δf (E) =
F(E)

n|K|1/n|E|1/n′
− 1 .

A natural and well-studied distance of a set E to the family of extremals is the

asymmetry index, αf (E), defined by

αf (E) = min
y∈Rn

{
|E∆(rK + y)|

|E|
: |rK| = |E|

}
, (1.2.2)

where E∆F = (E \F )∪(F \E) is the symmetric difference of E and F . This L1-type

distance plays the role of the functional αS(u) defined in (1.1.9). The quantitative

isoperimetric inequality with respect to the asymmetry index was proven in sharp

form by Fusco, Maggi, and Pratelli in [FMP08]. Using symmetrization techniques,

they showed that if E is a set of finite perimeter with 0 < |E| <∞, then

α1(E)2 ≤ C(n)δ1(E). (1.2.3)

Here and in the sequel, we use the notation δ1 and α1 for the deficit and asymmetry

index corresponding to the perimeter. Before this full proof of (1.2.3) was given,

several partial results were shown in [Fug89, Hal92, HHW91]. Another proof of (1.2.3)

was given in [CL12], introducing a technique known as the selection principle, where

a penalization technique and the regularity theory for almost-minimizers of perimeter

reduce the problem to the case shown in [Fug89].
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Stability of the Wulff inequality was first addressed in [EFT05], without the sharp

exponent. Figalli, Maggi, and Pratelli later proved the sharp version in [FMP10]

exploiting the mass transportation proof of (4.1.1) given in [BM94, MS86]. They

showed that there exists a constant C(n) such that

αf (E)2 ≤ C(n)δf (E) (1.2.4)

for any set of finite perimeter E with 0 < |E| < ∞. In both (1.2.3) and (1.2.4), the

power 2 is sharp.

In the aforementioned result of [Fug89], Fuglede proved (1.2.3) when ∂E is a small C1

perturbation of ∂B. Within this class of sets, Fuglede’s result is actually stronger: he

showed that δ1(E) controls a stronger distance, now known as the oscillation index

β1(E), defined by

β1(E) = min
y∈Rn

{(
|E|−1/n′

∫
∂∗E

1− νE(x) · x− y
|x− y|

dHn−1(x)
)1/2}

, (1.2.5)

which controls α1(E) and is the analogue of βS(u) in this setting. In [FJ14], Fusco

and Julin used a selection principle argument and the result of [Fug89] to improve

(1.2.3) by showing

α1(E)2 + β1(E)2 ≤ C(n)δ1(E) (1.2.6)

for any set of finite perimeter E with 0 < |E| < ∞. Once again, the power 2 in

(1.2.6) is sharp for both α1(E) and β1(E).

The main result of Chapter 4, based on [Neu16], is a strong-form stability result for the

Wulff inequality in the spirit of (1.2.6). Determining the appropriate analogue βf of
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the oscillation index is actually a subtle point (see Sections 4.1 and 4.6). After defining

it in Definition 4.1.2, we prove several stability results, which can be summarized in

the following statement:

Theorem 1.2.1. Fix n ≥ 2 and let F be an anisotropic surface energy. There exist

C = C(n, f) > 0 and α(n, f) > 0 such that

αf (E)2 + βf (E)α ≤ Cδf (E) (1.2.7)

for any set of finite perimeter E with 0 < |E| <∞.

There are two settings in which we obtain the sharp exponent α = 2: when f is

λ-elliptic, that is, f has sufficient regularity and convexity properties, or when n = 2

and f is crystalline, that is, the Wulff shape of K is a polygon. For an arbitrary

surface tension f , we obtain the likely non-optimal exponent α = 4n/(n+ 1), but can

prove the theorem with the constant C depending only on the dimension.

The proof of Theorem 1.2.1 uses a selection principle argument in the spirit of [CL12,

FJ14], which allows us to reduce to the case of sets which are almost-minimizers

of the anisotropic perimeter and are L1-close to K. However, a key component of

the selection principle is the regularity theory for almost-minimizers. For general

anisotropies, we are missing this component. In the case of a crystalline surface

tension in dimension 2, in lieu of the regularity theory, we use a rigidity result of

Figalli and Maggi in [FM11] which lets us assume that E is a convex polygon with

sides that align with those of K. For an arbitrary surface tension, density estimates

are the strongest regularity property that one can hope to extract, and so, pairing

these estimates with (1.2.4), we obtain the result with the non-sharp exponent.
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When f is λ-elliptic, almost-minimizers of the corresponding surface energy F do

enjoy strong regularity properties, so we may take ∂E to be a small C1 perturbation

of ∂K. We then prove the following analogue of Fuglede’s result in the anisotropic

case, which is interesting in its own right.

Proposition 1.2.2. Let f be λ-elliptic with corresponding surface energy F and

Wulff shape K. Let E be a set such that |E| = |K| and barE = barK, where

barE = |E|−1
∫
E
x dx denotes the barycenter of E. Suppose

∂E = {x+ u(x)νK(x) : x ∈ ∂K}

where u : ∂K → R is in C1(∂K). There exist C and ε1 depending on f such that if

‖u‖C1(∂K) ≤ ε1, then

‖u‖2
H1(∂K) ≤ Cδf (E). (1.2.8)

Fuglede proved Proposition 1.2.2 in the isotropic case using a spectral gap argument

much in the sprit of [BE91], strongly exploiting the fact that the eigenvalues and

eigenfunctions of the Laplacian on the sphere are explicitly known. At its core, the

proof of Proposition 1.2.2 also relies on a spectral gap, but nothing explicit can be

said about the spectrum of the elliptic differential operator on ∂K that plays the role

of the Laplacian on ∂B. In the absence of explicit spectral information, we instead

perform an implicit spectral analysis, using the main result of [FMP10] to establish

the existence of an appropriately placed spectral gap.

The study of stability for isoperimetric type inequalities has seen an explosion of

results in recent years. The literature is much too broad to account for here, so
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let us simply mention that analogous strong-form quantitative inequalities have re-

cently been studied in several settings: in Gaussian space [Eld15, BBJ], on the sphere

[BDF], and in hyperbolic n-space [BDS15]. We refer the reader to the recent survey

paper [Fus15] for a rather complete overview of contemporary stability results for

isoperimetric-type inequalities, and to [Oss79] for a survey of earlier results.
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Chapter 2

A bridge between the Sobolev and Sobolev trace
inequalities and beyond

2.1 Overview

2.1.1 A variational problem interpolating the Sobolev and Sobolev trace
inequalities

In this chapter,1 we illustrate a strong link between the Sobolev inequality on Rn

‖∇u‖Lp(Rn) ≥ S ‖u‖Lp? (Rn) p? =
np

n− p
, (2.1.1)

and the Sobolev trace inequality on the half-space H = {x1 > 0}

‖∇u‖Lp(H) ≥ Q ‖u‖
Lp
]
(∂H)

p] =
(n− 1)p

n− p
, (2.1.2)

where n ≥ 2 and p ∈ [1, n). These classical sharp inequalities both arise as particular

cases of the variational problem Φ(T ) = Φ(p)(T ) defined by

Φ(T ) = inf
{
‖∇u‖Lp(H) : ‖u‖Lp? (H) = 1 , ‖u‖

Lp
]
(∂H)

= T
}

T ≥ 0 , (2.1.3)

with T = 0 in the case of (2.1.1), and with T = TQ for a suitable TQ > 0 in the case

of (2.1.2). Our main result, Theorems 2.1.1 and 2.1.2, characterize the minimizers of

1This chapter is based on joint work with F. Maggi originally appearing in [MN17].
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Φ(T ) for every T > 0 and give a description of the behavior of Φ(T ) as a function of

T .

The cases p = 2 and p = 1 have interpretations in conformal geometry and in capil-

larity theory respectively. In particular, when p = 2, (2.1.3) amounts to minimizing

a total curvature functional among conformally flat metrics on H – see (2.1.26) be-

low. An interesting feature of this problem is that the corresponding minimizing

geometries change their character from spherical (for T ∈ (0, TQ)) to hyperbolic (for

T > TQ).

Let us start by setting our terminology and framework, focusing on the case p ∈

(1, n). We work with locally summable functions u ∈ L1
loc(Rn) that are vanishing at

infinity, that is, |{|u| > t}| < ∞ for every t > 0. If Du denotes the distributional

gradient of u, then the minimization in (2.1.3) is over functions with Du = ∇u dx

for ∇u ∈ Lp(H;Rn). We recall from the introduction that equality holds in (2.1.1) if

and only if there exist λ > 0 and z ∈ Rn such that

u(x) = λ(n−p)/p US(λ(x− z)) ∀x ∈ Rn , (2.1.4)

where

US(x) = (1 + |x|p′)(p−n)/p x ∈ Rn . (2.1.5)

(Here, as usual, p′ = p/(p− 1).) We also reacall that equality holds in (2.1.2) if and

only if there exist λ > 0 and z ∈ Rn with z1 < 0 such that

u(x) = λ(n−p)/p UQ(λ(x− z)) ∀x ∈ H , (2.1.6)
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where UQ is the fundamental solution of the p-Laplacian on Rn:

UQ(x) = |x|(p−n)/(p−1) , x ∈ Rn \ {0} . (2.1.7)

Referring to the monograph [Maz85] for a broader picture on Sobolev-type inequali-

ties, we now pass to the starting point of our analysis, which is the realization that

(2.1.1) and (2.1.2) can be “embedded” in the family of variational problems (2.1.3).

Indeed:

(a) The Sobolev inequality is essentially equivalent to the variational problem Φ(T )

with the choice T = 0. Indeed, if u = 0 on ∂H, then by applying (2.1.1) to the

zero extension of u outside of H, we find that Φ(0) ≥ S. Next, by considering an

appropriate sequence of scalings as in (2.1.4) multiplied by smooth cutoff functions,

we actually find that

Φ(0) = S .

The characterization of equality cases in (2.1.1) implies that Φ(0) does not admit

minimizers. However, a concentration-compactness argument shows that every min-

imizing sequence is asymptotically close to a sequence of optimal functions in the

Sobolev inequality that is either concentrating at an interior point of H or whose

peaks have distance from ∂H diverging to infinity. From this point of view, we con-

sider the variational problem

S = inf
{
‖∇u‖Lp(Rn) : ‖u‖Lp? (Rn) = 1

}
to be essentially equivalent to Φ(0).
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(b) The Sobolev trace inequality boils down to the variational problem Φ(T ) corre-

sponding to T = TQ for the constant

TQ = TQ(n, p) =
‖UQ‖Lp] ({x1=1})

‖UQ‖Lp? ({x1>1})
. (2.1.8)

Indeed, a simple scaling argument shows that, for every function u(x) as in (2.1.6),

one has
‖u‖

Lp
]
(∂H)

‖u‖Lp? (H)

= TQ

independently of the choices of λ and, more surprisingly, of z. Thus, by the definition

of TQ and the characterization of equality cases in (2.1.2), we have

‖u‖
Lp
]
(∂H)

= TQ for every u optimal function in (2.1.2) with ‖u‖Lp? (H) = 1 .

As a consequence,

Φ(TQ) = Q ,

and (the variational problem defined by) the Sobolev trace inequality is equivalent to

(2.1.3) with T = TQ.

2.1.2 What is known about Φ(T )

As discussed in the introduction, a full characterization of Φ(T ) in the important case

p = 2 was already given by Carlen and Loss in [CL94]. The situation is quite different

when p 6= 2. We now collect the information that, to the best of our knowledge, is all

that is presently known about Φ(T ). As we have just seen, Φ(0) = S by the Sobolev

inequality, and we have a global linear lower bound

Φ(T ) ≥ QT ∀T ≥ 0 , (2.1.9)
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with equality if T = TQ, thanks to the Sobolev trace inequality. Another piece of

information comes from the validity of the gradient domain inequality (see [MV08,

Section 7.2] for the terminology adopted here) on H:

‖∇u‖Lp(H) ≥ 2−1/n S ‖u‖Lp? (H) , (2.1.10)

with equality if and only if there exists λ > 0 such that

u(x) = λ(n−p)/p US(λx) ∀x ∈ Rn .

The validity of (2.1.10), with equality cases, follows immediately by applying the

Sobolev inequality (2.1.1) to the extension by reflection of u to Rn. The gradient

domain inequality implies that

Φ(T ) ≥ 2−1/n S , ∀T ≥ 0 (2.1.11)

with equality if and only if T = T0 where

T0 =
‖US‖Lp] (∂H)

‖US‖Lp? (H)

.

As we will prove later on (see Proposition 2.3.2(i)),

T0 < TQ ,

while clearly (by applying (2.1.10) to an optimal function for (2.1.2))

Φ(T0) = 2−1/n S < Q = Φ(TQ) . (2.1.12)

Next, we notice that, thanks to the divergence theorem and Hölder’s inequality, for

every non-negative u that is admissible in Φ(T ), we have∫
∂H

up
]

=

∫
∂H

up
]

(−e1) · νH = p]
∫
H

up
]−1(−∇u) · e1 < p]‖∇u‖Lp(H) ‖u‖p

?/p′

Lp? (H)
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where Hölder’s inequality must be strict (otherwise, u would just depend on x1, and

thus could not satisfy u ∈ Lp
?
(H)). As a consequence, we find that, with strict

inequality,

Φ(T ) >
T p

]

p]
∀T > 0 . (2.1.13)

Finally, given any open connected Lipschitz set Ω ⊂ Rn, let us set

ΦΩ(T ) = inf
{
‖∇u‖Lp(Ω) : ‖u‖Lp? (Ω) = 1 , ‖u‖

Lp
]
(∂Ω)

= T
}

T ≥ 0 ,

(so that ΦH = Φ by (2.1.3)), and define

ISO (Ω) =
P (Ω)

|Ω|(n−1)/n
.

With this notation, the Euclidean isoperimetric inequality takes the form

ISO (Ω) ≥ ISO (B1) , (2.1.14)

with equality if and only if Ω = BR(x) = {y ∈ Rn : |y−x| < R} for some x ∈ Rn and

R > 0. The following trace-Sobolev comparison theorem was proved in [MV05]:

ΦΩ(T ) ≥ ΦB1(T ) , ∀T ∈
[
0, ISO (B1)1/p]

]
, (2.1.15)

with the additional information that: (i) if 0 < T ≤ ISO (B1)1/p] , ΦΩ(T ) = ΦB1(T ),

and ΦΩ(T ) admits a minimizer, then Ω is a ball; (ii) ΦB1 is strictly concave (and

decreasing) on [0, ISO (B1)1/p] ]. Notice that (2.1.15) cannot hold on a larger interval

of T s: indeed, ΦB1(T ) = 0 forces T = ISO (B1)1/p] , and so if Ω is not a ball and thus

ISO (Ω) > ISO (B1), then

ΦB1(ISO (Ω)1/p]) > 0 = ΦΩ(ISO (Ω)1/p]) .
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This said, we can apply (2.1.15) with Ω = H to obtain an additional lower bound on

Φ on the interval [0, ISO (B1)1/p] ].

The constant lower bound given in (2.1.11) is actually stronger than the other three

lower bounds for some values of T . Indeed, there exists δ > 0 such that

Φ(T0) > max
{

1
[0,ISO (B1)1/p

]
]
(T )ΦB1(T ) , Q T ,

T p
]

p]

}
if |T − T0| < δ . (2.1.16)

By continuity, it suffices to check this assertion at T = T0, and since (2.1.13) is

strict for every T > 0, we only need to worry about (2.1.9) and (2.1.15). The fact

that Φ(T0) > ΦB1(T0) if T0 ≤ ISO (B1)1/p] follows by property (i) after (2.1.15) and

from the existence of a minimizer for Φ(T0) shown in Theorem 2.1.1 below. At the

same time, Φ(T0) > QT0, for otherwise, the explicit minimizer in Φ(T0), that is the

“half-Sobolev optimizer” US,0 (see (2.1.17) below), would be optimal in (2.1.2), contra-

dicting the characterization of equality cases for (2.1.2) (which is already implicitly

contained in [Naz06], and is rigorously established in here). This proves (2.1.16).

We thus find the qualitative picture of the known lower bounds on Φ(T ) depicted in

Figure 2.1.

2.1.3 Main results

Our main result consists of characterizing minimizers in Φ(T ) for every T > 0, and

then using this knowledge to give a qualitative description of the behavior of Φ(T ).

Let us recall from three families of functions involved in the characterizaion:
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TTQISO (B1)1/p
]

S

2−1/n S

T0

G = ΦB1
(T )

G = T p]

/p]

G

G = QT

G = 2−1/n S

T = 0

Figure 2.1: A qualitative picture of the known lower bounds on Φ(T ). The picture gives
sharp information only for three values of T , namely 0, T0, and TQ, which are depicted by
black squares.

Sobolev family: Let US be defined as in (2.1.5) and set, for every t ∈ R,

US,t(x) =
US(x− t e1)

‖US(id− t e1)‖Lp? (H)

x ∈ H , (2.1.17)

and

TS(t) = ‖US,t‖Lp] (∂H)
, GS(t) = ‖∇US,t‖Lp(H) . (2.1.18)

Thus, US,t is a translation of the optimal function US in the Sobolev inequality so that

its maximum point lies at signed distance t from ∂H, normalized to have Lp?-norm

in H equal to 1.

Escobar family: Letting UQ be as in (2.1.7), we set for every t < 0

UQ,t(x) =
UQ(x− t e1)

‖UQ(id− t e1)‖Lp? (H)

x ∈ H . (2.1.19)

As noticed before, a simple computation (factoring out |t| from |x − t e1| and then

changing variables y = −x/t) shows that the trace and gradient norms of the UQ,t
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are independent of t < 0, and we set

‖UQ,t‖Lp] (∂H)
= TQ , ‖∇UQ,t‖Lp(H) = GQ (2.1.20)

for these constant values. Each function UQ,t is thus obtained by centering the funda-

mental solution of the p-Laplacian outside of H, and then by normalizing its Lp?-norm

in H.

Beyond-Escobar family: We consider the function

UB(x) = (|x|p′ − 1)(p−n)/p |x| > 1 , (2.1.21)

and define, for every t < −1,

UB,t(x) =
UB(x− t e1)

‖UB(id− t e1)‖Lp? (H)

x ∈ H .

Correspondingly, for every t < −1, we set

TB(t) = ‖UB,t‖Lp] (∂H)
, GB(t) = ‖∇UB,t‖Lp(H) . (2.1.22)

As the name of this family of functions suggests, we later prove that TB(t) > TQ for

every t < −1, so that {UB(t)}t<−1 enters the description of Φ(T ) for T > TQ. Notice

that (2.1.21) defines a function on the complement of the unit ball. The function UB,t

is thus obtained by centering this unit ball outside of H, at distance |t| from ∂H, and

the by normalizing its tail to have unit Lp?-norm in H.

Theorem 2.1.1 (Characterization of minimizers of Φ(T )). If n ≥ 2 and p ∈ (1, n),

then for every T > 0, there exists a minimizer in Φ(T ) that is unique up to dilations

and translations orthogonal to e1. More precisely:
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(i) the function TS(t) is strictly decreasing on R with range (0, TQ) and with TS(0) =

T0 < TQ; in particular, for every T ∈ (0, TQ), there exists a unique t ∈ R such

that

T = TS(t) Φ(T ) = GS(t) (2.1.23)

and US,t uniquely minimizes Φ(T ) up to dilations and translations orthogonal

to e1;

(ii) if T = TQ, then, up to dilations and translations orthogonal to e1, {UQ,t : t < 0}

is the unique family of minimizers of Φ(TQ);

(iii) the function TB(t) is strictly increasing on (−∞,−1) with range (TQ,+∞); in

particular, for every T > TQ there exists a unique t < −1 such that

T = TB(t) Φ(T ) = GB(t) (2.1.24)

and UB,t uniquely minimizes Φ(T ) up to dilations and translations orthogonal

to e1.

Theorem 2.1.1 provides an implicit description of Φ on [0,∞), and extends the Carlen–

Loss theorem [CL94] from the case p = 2 to the full range p ∈ (1, n). Notice that an

implicit description of ΦB1 on the interval [0, ISO (B1)1/p] ] was obtained in [MV05],

and was at the basis of the further results obtained therein. (No characterization of

ΦB1 for T > ISO (B1)1/p] seems to be known.) Starting from the characterization of

Φ obtained in Theorem 2.1.1, we can obtain a quite complete picture of its properties,

which is stated in the next result and illustrated in Figure 2.2.
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G = Φ(T )

TQ T

G

ISO (B1)1/p
]

G = QT

2−1/n S

S

G = T p]

/p]

T0

G = 2−1/n S

T = 0

Figure 2.2: A qualitative picture of Theorem 2.1.2, which improves on the situation depicted
in Figure 2.1. First, since in Theorem 2.1.1 we have proved that Φ(T ) always admits
minimizers, we are sure that Φ(T ) > ΦB1(T ) for every T ∈ [0, ISO (B1)1/p] ], that is to
say, the comparison theorem (2.1.15) is never optimal (but at T = 0). Notice also that
the divergence theorem lower bound (2.1.13) turns out to be sharp, and is asymptotically
saturated by the functions UB,t as t→ 1−.

Theorem 2.1.2 (Properties of Φ(T )). If n ≥ 2 and p ∈ (1, n), then Φ(T ) is differen-

tiable on (0,∞), it is strictly decreasing on (0, T0) with Φ(0) = S and Φ(T0) = 2−1/n S

and strictly increasing on (T0,∞) with

Φ(T ) =
T p

]

p]
+ o(1) as T →∞ . (2.1.25)

Moreover, Φ(T ) is strictly convex on (T0,+∞), and there exists T∗ ∈ (0, T0) such that

Φ(T ) is strictly concave on (0, T∗).

We see from (2.1.25) that the lower bound (2.1.13) is saturated asymptotically as

T → ∞. A simple but interesting corollary of the characterization result obtained

in Theorem 2.1.1 is the following comparison theorem, which is complementary to

(2.1.15), the main result in [MV05].
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Corollary 2.1.3 (Half-spaces have the best Sobolev inequalities). If Ω is a non-empty

open set with Lipschitz boundary on Rn, then

ΦΩ(T ) ≤ Φ(T ) ∀T ≥ 0 .

We now comment on the meaning of these theorems in the geometrically relevant

cases p = 2 and p = 1.

2.1.4 The special case p = 2

In this case, which implicitly requires n ≥ 3, (2.1.3) can be reformulated as a family

of minimization problems on conformally flat metrics on H,

Ψ(P ) = inf
{∫

H

Ru dvol u + 2 (n− 1)

∫
∂H

hu dσu : vol u(H) = 1 , Pu(H) = P
}
,

(2.1.26)

for P ≥ 0, which is related to the Yamabe problem on manifolds with boundary stud-

ied in the classical papers [Esc88, Esc92a, Esc92b]. Here, we view H as a conformally

flat Riemannian manifold with boundary, endowed with the metric u4/(n−2) δ, where

δ is the standard Euclidean metric. The volume and perimeter of a set Ω ⊂ H with

respect to this metric are computed as

vol u(Ω) =

∫
Ω

u2? dx, Pu(Ω) =

∫
∂Ω

u2] dHn−1 , (2.1.27)

while Ru(x) and hu(x) stand, respectively, for the scalar curvature of (H, u4/(n−2) δ)

at x ∈ H, and the mean curvature of ∂H in (H, u4/(n−2) δ) at x ∈ ∂H computed with

respect to the outer unit normal νH to H. Explicitly,

Ru = −4(n− 1)

n− 2

∆u

u(n+2)/(n−2)
, hu = − 2

n− 2

1

un/(n−2)

∂u

∂x1

. (2.1.28)
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An integration by parts thus gives∫
H

|∇u|2 = −
∫
H

u∆u−
∫
∂H

u
∂u

∂x1

=
n− 2

4(n− 1)

∫
H

Ru dvol u +
n− 2

2

∫
∂H

hu dσu .

In this way, we see the equivalence of the problems (2.1.3) when p = 2 and (2.1.26)

through the identities

Φ(2)(T ) =
( n− 2

4(n− 1)

)1/2

Ψ(T 2])1/2 Ψ(P ) =
4(n− 1)

n− 2
Φ(2)(P 1/2])2 ,

A standard argument shows that if u is a positive minimizer for Φ(T ) (with a generic

p ∈ (1, n)), then there exist λ, σ ∈ R such that{
−∆pu = λup

?−1 in H
−|∇u|p−2∂x1u = σup

]−1 on ∂H .

This basic fact, applied with p = 2, implies that every minimizer in the variational

problem (2.1.26) is a conformally flat metric on H with constant scalar curvature

and with boundary of constant mean curvature. By [CL94, Theorem 3.1], or with an

alternative proof, by Theorem 2.1.1 with p = 2, every minimizer actually has constant

sectional curvature. Indeed, as a by-product of the characterization of minimizers of

{Φ(T )}T≥0, we deduce that, as P increases from 0 to PQ = T 2]

Q , minimizing metrics in

(2.1.26) correspond to spherical caps of decreasing radii rescaled to unit volume. Their

sectional curvature will be constant and positive along the way, while the constant

mean curvature of the boundaries will initially be negative and then change sign in

correspondence to hemispheres (P = P0 = T 2]

0 ). Then, as P increases from PQ to +∞,

minimizing metrics in (2.1.26) correspond to suitable sections of the hyperbolic space,
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all with constant negative sectional curvature and constant positive mean curvature

of the boundary. Thus, we have a transition from spherical to hyperbolic geometry

along minimizing metrics in (2.1.26). These results are summarized in the following

statement:

Theorem 2.1.4 (Theorem 3.1 in [CL94] or Theorem 2.1.1 with p = 2). For each

P > 0, a minimizing conformal metric gP exists in (2.1.26) and is given, uniquely up

to dilations and translations orthogonal to e1, by

U
4/(n−2)
S,t δ for some t ∈ R if P ∈ (0, PQ) ,

U
4/(n−2)
Q,t δ for any t < 0 if P = PQ ,

U
4/(n−2)
B,t δ for some t < −1 if P ∈ (PQ,∞) .

For P ∈ (0, PQ), (H, gP ) is isometric to a spherical cap (Σ, g0) with the standard

metric induced by the embedding Sn ↪→ Rn+1 whose radius is determined by P ; con-

sequently, it has constant positive sectional curvature. The mean curvature of ∂H

is constant and negative for 0 < P < P0 = T 2]

0 and is constant and positive for

P0 < P < PsQ .

For P = PQ, (H, gP ) has zero sectional curvature and constant positive mean curva-

ture of ∂H.

For P ∈ (PQ,∞), (H, gP ) has constant negative sectional curvature and is therefore

a model for hyperbolic space. The mean curvature of ∂H is constant and positive.
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2.1.5 The special case p = 1

In this case, the minimization in (2.1.3) takes place in the class of those u ∈ L1
loc(H),

vanishing at infinity, and whose distributional gradient Du is a measure on H with

finite total variation, |Du|(H) <∞. We thus consider the problems

Φ(T ) = inf
{
|Du|(H) : ‖u‖Ln/(n−1)(H) = 1 , ‖u‖L1(∂H) = T

}
T ≥ 0 . (2.1.29)

In the restricted class of characteristic functions u = 1X forX ⊂ H, this is the relative

isoperimetric problem in H with an additional constraint (aside from the unit volume

constraint) on the contact region between the boundary of X and the boundary of

H. In the notation of distributional perimeters, this restricted problem takes the

form

Φsets(T ) = inf
{
P (X;H) : X ⊂ H , |X| = 1 , P (X; ∂H) = T

}
T ≥ 0 , (2.1.30)

where P (X;A) = Hn−1(A ∩ ∂X) whenever X is an open set with Lipschitz bound-

ary. The unique minimizers in (2.1.30) are obtained by intersecting H with balls (of

suitable radius and centered at suitable distance from ∂H); see, e.g., [Mag12, The-

orem 19.15], which also describes the relevance of (2.1.30) in capillarity theory. In

the original problem (2.1.29), one obtains scaled versions of the characteristic func-

tions of these sets as minimizers; precisely, u is a minimizer in (2.1.29) if and only if

u(x) = λn−1 1X(λx) for some λ > 0 and X a minimizer in (2.1.30). When T = 0,

(2.1.30) is simply the Euclidean isoperimetric problem, and (2.1.29) is the Sobolev in-

equality on functions of bounded variation. Notice that the Sobolev trace inequality,

in the case p = 1, takes the simple form

|Du|(H) ≥ ‖u‖L1(∂H) (2.1.31)
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or, in more geometric terms, that is, for u = 1X with X ⊂ H,

P (X;H) ≥ P (X; ∂H) .

Along the lines of (2.1.13), this follows by simply applying the divergence theorem

on X to the constant vector field T (x) = e1 to get

0 =

∫
X

div (e1) =

∫
H∩∂X

νX · e1 +

∫
∂H∩∂X

(−e1) · e1 < P (X;H)− P (X; ∂H)

where the inequality is strict as soon as |X| > 0. The proof of (2.1.31) is analogous,

and in particular, there is no nontrivial equality case in (2.1.31). In the case p = 1,

Theorems 2.1.1 and Theorem 2.1.2 take the following form.

Theorem 2.1.5. For every n ≥ 2 and T > 0 there exists a minimizer in (2.1.29),

which is given, uniquely up to dilations and translations orthogonal to e1, by

US,t(x) =
1B1(x− t e1)

‖1B1(· − t e1)‖Ln′ (H)

x ∈ H

for some t ∈ (−1, 1). The function Φ(T ) defined by (2.1.29) is a smooth function of

T > 0 given by the parametric curve

Φ(TS(t)) = GS(t) − 1 < t < −1 ,

where TS(t) = ‖US,t‖L1(∂H) and GS(t) = |DUS,t|(H). If we set T0 = TS(0), then

Φ(T ) is strictly decreasing on (0, T0) and strictly increasing on (T0,∞), with Φ(0) =

ISO (B1) and Φ(T0) = 2−1/nISO (B1). Moreover, Φ is strictly convex on (T0,∞), there

exists T∗ ∈ (0, T0) such that Φ(T ) is strictly concave on (0, T∗), and Φ(T ) = T + o(1)

as T →∞.
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We note that in the case p = 1, we have a single minimizing family, corresponding to

the Sobolev family of the case p ∈ (1, n), but no Escobar or beyond-Escobar families.

This is a reflection of the fact that

lim
p→1+

TQ(n, p) =∞ ,

proven in Proposition 2.3.4 below. This fact indicates that no analogues of the Escobar

or beyond-Escobar families exist for p = 1. In the same vein, one notices that the Φ

curve asymptotically has the same slope (equal to 1) as the (limit position as p→ 1+

of the) Sobolev trace line.

2.1.6 Organization of the chapter

In Section 2.2, we use a mass transportation argument to prove a family of inequalities

which will serve as a key tool for proving the main results. In Section 2.3, we prove

Theorems 2.1.1, 2.1.2, and 2.1.5. Finally, in Appendix A, we address some technical

points related to the mass transportation argument.

2.2 Mass transportation argument

The starting point of our analysis is the mass transportation proof of the Sobolev

inequality from [CENV04]. This argument, whose origin can be traced back to

[Kno57, MS86], was exploited in [MV05] to prove a parameterized “mother family”

of trace Sobolev inequalities on arbitrary Lipschitz domains, leading to the sharp

comparison theorem stated in (2.1.15). In [Naz06], this method of proof is adapted

to obtain the sharp Sobolev trace inequality for every p ∈ (1, n). It is important
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to mention that, as already shown in [CENV04] (see also [AGK04, MV08, Ngu15]),

this optimal transportation argument can also be applied to a very interesting special

family of Gagliardo–Nirenberg inequalities, having some Faber-Krahn and log-Sobolev

inequalities as limit cases.

At the core of this paper is a new iteration of this by-now-classical mass transporta-

tion argument. This iteration lies in between the ones of [MV05] and [Naz06]. In

Theorem 2.2.1 we implement the same trick introduced in [Naz06], namely subtract-

ing a unit vector from the Brenier map, but with the seemingly harmless addition of

an intensity parameter t. (To be precise, the argument in [Naz06] corresponds to the

choice t = −1 in the proof of Theorem 2.2.1.) This simple expedient leads to a new

parameterized “mother family” of Sobolev trace–type inequalities on the half-space,

whose equality cases (see Theorem 2.2.3 below) are given by the functions US,t, UQ,t

and UB,t introduced in (2.1.17), (2.1.19) and (2.1.21). This means that each inequality

in the mother family provides a sharp trace-Sobolev bound, which thus agrees with

Φ(T ) for a specific value of T depending on t. By adopting the same point of view

of [MV05], where the Φ-function of the ball was computed for a special range of T ,

in Section 2.3 we exploit this implicit description of Φ(T ) in order to prove Theorem

2.1.1.

Let us now recall some facts from the theory of optimal transportation. Given a (Borel

regular) probability measure µ on Rn and a Borel measurable map T : Rn → Rn, the

push-forward of µ through T is the probability measure defined by

T#µ(A) = µ(T−1(A)) ∀A ⊂ Rn.
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As a consequence of this definition, for every Borel measurable function ξ : Rn →

[0,∞] we have ∫
Rn
ξ dT#µ =

∫
Rn
ξ ◦ T dµ . (2.2.1)

If F dx and Gdx are absolutely continuous probability measures on Rn, then the

Brenier-McCann theorem (see [Bre91, McC97] or [Vil03, Cor. 2.30]) ensures the

existence of a lower semicontinuous convex function ϕ : Rn → R ∪ {+∞} such

that

(∇ϕ)#F dx = Gdx . (2.2.2)

By convexity, ϕ is differentiable a.e. on the open convex set Ω defined as the interior

of {ϕ <∞}, its gradient satisfies

∇ϕ ∈ (BV ∩ L∞)loc(Ω;Rn) ,

and F dx is concentrated on Ω with

spt(Gdx) = ∇ϕ(spt(F dx)) , (2.2.3)

thanks to (2.2.2). The map T = ∇ϕ is called the Brenier map between F dx and Gdx,

and, as shown in [McC97] (cf. [Vil03, Theorem 4.8]), it satisfies the Monge-Ampere

equation

F (x) = G(∇ϕ(x)) det∇2ϕ(x) a.e. on spt(F dx) . (2.2.4)

Notice that the distributional gradient DT of T is an n× n-symmetric tensor valued

Radon measure on Ω. In (2.2.4) we have set ∇2ϕ = ∇T where DT = ∇T dx + DsT

is the decomposition of DT with respect to the Lebesgue measure on Ω. Notice that
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∇T dx ≤ DT on Ω, and thus, setting div T = tr(∇T ) and denoting by Div T the

distributional divergence of T , we have

div T dx ≤ Div T as measures on Ω .

Since ∇T (x) is positive semidefinite, by the arithmetic-geometric mean inequal-

ity,

(det∇2ϕ(x))1/n = (det∇T (x))1/n ≤ div T (x)

n
for a.e. x ∈ Ω ,

we finally conclude that

(det∇2ϕ)1/n dx ≤ Div T

n
as measures on Ω . (2.2.5)

Theorem 2.2.1. If n ≥ 2, p ∈ [1, n), and f and g are non-negative functions in

L1
loc(H), vanishing at infinity, with

∫
H
|∇f |p <∞ and

∫
H
|x|p′gp? <∞ if p > 1

|Df |(H) <∞ and spt g ⊂⊂ H if p = 1

‖f‖Lp? (H) = ‖g‖Lp? (H) = 1

(2.2.6)

then for every t ∈ R, we have

n

∫
H

gp
]

dx ≤ p]‖∇f‖Lp(H)Y (t, g) + t

∫
∂H

fp
]

dHn−1 (2.2.7)

where we let

Y (t, g) =


(∫

H
gp

?|x− t e1|p
′
dx
)1/p′

if p > 1 ,

sup{|x− t e1| : x ∈ spt(g)} if p = 1 ,
(2.2.8)

and where ‖∇f‖Lp(H) is replaced by |Df |(H) when p = 1.
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Remark 2.2.2. Let us first recall that the assumption that f is vanishing at infinity

means that |{f > t}| < ∞ for every t > 0. Next we notice that, by (2.1.2), (2.2.6)

implies f ∈ Lp
]
(∂H), so that the multiplication by a possibly negative t on the

right-hand side of (2.2.7) is of no concern. Finally, we notice that (2.2.7) implies

that g ∈ Lp
]
(H), but this fact can be more directly deduced by means of Hölder’s

inequality from the assumptions on g stated in (2.2.6).

Proof. Arguing by approximation, it suffices to prove (2.2.7) when f ∈ C1
c (H) (that

is, f admits an extension in C1
c (Rn)). Let us set F = 1H f

p? and G = 1H g
p? and

consider the Brenier map ∇ϕ between the probability measures F dx and Gdx. In

this way, T = ∇ϕ ∈ (BV ∩ L∞)loc(Ω;Rn) with Ω defined as above and F dx is

concentrated on Ω. By (2.2.2), (2.2.1) (applied with ξ = 1{G>0}G
−1/n), (2.2.4) and

(2.2.5) respectively, we have∫
H

gp
]

=

∫
Rn
G1−1/n =

∫
Rn
G(∇ϕ)−1/nF

=

∫
Rn

(det∇2ϕ)1/nF 1−1/n ≤ 1

n

∫
Rn
F 1−1/n d(div T ) .

(2.2.9)

We subtract the divergence-free vector field t e1 from T ,∫
Rn
F 1−1/n d(Div T ) =

∫
H

fp
]

d(DivS) , S = T − t e1 ,

where S ∈ (BV ∩ L∞)loc(Ω;Rn). By the trace theorem for BV functions (see e.g.

[EG92, Theorem 1, p.177]), S has a trace S ∈ L1
loc(Ω ∩ ∂H) such that∫

H

ψ d(DivS) = −
∫
H

∇ψ · S −
∫
∂H

ψ (S · e1) , ∀ψ ∈ C1
c (Ω ∩H) .

37



We now use the assumption that f ∈ C1
c (H), along with the fact that F dx is con-

centrated on Ω, to apply this identity with ψ = fp
] . In this way, we find∫

H

fp
]

d(divS) = −p]
∫
H

fp
]−1∇f · S dx−

∫
∂H

fp
]

S · e1dHn−1 .

Since T (spt(F dx)) = spt(Gdx) ⊂ H, by standard properties of the trace operator

we have S(x) · (−e1) ≤ t for Hn−1-a.e. on x ∈ spt(f) ∩ ∂H. So, in summary,

n

∫
H

gp
] ≤ −p]

∫
H

fp
]−1∇f · (T − t e1) + t

∫
∂H

fp
]

dHn−1 . (2.2.10)

Finally, we bound the first term on the right hand side of (2.2.10). In the case that

p ∈ (1, n), by using Hölder’s inequality and the transport condition (2.2.1) we find

−p]
∫
H

fp
]−1∇f · (T − t e1) ≤ p]‖∇f‖Lp(H)

(∫
H

fp
?|T (x)− t e1|p

′
dx
)1/p′

= p]‖∇f‖Lp(H)

(∫
H

gp
?|x− t e1|p

′
dx
)1/p′

. (2.2.11)

Combining this with (2.2.10) implies (2.2.7). In the case p = 1, in place of Hölder’s

inequality, we simply use (2.2.3) and the fact that p] = 1 to bound the left-hand side

of (2.2.11) by Y (t, g) |Df |(H).

In order to analyze the mother family of inequalities of Theorem 2.2.1 we will need

a characterization of the corresponding equality cases, which involves the functions

US,t, UQ,t and UB,t previously introduced in (2.1.17), (2.1.19) and (2.1.21). Following

[CENV04], given two non-negative measurable functions f and g, we call f a dilation-

translation image of g if there exist C > 0, λ 6= 0, and x0 ∈ Rn such that f(x) =

Cg(λ(x − x0)). Since (2.2.7) is not invariant with respect to translations in the e1

direction, we distinguish that f is a dilation-translation image of g orthogonal to e1 if

38



f is a dilation-translation image of g with x0 ·e1 = 0. If
∫
H
fp

?
dx =

∫
H
gp

?
dx and f is

a dilation-translation image of g orthogonal to e1, then C must be equal to λ(n−p)/n,

and the Brenier map pushing forward fp
?
dx onto gp? dx satisfies ∇ϕ = λ(Id − x0)

with x0 ·e1 = 0. With this terminology at hand, we state the required characterization

theorem:

Theorem 2.2.3. Under the same assumptions of Theorem 2.2.1, suppose that

n

∫
H

gp
]

dx = p]‖∇f‖Lp(H)Y (t, g) + t

∫
∂H

fp
]

dHn−1 ,

∫
∂H

fp
]

> 0 , (2.2.12)

where |Df |(H) replaces ‖∇f‖Lp(H) when p = 1.

If p ∈ (1, n), then (2.2.12) holds for t ≥ 0 if and only if f and g are both dilation-

translation images orthogonal to e1 of US,t; and for t < 0 if and only if f and g are

both dilation-translation images orthogonal to e1 of either US,t, UQ,t, or UB,t.

If p = 1, then (2.2.12) can hold only for t ∈ (−1, 1). For such t, (2.2.12) holds if and

only if f and g are dilation-translation images orthogonal to e1 of US,t.

It is easily verified that the aforementioned functions are equality cases of (2.2.12).

The uniqueness Theorem 2.2.3 is a technical variant of a similar argument from

[CENV04], we postpone its discussion to Appendix A.

2.3 Study of the variational problem Φ(T )

By Theorem 2.2.3, if equality is achieved in the mother inequality (2.2.7) by a triple

(t, f, g) with
∫
∂H
fp

]
> 0, then we have

f = g = US,t or f = g = UQ,t or f = g = UB,t

39



(with the second and third possibilities only when t < 0 or t < −1 respectively).

The same scaling argument used in (2.1.20) shows that Y (t, UQ,t) = |t|YQ, where we

let YQ = Y (−1, UQ,−1) and Y (t, g) be as defined in (2.2.8). Therefore, recalling the

notation of (2.1.20), equality in (2.2.7) for the Escobar family implies that

n

∫
H

Up]

Q,t dx = −tp]GQYQ + t T p
]

Q ∀t < 0 . (2.3.1)

Similarly, let us define the functions

YS(t) = Y (t, US,t) and YB(t) = Y (t, UB,t) .

Then, recalling the definitions in (2.1.18) and (2.1.22), equality in (2.2.7) for the

Sobolev and beyond-Escobar families implies the identities

n

∫
H

Up]

S,t dx = p]GS(t)YS(t) + t TS(t)p
] ∀t ∈ R ,

n

∫
H

Up]

B,t dx = p]GB(t)YB(t) + t TB(t)p
] ∀t < −1 .

(2.3.2)

From (2.3.1) and (2.3.2), Theorems 2.2.1 and 2.2.3 yield the following corollary.

Corollary 2.3.1. If h ∈ L1
loc(H) is a non-negative function vanishing at infinity with

∇h ∈ Lp(H;Rn) and ‖h‖Lp? (H) = 1, then,

p]YS(t)GS(t) + t TS(t)p
] ≤ p]YS(t)‖∇h‖Lp(H) + t ‖h‖p

]

Lp
]
(∂H)

∀t ∈ R , (2.3.3)

p]YB(t)GB(t) + t TB(t)p
] ≤ p]YB(t)‖∇h‖Lp(H) + t ‖h‖p

]

Lp
]
(∂H)

∀t < −1 , (2.3.4)

p]YQGQ − T p
]

Q ≤ p]YQ‖∇h‖Lp(H) − ‖h‖p
]

Lp
]
(∂H)

. (2.3.5)

Furthermore, equality in (2.3.3) (resp. (2.3.4), (2.3.5)) is attained if and only if h is

a dilation-translation image orthogonal to e1 of US,t (resp. UB,t, UQ,t). Particularly,

‖h‖
Lp
]
(∂H)

= TS(t) =⇒ GS(t) ≤ ‖∇h‖Lp(H) ;
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‖h‖
Lp
]
(∂H)

= TB(t) =⇒ GB(t) ≤ ‖∇h‖Lp(H) ;

‖h‖
Lp
]
(∂H)

= TQ =⇒ GQ ≤ ‖∇h‖Lp(H) ,

and the following identities hold

Φ(TS(t)) = GS(t) ∀t ∈ R ,

Φ(TB(t)) = GB(t) ∀t < 0 ,

Φ(TQ) = GQ .

(2.3.6)

Next, we prove some properties of the Sobolev and beyond-Escobar families.

Proposition 2.3.2. The following properties hold:

(i) TS is strictly decreasing on R with range (0, TQ), and TS(0) = T0 < TQ;

(ii) GS is strictly increasing on [0,∞) with range [2−1/nS,GQ), and is strictly de-

creasing on (−∞, 0) with range (2−1/nS,GQ);

(iii) TB(t) is strictly increasing for t < −1 with range (TQ,∞);

(iv) GB(t) is strictly increasing for t < −1 with range (GQ,∞).

Proof. Step 1: Monotonicity of TS(t) and TB(t). Fix t1, t2 ∈ R and suppose TS(t1) =

TS(t2) = T. Then, (2.3.3) implies that

p]YS(t1)GS(t1) + t1T
p] ≤ p]YS(t1)GS(t2) + t1T

p] , thus GS(t1) ≤ GS(t2), and

p]YS(t2)GS(t2) + t2T
p] ≤ p]YS(t2)GS(t1) + t2T

p] , thus GS(t2) ≤ GS(t1).

That is, GS(t1) = GS(t2) = G. Hence, US,t2 attains equality in (2.3.3) with t = t1.

Uniqueness in (2.3.3) then implies that t1 = t2. We conclude that TS(t) is injective,
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and, as TS(t) is continuous, it is strictly monotone for t ∈ R. The identical argument

using (2.3.4) shows that TB is strictly monotone for all t < −1.

Step 2: Piecewise monotonicity of GS(t) and GB(t). Fix t1, t2 ≥ 0 and suppose that

GS(t1) = GS(t2) = G. Then, (2.3.3) implies that

p]YS(t1)G+ t1TS(t1)p
] ≤ p]YS(t1)G+ t1TS(t2)p

]

, thus TS(t1) ≤ TS(t2), and

p]YS(t2)G+ t2TS(t2)p
] ≤ p]YS(t2)G+ t2TS(t1)p

]

, thus TS(t2) ≤ TS(t1).

Since TS(t) is injective, we conclude that t1 = t2. Thus, GS(t) is strictly monotone

for t ≥ 0. The analogous argument shows that GS(t) is strictly monotone for t < 0

and that GB(t) is strictly monotone for t < −1.

Step 3: Limit values of TS(t) and GS(t). As US,t is a renormalized translation of

the optimal function US in (2.1.1), centered at t e1, it is clear that TS(t) → 0 and

GS(t)→ S as t→∞. To compute the limit as t→ −∞, let us set

γt(x) = (1 + |x− t e1|p
′
)−1 = |t|−p′ (|t|−p′ + |y + e1|p

′
)−1

for t < 0 and y = −x/t. With this notation,

TS(t) =

( ∫
∂H
γn−1
t dHn−1

)1/p]( ∫
H
γnt dx

)1/p?
, GS(t) =

(n− p)
( ∫

H
γnt |x− t e1|p

′
dx
)1/p

(p− 1)
( ∫

H
γnt dx

)1/p?
. (2.3.7)

Now, suppose t < 0 and let σ = −(n−p)/(p−1). After factoring out −t and changing

variables, we find that∫
∂H

γn−1
t dHn−1 = |t|−p′(n−1)+(n−1)

∫
∂H

(|t|−p′ + |y + e1|p
′
)−(n−1) dHn−1

y ,
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∫
H

γnt dx = |t|−p′n+n

∫
H

(|t|−p′ + |y + e1|p
′
)−n dy ,∫

H

γnt |x− t e1|p
′
dx = |t|−p′n+p′+n

∫
H

(|t|−p′ + |y + e1|p
′
)−n|y + e1|p

′
dy .

Since

−p′(n− 1) + (n− 1)

p]
− −p

′n+ n

p?
= 0

−p′n+ p′ + n

p
+
p′n− n
p?

= 0 ,

we find that, setting

γ̄t(y) = (|t|−p′ + |y + e1|p
′
)−1 y ∈ H ,

we have

TS(t) =

( ∫
∂H
γ̄n−1
t

)1/p]

( ∫
H
γ̄nt

)1/p?
GS(t) =

(n− p)
( ∫

H
γ̄nt |y + e1|p

′
dy
)1/p

(p− 1)
( ∫

H
γ̄nt
)1/p?

By monotone convergence, we thus find that

lim
t→−∞

TS(t) =
‖UQ(·+ e1)‖

Lp
]
(∂H)

‖UQ(·+ e1)‖Lp? (H)

= TQ , lim
t→−∞

GS(t) =
‖∇UQ(·+ e1)‖Lp(H)

‖UQ(·+ e1)‖Lp? (H)

= GQ ,

as claimed. Having shown that TS is smooth and injective on R with TS(+∞) = 0 and

TS(−∞) = TQ > 0, we deduce that TS is strictly decreasing on R with range (0, TQ).

Since T0 = TS(0) < TS(−∞) = TQ, we have completed the proof of statement (i).

Similarly, the first part of (ii) follows since GS(0) = 2−1/nS < S = GS(+∞) and GS is

smooth and injective on [0,∞). Similarly, the injectivity of GS on (−∞, 0) together

with the fact that by (2.1.10) (recall (2.1.12)) GS(0) = 2−1/n S < Q = GQ = GS(−∞)

implies that GS is strictly decreasing on (−∞, 0) with range (2−1/nS,Q). This proves

statement (ii).
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Step 4: Limit values of TB(t) and GB(t). With an argument identical to that given

for TS and GS, we establish that TB(t) → TQ and GB(t) → GQ as t → −∞. To

compute the limit as t → −1+, we first notice that, for every t < −1 and setting

ε = |t| − 1, ∫
∂H

UB(x− t e1)p
] ≥

∫
B|t|+ε(te1)∩∂H

dHn−1

(|x− t e1|p′ − 1)n−1
.

Since B|t|+ε(te1) ∩ ∂H is a (n − 1)-dimensional disk of radius
√

(|t|+ ε)2 − t2 =√
2ε |t|+ ε2 ≥ c

√
ε, and since |x − t e1|p

′ − 1 ≤ (|t| + ε)p
′ − 1 ≤ C ε for constants c

and C depending on n and p only, we find that∫
∂H

UB(x− t e1)p
] ≥ c

ε(n−1)/2
=

c

|t+ 1|(n−1)/2
. (2.3.8)

At the same time, we have∫
H

UB(x−t e1)p
?

=

∫
H

(|x−t e1|p
′−1)−n dx =

∫ ∞
−t

(rp
′−1)−nHn−1

(
H∩∂Br(−t e1)

)
dr

where, thanks to the coarea formula,

Hn−1
(
H ∩ ∂Br(−t e1)

)
= c(n) rn−1

∫ 1

−t/r
(1− s2)(n−3)/2 ds .

Since 1 ≤ (1 + s)(n−3)/2 ≤ C(n) for s ∈ (−t/r, 1) and

rn−1

∫ 1

−t/r
(1− s)(n−3)/2 ds = C(n) rn−1 (1 + t/r)(n−1)/2 = C r(n−1)/2 (r + t)(n−1)/2 ,

we conclude that

c(n) ≤
Hn−1

(
H ∩ ∂Br(−t e1)

)
r(n−1)/2 (r + t)(n−1)/2

≤ C(n) , ∀r ∈ (−t,∞) . (2.3.9)
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Hence, by p > 1, and provided t is close enough to −1∫
H

(|x− t e1|p
′ − 1)−n dx ≤ C

∫ ∞
2

r(n−1)/2 (r + t)(n−1)/2

(rp′ − 1)n
dr

+ C

∫ 2

−t

r(n−1)/2 (r + t)(n−1)/2

(rp′ − 1)n
dr

≤ C

∫ ∞
2

rn−1

rnp′
dr + C

∫ 2

−t

dr

(r − 1)n−(n−1)/2

≤ C
(
1 + |t+ 1|−(n−1)/2

)
≤ C |t+ 1|−(n−1)/2 .

(We also notice that, by (2.3.9), one also has an analogous estimate from below, that

is ∫
H

(|x− t e1|p
′ − 1)−n dx ≥ c |t+ 1|−(n−1)/2 for |t+ 1| small enough (2.3.10)

as well as∫
H

(|x− t e1|p
′ − 1)−(n−1) dx ≤ C |t+ 1|−(n−3)/2 for |t+ 1| small enough . (2.3.11)

Both estimates will be used in the last step of the proof of Theorem 2.1.2.) By

combining this last estimate with (2.3.8) we find that

TB(t) ≥ c
(
|t+ 1|−(n−1)/2

)1/p]−1/p?

= c |t+ 1|−1/2p? , (2.3.12)

for every t close enough to −1, where c = c(n, p) > 0. This proves that TB(t)→ +∞

as t→ −1. Analogously, again with ε = |t+ 1|,∫
H

|∇UB(x− t e1)|p ≥ c

∫
H∩B|t|+ε(t e1)

(|x− t e1|p
′ − 1)−n |x− t e1|p

′
dx

= c

∫ −t+ε
−t

(r2 − t2)(n−1)/2r p
′

(rp′ − 1)n
dr
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so that, setting r = |t| + s |t + 1|, noticing that r2 − t2 ≥ c s |t + 1| and 1 ≤ rp
′ ≤

1 + C |t+ 1|, we get∫
H

|∇UB(x− t e1)|p ≥ |t+ 1|(n−1)/2

∫ 1

0

s(n−1)/2|t+ 1| ds
|t+ 1|n

≥ c

|t+ 1|(n−1)/2
.

Hence,

GB(t) ≥ c
(
|t+ 1|−(n−1)/2

)(1/p)−(1/p?)

= c |t+ 1|−(n−1)/2n , (2.3.13)

and

lim
p→−1+

GB(t) =∞ .

(We also notice, again for future use in the proof of Theorem 2.1.2, that together with

(2.3.13) we also have

GB(t) ≤ C(n) |t+ 1|−(n−1)/2n , (2.3.14)

provided t is close enough to −1.) Statements (iii) and (iv) follow immediately.

Proof of Theorem 2.1.1. Immediate from Theorem 2.2.3 and Proposition 2.3.2.

We now turn to the quantitative study of Φ(T ). Let us recall that, by a classical

variational argument, if u is a minimizer in Φ(T ), then there exists constants λ and

σ such that {
−∆pu = λ|u|p?−2u in H
−|∇u|p−2∂x1u = σ|u|p]−2u on ∂H .

(2.3.15)

Observe that the existence of constants λ and σ satisfying (2.3.15) follows by direct

computation using our characterization of minimizers. Moreover, we know that non-

negative minimizers are positive, so that there is no need for the absolute values in

(2.3.15).
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Lemma 2.3.3. Let n ≥ 2 and 1 ≤ p < n. Fix T ∈ (0,∞) and let λ and σ be

the Lagrange multipliers appearing in (2.3.15) corresponding to a minimizer u in the

variational problem Φ(T ). Then, the following identities hold:

Φ(T )p = λ+ σ T p
]

, Φ′(T ) =
p]T p

]−1

Φ(T )p−1
σ . (2.3.16)

Proof. The first identity follows from an integration by parts and (2.3.15), so we

focus on the second. Since T > 0 implies
∫
∂H
up

]
> 0, there must be a function

ϕ ∈ C∞c (∂H) such that ∫
∂H

up
]−1ϕdHn−1 = 1 . (2.3.17)

Similarly, there exists ξ ∈ C∞c (H) such that∫
H

up
?−1 ξ = 1 .

Let ψ be any function ψ ∈ C∞c (H) with ψ = ϕ on ∂H, and extend ϕ to H by setting

ϕ = ψ −
(∫

H

up
?−1 ψ

)
ξ .

Then ϕ ∈ C∞c (H) and ∫
H

up
?−1ϕ = 0 . (2.3.18)

Now define a function f : R2 → [0,∞) by setting

f(ε, δ) = −1 +

∫
H

|u+ εϕ+ δξ|p? (ε, δ) ∈ R2 .

Since u > 0 on H, there exists a neighborhood U of (ε, δ) = (0, 0) such that u+ εϕ+

δξ > 0 on H for every (ε, δ) ∈ U . Correspondingly, by (2.3.18)

f ∈ C1(U) f(0, 0)
∂f

∂δ
(0, 0) = p?

∫
H

up
?−1ξ = 1 ,
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and thus there exists ε0 > 0 and g : (−ε0, ε0) → R such that(ε, g(ε)) ∈ U and

f(ε, g(ε)) = 0 for every |ε| < ε0. In particular,

vε = u+ εϕ+ γ(ε) ξ ∈ C∞(H; (0,∞))

∫
H

vp
?

ε = 1 , ∀|ε| < ε0 .

By (2.3.17),
d

dε

∣∣∣∣
ε=0

∫
∂H

vp
]

ε

p]
dHn−1 =

∫
∂H

up
]−1 ϕ = 1 , (2.3.19)

so that the function τ(ε) = ‖vε‖Lp] (∂H)
satisfies τ(0) = T and is strictly increasing on

(−ε0, ε0), up to possibly decreasing the value of ε0. If we set Γ(ε) =
∫
H
|∇vε|p, then,

by construction, Φ(τ(ε))p ≤ Γ(ε) for every |ε| < ε0, with equality at ε = 0, and thus

d

dε

∣∣∣∣
ε=0

Φ(τ(ε))p =
d

dε

∣∣∣∣
ε=0

Γ(ε). (2.3.20)

We compute that

1

p

d

dε

∣∣∣∣
ε=0

Γ(ε) =

∫
H

|∇u|p−2∇u · ∇ϕdx = −
∫
H

∆puϕ−
∫
∂H

|∇u|p−2∂x1uϕ dHn−1.

(2.3.21)

From (2.3.15), −∆puϕ = λup
?−1, and so the first term on the right-hand side of

(2.3.21) is equal to zero. Then, from (2.3.15) and (2.3.19), the right-hand side of

(2.3.21) is equal to σ, and thus that of (2.3.20) to p σ. Since, again by (2.3.17),

τ ′(0) =
T 1−p]

p]
,

we conclude from (2.3.19) that

Φ(T )p−1Φ′(T )
T 1−p]

p]
= σ ,

thus completing the proof of the lemma.
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We now prove Theorem 2.1.2, Corollary 2.1.3 and Theorem 2.1.5.

Proof of Theorem 2.1.2. Step 1: Differentiability and monotonicity. By Proposition

2.3.2, we know that Φ(TB(t)) = GB(t) for every t ∈ (−∞,−1), where TB is smooth

and strictly increasing on (−∞,−1) with range (TQ,∞) and GB(t) is smooth and

strictly increasing on (−∞,−1) with range (GQ,∞). Thus, Φ is smooth on (TQ,∞)

with Φ′(T ) = G′B(t)/T ′B(t) > 0 for T = TB(t). This shows that Φ is smooth and

strictly increasing on (TQ,∞). One can compute that

lim
T→T+

Q

Φ′(T ) = lim
t→−∞

G′B(t)

T ′B(t)
=
GQ

TQ
= Q .

Similarly, Φ(TS(t)) = GS(t) for every t ∈ R where TS is strictly decreasing on R with

range (0, TQ), and TS(0) = T0 < TQ, and where GS is strictly increasing on [0,∞)

with range [2−1/nS, S), and is strictly decreasing on (−∞, 0) with range (2−1/nS,Q).

So, Φ is smooth on (0, TQ), and Φ′(T ) = G′S(t)/T ′S(t) > 0 for T = TS(t). Hence, Φ is

strictly decreasing on (0, T0) and strictly increasing on (T0, TQ), and one computes

lim
T→T−Q

Φ′(T ) = lim
t→−∞

G′S(t)

T ′S(t)
=
GQ

TQ
= Q .

Therefore, Φ is differentiable at T = TQ, and thus on (0,∞).

Step 2: Concavity of Φ. Next, we use Lemma 2.3.3 to show that Φ is concave for T

sufficiently small. By (2.3.16), we find that for every t ∈ R,

d

dT
Φ(TS(t)) = p]

TS(t)p
]−1

GS(t)p−1
σ(US(t)) , (2.3.22)

where σ(US(t)) denotes the boundary Lagrange multiplier of US(t). By combining

(2.1.17) and (2.3.15), we see that

σ(US(t)) = −c(n, p) t ‖US‖p(p−1)/(n−p)
Lp? ({x1>t})

,
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for a positive constant c(n, p). Thus,

d

dT
Φ(TS(t)) = −c(n, p) t

‖US‖p
]−1

Lp
]
({x1=t})

‖∇US‖p−1
Lp({x1>t})

,

so, differentiating in t (recall that Φ is smooth (0, TQ)), we find that

d2

dT 2
Φ(TS(t))T ′S(t) = −c(n, p) d

dt

(
t
‖US‖p

]−1

Lp
]
({x1=t})

‖∇US‖p−1
Lp({x1>t})

)
.

Since T ′S(t) < 0 for every t ∈ R, we conclude that Φ(T ) is going to be concave on any

interval J = {TS(t) : t ∈ J ′} corresponding to an interval J ′ ⊂ R such that

d

dt
log

(
t
‖US‖p

]−1

Lp
]
({x1=t})

‖∇US‖p−1
Lp({x1>t})

)
< 0 , ∀t ∈ J ′ . (2.3.23)

For the sake of brevity, set

h(t) =

∫
{x1=t}

Up]

S =

∫
∂H

(1 + |x− t e1|p
′
)−(n−1) dHn−1 .

We are thus looking for an interval J ′ such that

1

t
+
p] − 1

p]
h′(t)

h(t)
− p− 1

p

d
dt

∫
{x1>t} |∇US|

p∫
{x1>t} |∇US|

p
< 0 ∀t ∈ J ′ .

Since
∫
{x1>t} |∇US|

p is trivially increasing in t, it suffices to find an interval J ′ such

that
1

t
+
n(p− 1)

p(n− 1)

h′(t)

h(t)
< 0 ∀t ∈ J ′ .

If t > 0, then factoring and changing variables, we find that

h(t) = t−(n−1)/(p−1)

∫
∂H

(t−p
′
+ |x− e1|p

′
)−(n−1) dHn−1 .
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Therefore, we compute

h′(t)

h(t)
= − n− 1

(p− 1)t
+
p′(n− 1)

∫
∂H

(t−p
′
+ |x+ e1|p

′
)−n dHn−1

tp′+1
∫
∂H

(t−p′ + |x+ e1|p′)−(n−1) dHn−1
,

where trivially t−p′ + |x+ e1|p
′
> 1 for x ∈ ∂H, and thus∫

∂H

(t−p
′
+ |x+ e1|p

′
)−n dHn−1 <

∫
∂H

(t−p
′
+ |x+ e1|p

′
)−(n−1) dHn−1 .

We have thus proved that for every t > 0,

h′(t)

h(t)
≤ 1

t

n− 1

p− 1

(
− 1 +

p

tp′

)
,

so that
1

t
+
n(p− 1)

p(n− 1)

h′(t)

h(t)
≤ 1

t
+

1

t

n

p

(
− 1 +

p

tp′

)
.

This last quantity is negative for t > (p?)1/p′ . Thus, (3.4.6) holds with the choice

J ′ = (−∞, (p?)1/p′) and correspondingly Φ(T ) is strictly concave on (0, T∗) provided

we set

T∗ = TS((p?)1/p′) .

Step 3: Convexity of Φ. By (2.3.4) we have that, for every t < −1,

Φ(T ) ≥ GB(t) + t
TB(t)p

] − T p]

p] YB(t)
∀T > 0 , (2.3.24)

with equality if and only if T = TB(t). If we denote by Ψt(T ) the right-hand side of

(2.3.24), this shows that

Φ(T ) = sup
t<−1

Ψt(T ) ∀T ∈
{
TB(t) : t < −1} = (TQ,∞) .
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Since each Ψt(T ) is convex as a function of T (recall that t is negative), this proves

that Φ(T ) is convex on (TQ,∞). We can perform the same argument based on (2.3.3),

as soon as the parameter t ∈ R describing the Sobolev family is negative. This proves

the convexity of Φ(T ) over the interval

{
TS(t) : t < 0

}
= (T0, TQ) .

Since Φ(T ) is convex on (T0, TQ) and on (TQ,∞), with Φ(T ) ≥ QT for every T ≥ 0

and Φ(TQ) = Q TQ, we conclude that Φ(T ) is convex on (T0,∞).

Step 4: Asymptotic growth of Φ. First, we claim that

lim
T→∞

p] Φ(T )

T p]
= 1 .

Having in mind (2.1.13), and taking into account that TB(t) → +∞ as t → −1, it

suffices to show that

lim
t→−1

p]GB(t)

TB(t)p]
= 1 .

To prove this, we notice that the identity

n

∫
H

Up]

B,t = p]GB(t)YB(t) + t TB(t)p
] ∀t < −1 , (2.3.25)

allows us to write

p]
GB(t)

TB(t)p]
= − t

YB(t)
+

n
∫
H
Up]

B,t

YB(t)TB(t)p]
.

It will thus be enough to prove

lim
t→−1

YB(t) = 1 lim
t→−1

∫
H

Up]

B,t = 0 . (2.3.26)
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To this end, we first notice that by (2.3.10) and (2.3.11)

YB(t)p
′ − 1 =

∫
H

(|x− t e1|p
′ − 1)−(n−1)∫

H
(|x− t e1|p′ − 1)−n

≤ C(n)
|t+ 1|−(n−3)/2

|t+ 1|−(n−1)/2
= C(n) |t+ 1| ,

while∫
H

Up]

B,t =

∫
H

(|x− t e1|p
′ − 1)−(n−1)( ∫

H
(|x− t e1|p′ − 1)−n

)(n−1)/n
≤ C(n)

|t+ 1|−(n−3)/2

|t+ 1|−(n−1)2/2n
= C(n) |t+ 1|(n+1)/2n

so that (2.3.26) is proven. Now, to prove that

lim
T→∞

Φ(T )− T p
]

p]
= 0 ,

we simply notice that, again by (2.3.25),

p]GB(t)− TB(t)p
]

= p]GB(t)
(

1 +
YB(t)

t

)
− n

t

∫
H

Up]

B,t .

Since |t+ YB(t)| ≤ |t+ 1|+ |1− YB(t)| ≤ C(n) |t+ 1|, thanks to (2.3.14) we have

GB(t)
∣∣∣1 +

YB(t)

t

∣∣∣ ≤ C(n) |t+ 1|1−(n−1)/2n = C(n) |t+ 1|(n+1)/2n → 0 .

This completes the proof of Theorem 2.1.2.

Proof of Corollary 2.1.3. Since Ω is a set of locally finite perimeter in Rn [Mag12,

Example 12.6], there exists x0 ∈ ∂Ω such that, up to a rotation,

Ωr → H in L1
loc(Rn),

Hn−1x∂Ωr
∗
⇀ Hn−1x∂H as Radon measures on Rn.

(2.3.27)

where we have set Ωr = (Ω−x0)/r, r > 0. Precisely, every x0 in the reduced boundary

of Ω satisfies (2.3.27) up to a rotation, see e.g. [Mag12, Theorem 15.5].
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We now define a function wT depending on T as follows. If T ∈ (0, TQ), setting

t = T−1
S (T ), we let

wT (x) = US,t(x) ∀x ∈ Rn ;

if T = TQ, we set t = −1 and let

wT (x) = UQ,t(x) ∀x ∈ Rn \ {e1} ;

finally, if T > TQ, then, setting t = T−1
B (T ) < −1, we let

wT (x) = UB,t(x) ∀x ∈ Rn \B1(t e1) .

Notice that in each case, there exists a compact set KT with KT ∩H = ∅ such that

wT ∈ Lp
?
(Rn \ U) and ∇wT ∈ Lp(Rn \ U) for every open neighborhood U of KT . In

particular, for ε > 0 small enough depending on T , we have {x1 > −ε} ∩ KT = ∅.

We pick ζ ∈ C∞(Rn) such that ζ = 1 on {x1 > −ε} and ζ = 0 on KT , and define

vT = ζ wT on the whole Rn. Then

vT ∈ Lp
?

(Rn) ∇vT ∈ Lp(Rn) vT = wT on H . (2.3.28)

Next, we fix R > 0 and consider ψR ∈ C∞c (B2R; [0, 1]) with ψR = 1 on BR. Finally,

for each r > 0, we define

ur(x) = r1−n/p (ψR vT )
(x− x0

r

)
x ∈ Ω .

By (2.3.27), (2.3.28) and ψR ∈ C∞c (B2R; [0, 1]) we can exploit dominated convergence

to find that ∫
Ω

up
?

r =

∫
Rn

1Ωr(ψRvT )p
? →

∫
H

(ψRvT )p
?

=

∫
H

(ψRwT )p
?
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∫
Ω

|∇ur|p →
∫
H

|∇(ψR wT )|p ,

as r → 0+. Similarly, since (ψR vT )p
] ∈ C0

c (Rn), by (2.3.27) we have∫
∂Ω

up
]

r dHn−1 =

∫
Rn

(ψR vT )p
]

d(Hn−1x∂Ωr)→
∫
∂H

(ψR vT )p
]

dHn−1 =

∫
∂H

(ψR wT )p
]

dHn−1

as r → 0+. Since∫
H

wp
?

T = 1 ,

∫
∂H

wp
]

T = T p
]

,

∫
H

|∇wT |p = Φ(T )p ,

for every δ > 0 there exists r small enough and R large enough such that∣∣∣ ∫
Ω

up
?

r − 1
∣∣∣+
∣∣∣ ∫

Ω

|∇ur|p − Φ(T )p
∣∣∣+
∣∣∣ ∫

∂Ω

up
]

r − T p
]
∣∣∣ < δ .

In particular, we can find {ξr}r>0 ⊂ C∞c (Ω) such that

‖ur + ξr‖Lp] (∂Ω)

‖ur + ξr‖Lp? (Ω)

=
‖ur‖Lp] (∂Ω)

‖ur + ξr‖Lp? (Ω)

= T ∀r > 0 ,

and ‖ξr‖Lp? (Ω) → 0 and ‖∇ξr‖Lp(Ω) → 0 as r → 0+. Then, for r sufficiently small,

ΦΩ(T ) ≤
‖∇ur +∇ξr‖Lp(Ω)

‖ur + ξr‖Lp? (Ω)

≤ (1 + C δ) Φ(T )

for a constant C = C(n, p).

Proof of Theorem 2.1.5. With the same reasoning as given in Corollary 2.3.1, we find

that

YS(t)GS(t) + tTS(T ) ≤ YS(t)|Dh|(H) + t‖h‖L1(∂H)

for any t ∈ (−1, 1) and any non-negative h, vanishing at infinity, with |Dh|(H) <∞,

and with equality if and only if h is a dilation translation image of US,t orthogonal to

e1. In particular, if additionally ‖h‖L1(∂H) = TS(t), then

GS(t) ≤ |Dh|(H).
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From this, we deduce that

Φ(TS(t)) = GS(t)

for t ∈ (−1, 1). The same arguments given in the proof of Proposition 2.3.2 imply that

TS(t) is a strictly decreasing function with range [0,∞), and that GS(t) is strictly

increasing for t > 0 with range (2−1/nS, S) and is strictly decreasing for t < 0 with

range (2−1/nS,∞). Finally, the same proof as that of Theorem 2.1.2 shows that Φ(T )

is a smooth function of T that is decreasing for T ∈ (0, T0) and concave for T ∈ (0, T∗)

for some 0 < T∗ < T0 and increasing and convex for T ∈ (T0,∞). Finally, to show

that Φ(T ) = T + o(1) as T →∞, we will equivalently show that GS(t) = TS(t) + o(1)

as t→ −1. Indeed, since Y (t, US,t) = 1 for all −1 < t < 1 when p = 1, (2.3.2) implies

that

GS(t) = n

∫
H

US,t − t TS(t) = TS(t) + n

∫
H

US,t − (t+ 1)TS(t).

Note that ∫
H

US,t =
|B1(t e1) ∩H|

|B1(t e1) ∩H|(n−1)/n
= |B1(t e1) ∩H|1/n = o(1)

as t→ −1. Furthermore, since

T (t) =
ωn−1(1− t2)(n−1)/2

|B1(t e1) ∩H|(n−1)/n
,

and we easily estimate that

|B1(t e1) ∩H| = ωn−1

∫ 1

−t
(1− s2)(n−1)/2 ds ≥ c

∫ 1

−t
(1− s)(n−1)/2 ≥ C|1 + t|(n+1)/2

for t < 0, we see that

|t+ 1|T (t) ≤ |t+ 1|1−(n+1)/2n = o(1).

Hence, GS(t) = TS(t) + o(1) as t→ −1 and the proof is complete.
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We conclude with the following proposition, which was mentioned after the statement

of Theorem 2.1.5.

Proposition 2.3.4. For every n ≥ 2, one has TQ(n, p)→ +∞ as p→ 1+.

Proof. As a first step, we explicitly compute

T p
]

Q = C

(
Γ
(

n−1
2(p−1)

)
Γ
( (n−1)p

2(p−1)

))/(
(p− 1)

Γ
(
n+p−1
2(p−1)

)
Γ
(

np
2(p−1)

))(n−1)/n

, (2.3.29)

where, here and throughout the proof, C denotes a constant depending only on n,

whose value may change at each instance. Indeed,∫
∂H

|x+ e1|−(n−1)p′ dHn−1 =

∫
Rn−1

(|z|2 + 1)−(n−1)p′/2 dz = C

∫ ∞
0

(r2 + 1)−(n−1)p′/2rn−2 dr.

Making the change of variables s = 1/(r2 + 1), the right-hand side becomes

C

∫ 1

0

s[(n−1)p′/2]−2 (1/s− 1)(n−3)/2 ds = C

∫ 1

0

s[(n−1)/2(p−1)]−1(1− s)(n−3)/2 ds

= C B
( n− 1

2(p− 1)
,
n− 1

2

)
= C Γ

( n− 1

2(p− 1)

)/
Γ
((n− 1)p

2(p− 1)

)
.

To express the term in the denominator of TQ, the coarea formula implies that∫
H

|x+ e1|−np
′
dx =

∫ ∞
1

r−np
′+(n−1)

∫ 1

1/r

(1− s2)(n−3)/2 ds dr.

By Fubini’s Theorem, the right-hand side is equal to∫ 1

0

(1− s2)(n−3)/2

∫ ∞
1/s

r−[n/(p−1)]−1 dr ds =
p− 1

n

∫ 1

0

(1− s2)(n−3)/2sn/(p−1) ds .

With the change of variables ρ = s2, this is equal to

p− 1

2n

∫ 1

0

(1− ρ)(n−3)/2ρ[n/2(p−1)]−1/2 dρ =
p− 1

2n
B
(n− 1

2
,

n

2(p− 1)
+

1

2

)
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= C(p− 1) Γ
(n+ p− 1

2(p− 1)

)/
Γ
( np

2(p− 1)

)
.

This proves (2.3.29). By taking the logarithm of T p
]

Q /C, we find that

log(T p
]

Q /C) = log Γ
( n− 1

2(p− 1)

)
− log Γ

(p(n− 1)

2(p− 1)

)
− n− 1

n

[
log(p− 1) + log Γ

(n+ p− 1

2(p− 1)

)
− log Γ

( np

2(p− 1)

)]
.

(2.3.30)

By Stirling’s approximation, log Γ(z) asymptotically behaves like z log(z) as z →∞.

Hence, in the limit p → 1− the first two terms on the right-hand side of (2.3.30),

behave like

n− 1

2(p− 1)
log
( n− 1

2(p− 1)

)
− p(n− 1)

2(p− 1)
log
(p(n− 1)

2(p− 1)

)
= −p(n− 1)

2(p− 1)
log(p) +

(n− 1)

2
log (p− 1) + C.

On the other hand, the term in brackets on the right-hand side of (2.3.30) behaves

like

log(p− 1) +
n+ p− 1

2(p− 1)
log
(n+ p− 1

2(p− 1)

)
− np

2(p− 1)
log
( np

2(p− 1)

)
= log(p− 1)

(n+ 1

2

)
+
n+ p− 1

2(p− 1)
log(n+ p− 1)− np log(n)

2(p− 1)
− np

2(p− 1)
log(p) + C.

So, the full right-hand side of (2.3.30) asymptotically behaves like

−n− 1

2n
log (p− 1) +

n− 1

2n(p− 1)
[−(n+ p− 1) log (n+ p− 1) + np log (n)] + C.

Since log(n+ p− 1) = log(n) + (p− 1)/n+ o(p− 1), this quantity is bounded above

and below (with appropriate choices of C) by

− n− 1

2n
log (p− 1) +

n− 1

2n(p− 1)

[
−(n+ p− 1)

(
log(n) +

p− 1

n

)
+ np log (n)

]
+ C
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= −n− 1

2n
log (p− 1) +

(n− 1)

2n

[
(n− 1) log(n)− n+ p− 1

n

]
+ C .

The second term is bounded above and below by dimensional constants, while the

first term goes to +∞ as p→ 1+.
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Chapter 3

Strong-form stability for the Sobolev inequality on
Rn: the case p ≥ 2

3.1 Overview

In this chapter,1 we prove strong-form stability for the Sobolev inequality

‖∇u‖Lp ≥ S‖u‖Lp∗ (3.1.1)

in the case p ≥ 2. All integrals and function spaces in this chapter will be over Rn, so

we omit the domain of integration when no confusion arises. Furthermore, throughout

the chapter, we assume that 2 ≤ p < n. Recall that equality is attained in (3.1.1) if

and only if u belongs to the (n+ 2)-dimensional manifold of extremal functions

M = {c Uλ,y : c ∈ R, λ ∈ R+, y ∈ Rn} , (3.1.2)

where cUλ,y(x) = cλn/p
∗
U1(λ(x− y)) and

U1(x) =
κ0

(1 + |x|p′)(n−p)/p , (3.1.3)

Here, κ0 is chosen so that ‖v1‖Lp∗ = 1, and so ‖cvλ,y‖Lp∗ = c. In the introduction, we

introduced the scaling invariant Sobolev deficit δS(u); for simplicity we will now use

1This chapter is based on joint work with A. Figalli originally appearing in [FN].
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the p-homogeneous deficit δ(u) defined by

δ(u) = Sp‖u‖p
Lp?
δS(u) = ‖∇u‖pLp − S

p‖u‖p
Lp∗

.

Our main result is the following theorem:

Theorem 3.1.1. Let 2 ≤ p < n. There exists a constant C > 0, depending only on

p and n, such that for all u ∈ Ẇ 1,p,

‖∇u−∇U‖pLp ≤ C δ(u) + C‖u‖p−1

Lp∗
‖u− U‖Lp∗ (3.1.4)

for some U ∈M.

By combining Theorem 3.1.1 and the main result of [CFMP09] (see Theorem 3.4.5),

we deduce the following corollary, proving the desired stability at the level of gradi-

ents:

Corollary 3.1.2. Let 2 ≤ p < n. There exists a constant C > 0, depending only on

p and n, such that for all u ∈ Ẇ 1,p,(
‖∇u−∇v‖Lp
‖∇u‖Lp

)ζ
≤ C

δ(u)

‖∇u‖pLp
(3.1.5)

for some U ∈M, where ζ = p∗p
(
3 + 4p− 3p+1

n

)2
.

3.1.1 Theorem 3.1.1: idea of the proof

As a starting point to prove stability of (3.1.1) at the level of gradients, one would

like to follow the argument used to prove the analogous result in [BE91]. However,

this approach turns out to be sufficient only in certain cases, and additional ideas

are needed to conclude the proof. Indeed, a Taylor expansion of the deficit δ(u) and
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a spectral gap for the linearized problem allow us to show that the second variation

is strictly positive, but in general we cannot absorb the higher order terms. Let us

provide a few more details to see to what extent this approach works, where it breaks

down, and how we get around it.

3.1.1.1 The expansion approach.

Let us sketch how an argument following [BE91] would go. In order to introduce a

Hilbert space structure to our problem, we define a weighted L2-distance of a function

u ∈ Ẇ 1,p toM. To this end, for each U ∈M, we define

AU(x) := (p− 2)|∇U |p−2r̂ ⊗ r̂ + |∇U |p−2Id, r̂ =
x− y
|x− y|

, (3.1.6)

where (a⊗ b)c := (a · c)b. Then, with the notation AU [a, a] := aTAUa for a ∈ Rn, we

define

d(u,M) = inf
{(∫

AU [∇u−∇U,∇u−∇U ]
)1/2

: U ∈M, ‖U‖Lp∗ = ‖u‖Lp∗
}

= inf
{(∫

AcUλ,y [∇u−∇cUλ,y,∇u−∇cUλ,y]
)1/2

: λ ∈ R+, y ∈ Rn, c = ‖u‖Lp∗
}
.

(3.1.7)

Note that∫
AU [∇u−∇U,∇u−∇U ] =

∫
|∇U |p−2|∇u−∇U |2 +(p−2)

∫
|∇U |p−2|∂ru−∂rU |2.

A few remarks about this definition are in order.

Remark 3.1.3. The motivation to define d(u,M) in this way instead of, for instance,

inf

{(∫
|∇U |p−2|∇u−∇U |2

)1/2

: U ∈M, ‖U‖Lp∗ = ‖u‖Lp∗
}
,

62



will become apparent in Section 3.2. This choice, however, is only technical, as∫
|∇U |p−2|∇u−∇U |2 ≤

∫
AU [∇u−∇U,∇u−∇U ] ≤ (p−1)

∫
|∇U |p−2|∇u−∇U |2.

Remark 3.1.4. One could alternatively define the distance in (3.1.7) without the

constraint c = ‖u‖Lp∗ , instead also taking the infimum over the parameter c. Up

to adding a small positivity constraint to ensure that the infimum is not attained

at U = 0, this definition works, but ultimately the current presentation is more

straightforward.

Remark 3.1.5. The distance d(u,M) has homogeneity p/2, that is, d(cu,M) =

cp/2d(u,M).

In Proposition 3.3.1(1), we show that there exists δ0 = δ0(n, p) > 0 such that if

δ(u) ≤ δ0‖∇u‖pLp , (3.1.8)

then the infimum in d(u,M) is attained. Given a function u ∈ Ẇ 1,p satisfying (3.1.8),

let U ∈M attain the infimum in (3.1.7) and define

ϕ =
u− U

‖∇(u− U)‖Lp
,

so that u = U + εϕ with ε = ‖∇(u− U)‖Lp and
∫
|∇ϕ|p = 1. Since U is a minimum

of δ, the Taylor expansion of the deficit of u at U vanishes at the zeroth and first

order. Thus, the expansion leaves us with

δ(u) = ε2p

∫
AU [∇ϕ,∇ϕ]− ε2Spp(p∗ − 1)

∫
|U |p∗−2|ϕ|2 + o(ε2). (3.1.9)

Since U is a projection of u into M, εϕ is orthogonal (in an appropriate sense) to

the tangent space ofM at U , which coincides with the span the first two eigenspaces

63



of an appropriate weighted linearized p-Laplacian. A gap in the spectrum in this

operator allows us to show that

c d(u,M)2 = c ε2

∫
AU [∇ϕ,∇ϕ] ≤ ε2p

∫
AU [∇ϕ,∇ϕ]− ε2Spp(p∗ − 1)

∫
|U |p∗−2|ϕ|2

for a positive constant c = c(n, p). Together with (3.1.9), this implies

d(u,M)2 + o(ε2) ≤ Cδ(u).

Now, if the term o(ε2) could be absorbed into d(u,M)2, then we could use the estimate

(3.1.11) below to obtain ∫
|∇u−∇U |p ≤ Cδ(u),

which would conclude the proof.

3.1.1.2 Where the expansion approach falls short.

The problem arises exactly when trying to absorb the term o(ε2). Indeed, recalling

that ε = ‖∇(u− U)‖Lp , we are asking whether

o(‖∇u−∇U‖2
Lp)� d(u,M)2 ≈

∫
|∇U |p−2|∇u−∇U |2

(recall Remark 3.1.3), and unfortunately this is false in general. Notice that this

problem never arises in [BE91] for the case p = 2, as the above inequality reduces

to

o(‖∇u−∇U‖2
L2)� ‖∇u−∇U‖2

L2 ,

which is clearly true.
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3.1.1.3 The solution.

A Taylor expansion of the deficit will not suffice to prove Theorem 3.1.1 as we cannot

hope to absorb the higher order terms. Instead, for a function u ∈ Ẇ 1,p, we give two

different expansions, each of which gives a lower bound on the deficit, by splitting

the terms between the second order term and the pth order term. Pairing this with

an analysis of the second variation, we obtain the following:

Proposition 3.1.6. There exist constants c1,C2, and C3, depending only on p and

n, such that the following holds. Let u ∈ Ẇ 1,p be a function satisfying (3.1.8) and let

U ∈M be a function where the infimum of the distance (3.1.7) is attained. Then

c1 d(u,M)2 −C2

∫
|∇u−∇U |p ≤ δ(u), (3.1.10)

−C3 d(u,M)2 +
1

4

∫
|∇u−∇U |p ≤ δ(u). (3.1.11)

Individually, both inequalities are quite weak. However, as shown in Corollary 3.3.3,

they allow us to prove Theorem 3.1.1 (in fact, the stronger statement
∫
|∇u−∇U |p ≤

δ(u)) for the set of functions u such that

d(u,M)2 =

∫
AU [∇u−∇U,∇u−∇U ]�

∫
|∇u−∇U |p

or

d(u,M)2 =

∫
AU [∇u−∇U,∇u−∇U ]�

∫
|∇u−∇U |p.

(3.1.12)

We are then left to consider the middle regime, where∫
AU [∇u−∇U,∇u−∇U ] ≈

∫
|∇u−∇U |p.

We handle this case as follows. Let ut := (1 − t)u + tU be the linear interpolation

between u and U . Choosing t∗ small enough, ut∗ falls in the second regime in (3.1.12),
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so Theorem 3.1.1 holds for ut∗ . We then must relate the deficit and distance of ut∗

to those of u. While relating the distances is straightforward, it is not clear for the

deficits whether the estimate δ(ut∗) ≤ Cδ(u) holds. Still, we can show that

δ(ut∗) ≤ Cδ(u) + C‖U‖p−1

Lp∗
‖u− U‖Lp∗ ,

which allows us to conclude the proof. It is this point in the proof that introduces that

term ‖u−U‖Lp∗ in Theorem 3.1.1, and for this reason we rely on the main theorem of

[CFMP09] to prove Corollary 3.1.2. We note that the application of [CFMP09] is not

straightforward, since the function U which attains the minimum in our setting is a

priori different from the one considered there (see Section 3.4 for more details).

3.1.2 Outline of the chapter

In Section 3.2, we introduce the operator LU that appears in the second variation of

the deficit and prove some facts about the spectrum of this operator. We also prove

some elementary but crucial inequalities in Lemma 3.2.2 and provide orthogonality

constraints that arise from taking the infimum in (3.1.7). In Section 3.3, we prove

Proposition 3.1.6. In Section 3.4, we prove Theorem 3.1.1 and Corollary 3.1.2. In

Section 3.5, we show that LU has a discrete spectrum and justify the use of Sturm-

Liouville theory in the proof of Proposition 3.2.1.
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3.2 Preliminaries

3.2.1 The tangent space of M and the operator LU

The setM of extremal functions defined in (3.1.2) is an (n+2)-dimensional manifold

which is smooth except at 0 ∈ M. For a nonzero U = c0Uλ0,y0 ∈ M, the tangent

space is computed to be

TUM = span {U, ∂λU, ∂y1U, . . . , ∂ynU},

where yi denotes the ith component of y and ∂λU = ∂λ|λ=λ0U , ∂yiU =

∂yi |yi=yi0U .

Since the functions U = Uλ0,y0 minimize u 7→ δ(u) and have ‖Uλ0,y0‖Lp∗ = 1, by

computing the Euler-Lagrange equation one discovers that

−∆pU = SpUp∗−1, (3.2.1)

where the p-Laplacian ∆p is defined by ∆pw = div (|∇w|p−2∇w). Hence, differenti-

ating (3.2.1) with respect to yi or λ, we see that

−div (AU(x)∇w) = (p∗−1)SpUp∗−2w, w ∈ span {∂λU, ∂y1U, . . . , ∂ynU}, (3.2.2)

where AU(x) is as defined in (3.1.6). This motivates us to consider the weighted

operator

LUw = −div (AU(x)∇w)U2−p∗ (3.2.3)

on the space L2(Up∗−2), where, for a measurable weight ω : Rn → R, we let

‖w‖L2(ω) =
(∫

Rn
|w|2ω

)1/2

, L2(ω) = {w : Rn → R : ‖w‖L2(ω) <∞}.
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Proposition 3.2.1. The operator LU has a discrete spectrum {αi}∞i=1, with 0 < αi <

αi+1 for all i, and

α1 = (p− 1)Sp, H1 = span {U}, (3.2.4)

α2 = (p∗ − 1)Sp, H2 = span {∂λU, ∂y1U, . . . , ∂ynU}, (3.2.5)

where Hi denotes the eigenspace corresponding to αi.

Proposition 3.2.1 implies that

TUM = span {H1 ∪H2} (3.2.6)

and that

α3 = inf

{
〈LUw,w〉
〈w,w〉

=

∫
AU [∇w,∇w]∫
Up∗−2w2

: w ⊥ span {H1 ∪H2}
}
. (3.2.7)

Here, orthogonality is with respect to the inner product defined by

〈w1, w2〉 =

∫
Up∗−2w1w2. (3.2.8)

Proof of Proposition 3.2.1. A scaling argument shows that the eigenvalues of LU are

invariant under changes of λ and y, so it suffices to consider the operator L = LU for

U = U0,1. We let A = AU0,1 . The discreteness of the spectrum of LU is standard after

establishing the right compact embedding theorem; we show the compact embedding

in Corollary 3.5.2 and give details confirming the discrete spectrum in Corollary 3.5.3.

One easily verifies that U is an eigenfunction of L with eigenvalue (p− 1)Sp and that

∂λU and ∂yiU are eigenfunctions with eigenvalue (p∗− 1)Sp, using (3.2.1) and (3.2.2)
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repectively. Furthermore, U > 0, so α1 = (p − 1)Sp is the first eigenvalue, which is

simple, so (3.2.4) holds.

To prove (3.2.5), we must show that α2 = (p∗ − 1)Sp is the second eigenvalue and

verify that there are no other eigenfunctions in H2. Both of these facts follow from

separation of variables and Sturm-Liouville theory. Indeed, an eigenfunction ϕ of L

satisfies

div (A(x)∇ϕ) + αUp∗−2ϕ = 0. (3.2.9)

Assume that ϕ takes the form ϕ(x) = Y (θ)f(r), where Y : Sn−1 → R and f : R→ R.

In polar coordinates,

div(A(x)∇ϕ) = (p− 1)|∇U |p−2∂rrϕ+
(p− 1)(n− 1)

r
|∇U |p−2∂rϕ

+
1

r2
|∇U |p−2

n−1∑
j=1

∂θjθjϕ+ (p− 1)(p− 2)|∇U |p−4∂rU ∂rrU ∂rϕ
(3.2.10)

(this computation is given in Appendix B for the convenience of the reader). As U is

radially symmetric, that is, U(x) = w(|x|), we introduce the slight abuse of notation

by letting U(r) also denote the radial component: U(r) = w(r), so U ′(r) = ∂rU and

U ′′(r) = ∂rrU. From (3.2.10), we see that (3.2.9) takes the form

0 = (p− 1)|U ′|p−2f ′′(r)Y (θ) +
(p− 1)(n− 1)

r
|U ′|p−2f ′(r)Y (θ)

+
1

r2
|U ′|p−2f(r)∆Sn−1Y (θ) + (p− 1)(p− 2)|U ′|p−4U ′U ′′f ′(r)Y (θ) + αUp∗−2f(r)Y (θ),

which yields the system

0 = ∆Sn−1Y (θ) + µY (θ) on Sn−1, (3.2.11)
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0 = (p− 1)|U ′|p−2f ′′ +
(p− 1)(n− 1)

r
|U ′|p−2f ′ − µ

r2
|U ′|p−2f

+(p− 1)(p− 2)|U ′|p−4U ′U ′′f ′ + αUp∗−2f

on [0,∞). (3.2.12)

The eigenvalues and eigenfunctions of (3.2.11) are explicitly known; these are the

spherical harmonics. The first two eigenvalues are µ1 = 0 and µ2 = n− 1.

Taking µ = µ1 = 0 in (3.2.12), we claim that:

- α1
1 = (p− 1)Sp and the corresponding eigenspace is span {U};

- α2
1 = (p∗ − 1)Sp with the corresponding eigenspace span {∂λU}.

Indeed, Sturm-Liouville theory ensures that each eigenspace is one-dimensional, and

that the ith eigenfunction has i− 1 interior zeros. Hence, since U (resp. ∂λU) solves

(3.2.12) with µ = 0 and α = (p− 1)Sp (resp. α = (p∗ − 1)Sp), having no zeros (resp.

one zero) it must be the first (resp. second) eigenfunction.

For µ2 = n − 1, the eigenspace for (3.2.11) is n dimensional with n eigenfunctions

giving the spherical components of ∂yiU, for i = 1, . . . , n. The corresponding equation

in (3.2.12) gives α1
2 = (p∗ − 1)Sp. As the first eigenvalue of (3.2.12) with µ = µ2, α1

2

is simple.

The eigenvalues are strictly increasing, so this shows that α3
1 > (p∗ − 1)Sp and α2

2 >

(p∗ − 1)Sp, concluding the proof.

The application of Sturm-Liouville theory in the proof above is not immediately

justified because ours is a singular Sturm-Liouville problem. The proof of Sturm-

Liouville theory in our setting, that is, that each eigenspace is one-dimensional and

that the ith eigenfunction has i− 1 interior zeros, is shown in Section 3.5.
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3.2.2 Some useful inequalities

The following lemma contains four elementary inequalities that will yield bounds on

the deficit in lieu of a Taylor expansion, allowing us to circumvent the issues with

higher order terms presented in the chapter overview.

Lemma 3.2.2. Let x, y ∈ Rn and a, b ∈ R. The following inequalities hold.

For all κ > 0, there exists a constant C = C(p, n, κ) such that

|x+ y|p ≥ |x|p + p|x|p−2x · y

+ (1− κ)
(p

2
|x|p−2|y|2 +

p(p− 2)

2
|x|p−4(x · y)2

)
−C|y|p.

(3.2.13)

For all κ > 0, there exists C = C(p, κ) such that

|a+ b|p∗ ≤ |a|p∗ + p∗|a|p∗−2ab+
(p∗(p∗ − 1)

2
+ κ
)
|a|p∗−2|b|2 + C|b|p∗ . (3.2.14)

There exists C = C(p, n) such that

|x+ y|p ≥ |x|p + p|x|p−2x · y −C|x|p−2|y|2 +
|y|p

2
. (3.2.15)

There exists C = C(p) such that

|a+ b|p∗ ≤ |a|p∗ + p∗|a|p∗−2ab+ C|a|p∗−2|b|2 + 2|b|p∗ . (3.2.16)

Proof of Lemma 3.2.2. We only give the proof of (3.2.13), as the proofs of (3.2.14)–

(3.2.16) are analogous. Observe that if p is an even integer or p∗ is an integer, these

inequalities follow (with explicit constants) from a binomial expansion and splitting

the intermediate terms between the second order and pth or p∗th order terms using

Young’s inequality.
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Suppose (3.2.13) fails. Then there exists κ > 0, {Cj} ⊂ R such that Cj → ∞, and

{xj}, {yj} ⊂ Rn such that

|xj + yj|p − |xj|p < p |xj|p−2xj · yj

+ (1− κ)

(
p

2
|xj|p−2|yj|2 +

p(p− 2)

2
|xj|p−4(xj · yj)2

)
− Cj|yj|p .

If xj = 0, we immediately get a contradiction. Otherwise, we divide by |xj|p to obtain

|xj + yj|p

|xj|p
− 1 < p

xj · yj
|xj|2

+ (1− κ)
p

2

(
|yj|2

|xj|2
+ (p− 2)

(xj · yj)2

|xj|4

)
−Cj

|yj|p

|xj|p
. (3.2.17)

The left-hand side is bounded below by −1, so in order for (3.2.17) to hold, |yj|/|xj|

converges to 0 at a sufficiently fast rate. In this case, |yj| is much smaller that |xj|,

so a Taylor expansion reveals that the left-hand side behaves like

p
xj · yj
|xj|2

+
p

2

|yj|2

|xj|2
+
p(p− 2)

2

(xj · yj)2

|xj|4
+ o
( |yj|2
|xj|2

)
,

which is larger than the right-hand side, contradicting (3.2.17).

With the same proof, one can show (3.2.14) with the opposite sign: For all κ > 0,

there exists C = C(p, κ) such that

|a+ b|p∗ ≥ |a|p∗ + p∗|a|p∗−2ab−
(p∗(p∗ − 1)

2
+ κ
)
|a|p∗−2|b|2 −C|b|p∗ .

Applying this and (3.2.14) to functions U and U + ψ with
∫
|U |p∗ =

∫
|U + ψ|p∗ , one

obtains∣∣∣ ∫ |U |p∗−2Uψ
∣∣∣ ≤ (p∗(p∗ − 1)

2
+ κ
)∫
|U |p∗−2|ψ|2 + C

∫
|ψ|p∗ . (3.2.18)
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3.2.3 Orthogonality constraints for u− U

Given a function u ∈ Ẇ 1,p satisfying (3.1.8), suppose the infimum in (3.1.7) is attained

at U = c0Uλ0,y0 . Then ∫
|u|p∗ =

∫
|U |p∗ = cp

∗

0 , (3.2.19)

and the energy

E(λ, y) =

∫
Ac0Uλ,y [∇u− c0∇Uλ,y,∇u− c0∇Uλ,y] ,

has a critical point at (λ0, y0):

0 = ∂λ|λ=λ0

∫
Ac0Uλ,y [∇u− c0∇Uλ,y,∇u− c0∇Uλ,y],

0 = ∂yi |yi=yi0

∫
Ac0Uλ,y [∇u− c0∇Uλ,y,∇u− c0∇Uλ,y].

(3.2.20)

Let u = U + εϕ with ϕ scaled such that
∫
|∇ϕ|p = 1. By (3.2.19) and (3.2.18), we

have ∣∣∣ε∫ |U |p∗−2Uϕ
∣∣∣ ≤ ε2 p

∗ − 1 + κ

2

∫
|U |p∗−2|ϕ|2 + Cεp

∗
∫
|ϕ|p∗ (3.2.21)

for any κ > 0, with C = C(p, n, κ). Computing the derivatives in (3.2.20) yields

ε

∫
AU [∇∂λU,∇ϕ] = ε2C

{∫
|∇ϕ|2|∇U |p−4∇U · ∇∂λU

+ (p− 2)

∫
|∇ϕ|2|∇U |p−4∂rU ∂rλU

} (3.2.22)

and

ε

∫
AU [∇∂yiU,∇ϕ] = ε2C

{∫
|∇ϕ|2|∇U |p−4∇U · ∇∂yiU

+ (p− 2)

∫
|∇ϕ|2|∇U |p−4∂rU ∂ryiU

+ 2

∫
|∇U |p−2∂rϕ∇ϕ · ∂yi r̂

}
,

(3.2.23)
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where r̂ is as in (3.1.6) and C = (p− 2)/2. At the same time, multiplying (3.2.2) by

εϕ and integrating by parts implies that

Sp(p∗ − 1)ε

∫
|U |p∗−2∂λU ϕ = ε

∫
AU [∇∂λU,∇ϕ] ,

Sp(p∗ − 1)ε

∫
|U |p∗−2∂yiU ϕ = ε

∫
AU [∇∂yiU,∇ϕ] .

Combining this with (3.2.22) and (3.2.23) and letting C1 = (p − 2)/2(p∗ − 1)Sp, we

have the following “almost orthogonality” constraints:

ε

∫
|U |p∗−2∂λU ϕ = ε2C1

{∫
|∇ϕ|2|∇U |p−4∇U · ∇∂λU (3.2.24)

+ (p− 2)

∫
|∇ϕ|2|∇U |p−4∂rU ∂rλU

}
,

ε

∫
|U |p∗−2∂yiU ϕ = ε2C1

{∫
|∇ϕ|2|∇U |p−4∇U · ∇∂yiU (3.2.25)

+ (p− 2)

∫
|∇ϕ|2|∇U |p−4∂rU ∂ryiU

+ 2

∫
|∇U |p−2∂rϕ∇ϕ · ∂yi r̂

}
.

The conditions (3.2.24), (3.2.25), and (3.2.21) show that ϕ is “almost orthogonal” to

TUM with respect to the inner product given in (3.2.8). Indeed, dividing through by ε,

the inner product of ϕ with each basis element of TUM appears on the left-hand side of

(3.2.24), (3.2.25), and (3.2.21), while the right-hand side is O(ε). As a result of (3.2.6)

and ϕ being almost orthogonal to TUM, we show that ϕ satisfies a Poincaré-type

inequality (3.3.13), which is an essential point in the proof of Proposition 3.1.6.

Remark 3.2.3. In [BE91], the analogous constraints give orthogonality rather than

almost orthogonality; this is easily seen here, as taking p = 2 makes the right-hand

sides of (3.2.24) and (3.2.25) vanish.

74



3.3 Two expansions of the deficit and their consequences

We prove Proposition 3.1.6 combining an analysis of the second variation and the

inequalities of Lemma 3.2.2. As a consequence (Corollary 3.3.3), we show that, up to

removing the assumption (3.1.8), Theorem 3.1.1 holds for the two regimes described

in (3.1.12).

To prove Proposition 3.1.6, we will need two facts. First, we want to know that the

infimum in (3.1.7) is attained, so that we can express u as u = U+εϕ where
∫
|∇ϕ|p =

1 and ϕ satisfies (3.2.24), (3.2.25), and (3.2.21). Second, it will be important to know

that if δ0 in (3.1.8) is small enough, then ε is small as well. For this reason, we first

prove the following:

Proposition 3.3.1. The following two claims hold.

1. There exists δ0 = δ0(n, p) > 0 such that if

δ(u) ≤ δ0‖∇u‖pLp , (3.3.1)

then the infimum in (3.1.7) is attained. In other words, there exists some U ∈

M with
∫
|U |p∗ =

∫
|u|p∗ such that∫
AU [∇u−∇U,∇u−∇U ] = d(u,M)2.

2. For all ε0 > 0, there exists δ0 = δ0(n, p, ε0) > 0 such that if u ∈ Ẇ 1,p satisfies

(3.3.1), then

ε := ‖∇u−∇U‖Lp < ε0

where U ∈M is a function that attains the infimum in (3.1.7).
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Proof. We begin by showing the following fact, which will be used in the proofs of

both parts of the proposition: for all γ > 0, there exists δ0 = δ0(n, p, γ) > 0 such that

if δ(u) ≤ δ0‖∇u‖pLp , then

inf{‖∇u−∇U‖Lp : U ∈M} ≤ γ‖∇u‖Lp . (3.3.2)

Otherwise, for some γ > 0, there exists a sequence {uk} ⊂ Ẇ 1,p such that ‖∇uk‖Lp =

1 and δ(uk)→ 0 while

inf{‖∇uk −∇U‖Lp : U ∈M} > γ.

A concentration compactness argument as in [Lio85, Str84] ensures that there exist

sequences {λk} and {yk} such that, up to a subsequence, λn/p
∗

k uk(λk(x−yk)) converges

strongly in Ẇ 1,p to some Ū ∈M. Since

γ <

∥∥∥∥∇uk −∇[λ−n/p∗k Ū
( ·
λk

+ yk

)]∥∥∥∥
Lp

=
∥∥∥∇ [λn/p∗k uk(λk(· − yk))

]
−∇Ū

∥∥∥
Lp
→ 0

this gives a contradiction for k sufficiently large, hence (3.3.2) holds.

Proof of (1). Suppose u satisfies (3.3.1), with δ0 to be determined in the proof. Up to

multiplication by a constant, we may assume that ‖u‖Lp∗ = 1. By the claim above,

we may take δ0 small enough so that (3.3.2) holds for γ as small as needed.

The infimum on the left-hand side of (3.3.2) is attained. Indeed, let {Uk} be a

minimizing sequence with Uk = ckUλk,yk . The sequences {ck}, {λk}, {1/λk}, and

{yk} are bounded: if λk →∞ or λk → 0, then for k large enough there will be little

cancellation in the term |∇u−∇Uk|p, so that∫
|∇u−∇Uk|p ≥

1

2

∫
|∇u|p,
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contradicting (3.3.2). The analogous argument holds if |yk| → ∞ or |ck| → ∞.

Thus {ck}, {λk}, {1/λk}, and {yk} are bounded and so, up to a subsequence,

(ck, λk, yk) → (c0, λ0, y0) for some (c0, λ0, y0) ∈ R × R+ × Rn. Since the functions

cUλ,y are smooth, decay nicely, and depend smoothly on the parameters, we deduce

that Uk → c0Uλ0,y0 = Ũ in Ẇ 1,p (actually, they also converge in Ck for any k), hence

Ũ attains the infimum.

To show that the infimum is attained in (3.1.7), we obtain an upper bound on the

distance by using Ū = Ũ/‖Ũ‖Lp∗ as a competitor. Indeed, recalling Remark 3.1.3, it

follows from Hölder’s inequality that

d(u,M)2 ≤ (p− 1)

∫ ∣∣∇Ū ∣∣p−2 ∣∣∇u−∇Ū ∣∣2 ≤ (p− 1)S(p−2)/p‖∇u−∇Ū‖2/p
Lp .

Notice that, since ‖u‖Lp∗ = 1, it follows by (3.3.1) that ‖∇u‖Lp ≤ 2Sp provided

δ0 ≤ 1/2. Hence, since

∣∣‖Ū‖Lp∗ − 1
∣∣≤ ‖Ū − u‖Lp∗ ≤ S−p‖∇Ū −∇u‖Lp ,

it follows by (3.3.2) and the triangle inequality that ‖∇u − ∇Ū‖Lp ≤ C(n, p) γ,

therefore

d(u,M)2 ≤ C(n, p) γ2/p. (3.3.3)

Hence, if {Uk} is a minimizing sequence for (3.1.7) with Uk = Uλk,yk (so that
∫
|Uk|p

∗
=∫

|u|p∗ = 1), the analogous argument as above shows that if either of the sequences

{λk}, {1/λk}, or {yk} are unbounded, then

d(u,M)2 ≥ 1

2
,
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contradicting (3.3.3) for γ sufficiently small. This implies that Uk → Uλ0,y0 in Ẇ 1,p,

and by continuity Uλ0,y0 attains the infimum in (3.1.7).

Proof of (2). We have shown that (3.3.2) holds for δ0 sufficiently small. Therefore,

we need only to show that, up to further decreasing δ0, there exists C = C(p, n) such

that

‖∇u−∇U0‖Lp ≤ C inf{‖∇u−∇U‖Lp : U ∈M},

where U0 ∈M is the function where the infimum is attained in (3.1.7).

Suppose for the sake of contradiction that there exists a sequence {uj} such that

δ(uj)→ 0 and ‖∇uj‖Lp = 1 but∫
|∇uj −∇Uj|p ≥ j

∫
|∇uj −∇Ūj|p, (3.3.4)

where Uj, Ūj ∈M are such that∫
AUj [∇uj −∇Uj,∇uj −∇Uj] = d(uj,M)2

and ∫
|∇uj −∇Ūj|p = inf

{∫
|∇uj −∇Uj|p : U ∈M

}
.

Since δ(uj)→ 0, the same concentration compactness argument as above implies that

there exist sequences {λj} and {yj} such that, up to a subsequence, λn/p
∗

j uj(λj(x−yj))

converges in Ẇ 1,p to some U ∈ M with ‖∇U‖Lp = 1. By an argument analogous to

that in part (1), we determine that Uj → U in Ck and Ūj → U in Ck for any k. Let

φj =
uj − Uj

‖∇uj −∇Uj‖Lp
and φ̄j =

uj − Ūj
‖∇uj −∇Uj‖Lp

.
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Then (3.3.4) implies that

1 =

∫
|∇φj|p ≥ j

∫
|∇φ̄j|p. (3.3.5)

In particular, ∇φ̄j → 0 in Lp. Now define

ψj = φj − φ̄j =
Ūj − Uj

‖∇uj −∇Uj‖Lp
.

For any η > 0, (3.3.5) implies that 1 − η ≤ ‖∇ψj‖Lp ≤ 1 + η for j large enough. In

particular, {∇ψj} is bounded in Lp and so ∇ψj ⇀ ∇ψ in Lp for some ψ ∈ Ẇ 1,p.

We now consider the finite dimensional manifold M̄ := {U − Ū : U, Ū ∈ M}. Since

Uj, Ūj → U, the sequences {λj}, {1/λj}, {yj}, {λ̄j}, {1/λ̄j} and {ȳj} are contained in

some compact set, and thus all norms of Ūj −Uj are equivalent: for any norm |||·||| on

M̄ there exists µ > 0 such that

µ‖∇Ūj −∇Uj‖Lp ≤
∣∣∣∣∣∣∇Ūj −∇Uj∣∣∣∣∣∣ ≤ 1

µ
‖∇Ūj −∇Uj‖Lp . (3.3.6)

Dividing (3.3.6) by ‖∇uj −∇Uj‖Lp gives

µ(1− η) ≤ µ‖∇ψj‖Lp ≤ |||∇ψj||| ≤
1

µ
‖∇ψi‖Lp ≤

1 + η

µ
. (3.3.7)

Taking the norm |||·||| = ‖ · ‖Ck , the upper bound in (3.3.7) and the Arzelà-Ascoli

theorem imply that ψj converges, up to a subsequence, to ψ in Ck. The lower bound

in (3.3.7) implies that ‖ψ‖Ck 6= 0.
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To get a contradiction, we use the minimality of Uj for d(uj,M) to obtain∫
|∇Ūj|p−2|∇φ̄j|2 + (p− 2)

∫
|∇Ūj|p−2|∂rφ̄j|2

≥
∫
|∇Uj|p−2|∇φj|2 + (p− 2)

∫
|∇Uj|p−2|∂rφj|2

=

∫
|∇Uj|p−2|∇φ̄j|2 + 2

∫
|∇Uj|p−2∇φ̄j · ∇ψj +

∫
|∇Uj|p−2|∇ψj|2

+ (p− 2)

(∫
|∇Uj|p−2|∂rφ̄j|2 + 2

∫
|∇Uj|p−2∂rφ̄j∂rψj +

∫
|∇Uj|p−2|∂ψj|2

)
.

Since ∫
|∇Ūj|p−2|∇φ̄j|2 −

∫
|∇Uj|p−2|∇φ̄j|2 → 0

and ∫
|∇Ūj|p−2|∂rφ̄j|2 −

∫
|∇Uj|p−2|∂rφ̄j|2 → 0,

the above inequality implies that

0 ≥ 2 lim
j→∞

∫
|∇Uj|p−2∇φ̄j · ∇ψj + lim

j→∞

∫
|∇Uj|p−2|∇ψj|2

+ (p− 2)

(
2 lim
j→∞

∫
|∇Uj|p−2∂rφ̄j∂rψj + lim

j→∞

∫
|∇Uj|p−2|∂ψj|2

)
.

(3.3.8)

However, since ∇φ̄j → 0 in Lp,

lim
j→∞

∫
|∇Uj|p−2∇φ̄j · ∇ψj = 0 and lim

j→∞

∫
|∇Uj|p−2∂rφ̄j∂rψj = 0.

In addition, the terms∫
|∇Uj|p−2|∇ψj|2 and

∫
|∇Uj|p−2|∂rψj|2

converge to something strictly positive, as ψj → ψ 6≡ 0 and Uj → U with ∇U(x) 6= 0

for all x 6= 0. This contradicts (3.3.8) and concludes the proof.
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The following Poincaré inequality will be used in the proof of Proposition 3.1.6:

Lemma 3.3.2. There exists a constant C > 0 such that, for all ϕ ∈ Ẇ 1,p and U ∈M,∫
|U |p∗−2|ϕ|2 ≤ C

∫
|∇U |p−2|∇ϕ|2 . (3.3.9)

Proof. Let U ∈M and ϕ ∈ C∞0 . As U is a local minimum of the functional δ,

0 ≤ d2

dε2

∣∣∣∣
ε=0

δ(U + εϕ) = p

∫
|∇U |p−2|∇ϕ|2 + p(p− 2)

∫
|∇U |p−2|∂rϕ|2

− Spp
(( p

p∗
− 1
)(∫

|U |p∗
) p
p∗−2(∫

|U |p∗−2U ϕ
)2

+ (p∗ − 1)
(∫
|U |p∗

) p∗
p
−1
∫
|U |p∗−2ϕ2

)
.

Noting that∫
|∇U |p−2|∂rϕ|2 ≤

∫
|∇U |p−2|∇ϕ|2 ,

(∫
|U |p∗

)p/p∗−2(∫
|U |p∗−2U ϕ

)2

≥ 0,

this implies that

0 ≤ p(p− 1)

∫
|∇U |p−2|∇ϕ|2 − Spp(p∗ − 1)

(∫
|U |p∗

)p∗/p−1
∫
|U |p∗−2ϕ2.

Thus (3.3.9) holds for ϕ ∈ C∞0 , and for ϕ ∈ Ẇ 1,p by approximation.

We now prove Proposition 3.1.6.

Proof of Proposition 3.1.6. First of all, thanks to (3.1.8), we can apply Proposi-

tion 3.3.1(1) to ensure that some U = c0Uλ0,y0 ∈ M attains the infimum in (3.1.7).

Expressing u as u = U+εϕ where
∫
|∇ϕ|p = 1, it follows from Proposition 3.3.1(2) and

the discussion in Section 3.2.3 that ε can be assumed to be as small as desired (pro-

vided δ0 is chosen small enough) and that ϕ satisfies (3.2.24), (3.2.25), and (3.2.21).
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Note that, since all terms in (3.1.10) and (3.1.11) are p-homogeneous, without loss of

generality we may take c0 = 1.

Proof of (3.1.10). The inequalities (3.2.13) and (3.2.14) are used to expand the

gradient term and the function term in δ(u) respectively.

From (3.2.13) and for κ = κ(p, n) > 0 to be chosen at the end of the proof, we have∫
|∇u|p ≥

∫
|∇U |p + εp

∫
|∇U |p−2∇U · ∇ϕ (3.3.10)

+
ε2p(1− κ)

2

(∫
|∇U |p−2|∇ϕ|2 + (p− 2)

∫
|∇U |p−2|∂rϕ|2

)
− εpC

∫
|∇ϕ|p.

Note that the second order term is precisely ε2p
2

(1 − κ)
∫
AU [∇ϕ,∇ϕ]. Similarly,

(3.2.14) gives∫
|u|p∗ ≤ 1 + εp∗

∫
Up∗−1ϕ+ ε2

(p∗(p∗ − 1)

2
+
p∗κ

2Sp

)∫
Up∗−2ϕ2 + Cεp

∗
∫
|ϕ|p∗ .

(3.3.11)

From the identity (3.2.1), the first order term in (3.3.11) is equal to

εp∗
∫
Up∗−1ϕ = εp∗S−p

∫
|∇U |p−2∇U · ∇ϕ. (3.3.12)

Using (3.3.12) and recalling that (p∗ − 1)Sp = α2 (see (3.2.5)), (3.3.11) becomes∫
|u|p∗ ≤ 1 +

εp∗

Sp

∫
|∇U |p−2∇U · ∇ϕ+

ε2p∗(α2 + κ)

2Sp

∫
Up∗−2ϕ2 + Cεp

∗
,

The following estimate holds, and is shown below:

ε2

∫
Up∗−2ϕ2 ≤ (1 + 2κ)

ε2

α3

∫
AU [∇ϕ,∇ϕ] + Cεp, (3.3.13)
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Philosophically, (3.3.13) follows from a spectral gap analysis, using (3.2.7) and the

fact that (3.2.24), (3.2.25), and (3.2.21) imply that ϕ is “almost orthogonal" to H1

and H2.

As ε may be taken as small as needed, using (3.3.13) we have∫
|u|p∗ ≤ 1+

p∗

Sp

(
ε

∫
|∇U |p−2∇U ·∇ϕ+

ε2(α2 + κ)(1 + 2κ)

2α3

∫
AU [∇ϕ,∇ϕ]+Cεp

)
.

The function z 7→ |z|p/p∗ is concave, so ‖u‖p
Lp∗
≤ 1 + p

p∗
(
∫
|u|p∗ − 1):

Sp‖u‖p
Lp∗
≤ Sp+p

(
ε

∫
|∇U |p−2∇U ·∇ϕ+

ε2(α2 + κ)(1 + 2κ)

2α3

∫
AU [∇ϕ,∇ϕ]+Cεp

)
.

(3.3.14)

Subtracting (3.3.14) from (3.3.10) gives

δ(u) ≥ ε2p

2

(
1− κ− (α2 + κ)(1 + 2κ)

α3

)∫
A[∇ϕ,∇ϕ]−Cεp.

Since 1− α2

α3
> 0, we may choose κ sufficiently small so that 1− κ− (α2+κ)(1+2κ)

α3
> 0.

To conclude the proof of (3.1.10), we need only to prove (3.3.13).

Proof of (3.3.13). If ϕ were orthogonal to TUM instead of almost orthogonal, that

is, if the right-hand sides of (3.2.24), (3.2.25), and (3.2.21) were equal to zero, then

(3.3.13) would be an immediate consequence of (3.2.7). Therefore, the proof involves

showing that the error in the orthogonality relations is truly higher order, in the sense

that it can be absorbed in the other terms.

Up to rescaling u and U , we may assume that λ0 = 1 and y0 = 0. We recall the inner

product 〈w, y〉 defined in (3.2.8) which gives rise to the norm

‖w‖ =
(∫
|U |p∗−2w2

)1/2

.
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As in Section 3.2, we let Hi denote the eigenspace of LU in L2(Up∗−2) corresponding

to eigenvalue αi, so Hi = span {Yi,j}N(i)
j=1 , where Yi,j is an eigenfunction with eigenvalue

αi with ‖Yi,j‖ = 1. We express εϕ in the basis of eigenfunctions:

εϕ =
∞∑
i=1

N(i)∑
j=1

βi,jYi,j where βi,j := ε

∫
|U |p∗−2ϕYi,j.

We let εϕ̃ be the truncation of εϕ:

εϕ̃ = εϕ−
2∑
i=1

N(i)∑
j=1

βi,jYi,j,

so that ϕ̃ is orthogonal to span {H1 ∪ H2} and, introducing the shorthand β2
i :=∑N(i)

j=1 β
2
i,j, ∫

|U |p∗−2(εϕ)2 =

∫
|U |p∗−2(εϕ̃)2 + β2

1 + β2
2 . (3.3.15)

Applying (3.2.7) to ϕ̃ implies that∫
|U |p∗−2(εϕ̃)2 ≤ ε2

α3

〈LU ϕ̃, ϕ̃〉,

which combined with (3.3.15) gives∫
|U |p∗−2(εϕ)2 ≤ ε2

α3

〈LU ϕ̃, ϕ̃〉+ β2
1 + β2

2

=
1

α3

∞∑
i=3

αiβ
2
i + β2

1 + β2
2

≤ ε2

α3

〈LUϕ, ϕ〉+
(

1− α1

α3

)
(β2

1 + β2
2).

(3.3.16)

We thus need to estimate β2
1 + β2

2 . The constraint (3.2.21) implies

β2
1 ≤

(
ε2 p

∗ − 1 + κ

2

∫
|U |p∗−2|ϕ|2 + Cεp

∗
∫
|ϕ|p∗

)2
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≤ Cε4
(∫
|U |p∗−2|ϕ|2

)2

+ Cε2p∗
(∫
|ϕ|p∗

)2

.

By (3.3.9),
∫
|U |p∗−2|ϕ|2 ≤

∫
∇U |p−2|∇ϕ|2. Furthermore, both

∫
|∇U |p−2|∇ϕ|2 and∫

|ϕ|p∗ are universally bounded, so for ε sufficiently small depending only on p and n

and κ,

β2
1 ≤

κε2

α3

(∫
|∇U |p−2|∇ϕ|2 + (p− 2)

∫
|∇U |p−2|∂rϕ|2

)
+ Cεp. (3.3.17)

For β2
2,1, we notice that Hölder’s inequality and (3.2.24) imply

β2
2,1 ≤

(
Cp,nε

2

∫
|∇U |p−3|∇ϕ|2 |∇∂λU |

‖∂λU‖

)2

≤ Cp,n

∫
|∇U |p−2|∇∂λU |2

‖∂λU‖2

∫
|∇U |p−4|ε∇ϕ|4 = Cp,nε

4

∫
|∇U |p−4|∇ϕ|4,

(3.3.18)

where the final equality follows because the term
∫
|∇U |p−2|∇∂λU |2/‖∂λU‖2 is

bounded (in fact, it is bounded by α2). Then, using Young’s inequality, we get

β2
2,1 ≤

ε2κ

(n+ 1)α3

(∫
|∇U |p−2|∇ϕ|2 + (p− 2)

∫
|∇U |p−2|∂rϕ|2

)
+ Cκ,pε

p

∫
|∇ϕ|p.

The analogous argument using (3.2.25) implies that

β2
2,j ≤ Cp,nε

4

∫
|∇U |p−4|∇ϕ|4 + Cp,nε

4

(∫
|∇U |p−2∂rϕ∇ϕ ·

∂yi r̂

‖∂yU‖

)2

. (3.3.19)

for j = 2, . . . , n+ 1. For the second term in (3.3.19), Hölder’s inequality implies that(∫
|∇U |p−2∂rϕ∇ϕ ·

∂yi r̂

‖∂yU‖

)2

≤
∫
|∇U |p−4|∇ϕ|4

∫
|∇U |p

|∂yi r̂|2

‖∂yiU‖2
.

Since

∂yi r̂ =
xix

|x|3
, |∂yi r̂| ≤

1

|x|
,
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we find that
∫
|∇U |p |∂yi r̂|

2

‖∂yiU‖2
converges, so (3.3.19) implies that

β2
2,j ≤ Cp,nε

4

∫
|∇U |p−4|∇ϕ|4.

Then using Young’s inequality just as in (3.3.18), we find that

β2
2,j ≤

ε2κ

(n+ 1)α3

(∫
|∇U |p−2|∇ϕ|2 + (p− 2)

∫
|∇U |p−2|∂rϕ|2

)
+ Cκ,pε

p

∫
|∇ϕ|p,

and thus

β2
2 ≤

ε2κ

α3

(∫
|∇U |p−2|∇ϕ|2 + (p− 2)

∫
|∇U |p−2|∂rϕ|2

)
+ Cκ,pε

p. (3.3.20)

Together (3.3.16), (3.3.17), and (3.3.20) imply (3.3.13), as desired.

Proof of (3.1.11). The proof of (3.1.11) is similar to, but simpler than, the proof

of (3.1.10), as no spectral gap or analysis of the second variation is needed. The

principle of the expansion is the same, but now we use (3.2.15) and (3.2.16) to expand

the deficit.

From (3.2.15), we have∫
|∇u|p ≥

∫
|∇U |p + pε

∫
|∇U |p−2∇U · ∇ϕ−C ε2

∫
|∇U |p−2|∇ϕ|2 +

εp

2

∫
|∇ϕ|p.

(3.3.21)

Similarly, (3.2.16) implies∫
|u|p∗ ≤ 1 + εp∗

∫
Up∗−1ϕ+ C ε2

∫
Up∗−2ϕ2 + 2εp

∗
∫
|ϕ|p∗ . (3.3.22)

As before, the identity (3.2.1) implies (3.3.12), so (3.3.22) becomes∫
|u|p∗ ≤ 1 + εp∗S−p

∫
|∇U |p−2∇U · ∇ϕ+ C ε2

∫
Up∗−2ϕ2 + 2εp

∗
∫
|ϕ|p∗ .
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By the Poincaré inequality (3.3.9),∫
|u|p∗ ≤ 1 + εp∗S−p

∫
|∇U |p−2∇U · ∇ϕ+ Cε2

∫
|∇U |p−2|∇ϕ|2 + 2εp

∗
.

As in (3.3.14), the concavity of z 7→ |z|p/p∗ yields

Sp‖u‖p
Lp∗
≤ Sp + εp

∫
|∇U |p−2∇U · ∇ϕ+ Cε2

∫
|∇U |p−2|∇ϕ|2 + Cεp

∗
. (3.3.23)

Subtracting (3.3.23) from (3.3.21) gives

δ(u) ≥ −C ε2

∫
|∇U |p−2|∇ϕ|2 +

εp

2
−Cεp

∗

≥ −Cd(u,M)2 +
εp

4
.

The final inequality follows from Remark 3.1.3 and once more taking ε is as small as

needed. This concludes the proof of (3.1.11).

Corollary 3.3.3. Suppose u ∈ Ẇ 1,p is a function satisfying (3.1.8) and U ∈M is a

function where the infimum in (3.1.7) is attained. There exist constants C∗, c∗ and

c, depending on n and p only, such that if

C∗ ≤
∫
AU [∇u−∇U,∇u−∇U ]∫

|∇u−∇U |p
or c∗ ≥

∫
AU [∇u−∇U,∇u−∇U ]∫

|∇u−∇U |p
, (3.3.24)

then

c

∫
|∇u−∇U |p ≤ δ(u).

Proof. Let C∗ = 2C2

c1
and let c∗ = 1

8C3
where c1,C2 and C3 are as defined in Propo-

sition 3.1.6. First suppose that u satisfies the first condition in (3.3.24). Then in
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(3.1.10), we may absorb the term C2

∫
|∇u−∇U |p into the term c1d(u,M)2, giving

us
c1

2
d(u,M)2 ≤ δ(u).

Given this control, we may bootstrap using (3.1.11) to gain control of the stronger

distance:
1

4

∫
|∇u−∇U |p ≤ δ(u) + C3 d(u,M)2 ≤ Cδ(u).

Similarly, if u satisfies the second condition in (3.3.24), then we may absorb the term

C3 d(u,M)2 into the term 1
4

∫
|∇u−∇U |p in (3.1.11), giving us

1

8

∫
|∇u−∇U |p ≤ δ(u).

3.4 Proof of the main result

Corollary 3.3.3 implies Theorem 3.1.1 for the functions u ∈ Ẇ 1,p that satisfy (3.1.8)

and that lie in one of the two regimes described in (3.1.12). Therefore, to prove

Theorem 3.1.1, it remains to understand the case when the terms
∫
AU [∇u−∇U,∇u−

∇U ] and
∫
|∇u −∇U |p are comparable and to remove the assumption (3.1.8). The

following proposition accomplishes the first.

Proposition 3.4.1. Let u ∈ Ẇ 1,p be a function satisfying (3.1.8), and let U ∈M be

a function where the infimum in (3.1.7) is attained. If

c∗ ≤
∫
AU [∇u−∇U,∇u−∇U ]∫

|∇u−∇U |p
≤ C∗, (3.4.1)
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where c∗ and C∗ are the constants from the Corollary 3.3.3, then∫
|∇u−∇U |p ≤ Cδ(u) + C‖U‖p−1

Lp∗
‖u− U‖Lp∗ (3.4.2)

for a constant C depending only on p and n.

Proof. Suppose u lies in the regime (3.4.1). Then we consider the linear interpolation

ut := tu+ (1− t)U and notice that∫
AU [∇ut −∇U,∇ut −∇U ]∫

|∇ut −∇U |p
=
t2
∫
AU [∇u−∇U,∇u−∇U ]

tp
∫
|∇u−∇U |p

≥ t2−pc∗.

Hence, there exists t∗ sufficiently small, depending only on p and n, such that t2−p∗ c∗ >

C∗.

We claim that we may apply Corollary 3.3.3 to ut∗ . This is not immediate because U

may not attain the infimum in (3.1.7) for ut∗ . However, each step of the proof holds

if we expand ut∗ around U . Indeed, keeping the previous notation of u − U = εϕ

with
∫
|∇ϕ|p = 1, we have ut∗ − U = t∗εϕ. so the orthogonality constraints in

(3.2.24), (3.2.25), and (3.2.21) still hold for ut∗ and U by simply multiplying through

by t∗ (this changes the constants by a factor of t∗ but this does not affect the proof).

Furthermore, (3.1.8) is used in the proofs of Proposition 3.1.6 and (3.3.13) to ensure

that ε is a small as needed to absorb terms. Since t∗ < 1, if ε is sufficiently small then

so is t∗ε. With these two things in mind, every step in the proof of Proposition 3.1.6,

and therefore Corollary 3.3.3 goes through for ut∗ .

Corollary 3.3.3 then implies that

tp∗

∫
|∇u−∇U |p =

∫
|∇ut∗ −∇U |p ≤ Cδ(ut∗).
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Therefore, (3.4.2) follows if we can show

δ(ut∗) ≤ Cδ(u) + C‖U‖p−1

Lp∗
‖u− U‖Lp∗ . (3.4.3)

In the direction of (3.4.3), by convexity and recalling that ‖∇U‖Lp = S‖U‖Lp∗ =

S‖u‖Lp∗ , we have

δ(ut∗) =

∫
|t∗∇u+ (1− t∗)∇U |p − Sp ‖t∗u+ (1− t∗)U‖pLp∗

≤ t∗

∫
|∇u|p + (1− t∗)

∫
|∇U |p − Sp‖t∗u+ (1− t∗)U‖pLp∗

= t∗ δ(u) + Sp
(
‖U‖p

Lp∗
− ‖t∗u+ (1− t∗)U‖pLp∗

)
.

(3.4.4)

Also, by the triangle inequality,

‖t∗(u− U) + U‖p
Lp∗
≥ (‖U‖Lp∗ − ‖t∗(u− U)‖Lp∗ )p,

and by the convexity of the function f(z) = |z|p, f(z + y) ≥ f(z) + f ′(z)y, and so

(‖U‖Lp∗ − ‖t∗(u− U)‖Lp∗ )p ≥ ‖U‖Lp∗ − p‖U‖
p−1

Lp∗
‖u− U‖Lp∗ .

These two inequalities imply that

‖U‖p
Lp∗
− ‖t∗u+ (1− t∗)U‖pLp∗ ≤ p‖U‖p−1

Lp∗
‖u− U‖Lp∗ .

Combining this with (3.4.4) yields (3.4.3), concluding the proof.

From here, the proof of Theorem 3.1.1 follows easily:

Proof of Theorem 3.1.1. Together, Corollary 3.3.3 and Proposition 3.4.1 imply the

following: there exists some constant C such that if u ∈ Ẇ 1,p satisfies (3.1.8), then

there is some U ∈M such that∫
|∇u−∇U |p ≤ Cδ(u) + C‖U‖p

∗−1

Lp∗
‖u− U‖Lp∗ .
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Therefore, we need only to remove the assumption (3.1.8) in order to complete the

proof of Theorem 3.1.1. However, in the case where (3.1.8) fails, then trivially,

inf{‖∇u−∇U‖pLp : U ∈M} ≤ ‖∇u‖pLp ≤
1

δ0

δ(u).

Choosing the constant to be sufficiently large, Theorem 3.1.1 is proven.

We now prove Corollary 3.1.2 using the main result from [CFMP09], which we recall

here:

Theorem 3.4.2 (Cianchi, Fusco, Maggi, Pratelli, [CFMP09]). There exists C such

that

λ(u)ζ
′‖u‖Lp∗ ≤ C(‖∇u‖Lp − S‖u‖Lp∗ ), (3.4.5)

where λ(u) = inf
{
‖u − U‖p

∗

Lp∗
/‖u‖p

∗

Lp∗
: U ∈ M,

∫
|U |p∗ =

∫
|u|p∗

}
and ζ ′ =

p∗
(
3 + 4p− 3p+1

n

)2.

Proof of Corollary 3.1.2. As before, if (3.1.8) does not hold, then Corollary 3.1.2

holds trivially by simply choosing the constant to be sufficiently large. Now suppose

u ∈ Ẇ 1,p satisfies (3.1.8). There are two obstructions to an immediate application of

Theorem 3.4.2. The first is the fact that the deficit in (3.4.5) is defined as ‖∇u‖Lp −

S‖u‖Lp∗ , while in our setting it is defined as ‖∇u‖pLp − Sp‖u‖
p

Lp∗
. However, this is

easy to fix. Indeed, using the elementary inequality

ap − bp ≥ a− b ∀ a ≥ b ≥ 1,

we let a = ‖∇u‖Lp/S‖u‖Lp∗ and b = 1 to get

‖∇u‖Lp − S‖u‖Lp∗
S‖u‖Lp∗

≤
‖∇u‖pLp − Sp‖u‖

p

Lp∗

Sp‖u‖p
Lp∗

≤ 1

1− δ0

‖∇u‖pLp − Sp‖u‖
p

Lp∗

‖∇u‖pLp
,
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where the last inequality follows from (3.1.8). Therefore, up to increasing the con-

stant, (3.4.5) implies that

λ(u)ζ
′ ≤ C

δ(u)

‖∇u‖pLp
. (3.4.6)

The second obstruction to applying Theorem 3.4.2 is the fact that (3.4.5) holds for

the infimum in λ(u), while we must control ‖u− U‖Lp∗ for U attaining the infimum

in (3.1.7). To solve this issue it is sufficient to show that there exists some constant

C = C(n, p) such that∫
|Ū − u|p∗ ≤ C inf

{
‖u− U‖p

∗

Lp∗
: U ∈M,

∫
|U |p∗ =

∫
|u|p∗

}
where Ū attains the infimum in (3.1.7). The proof of this fact is nearly identical

(with the obvious adaptations) to that of part (2) of Proposition 3.3.1, with the only

nontrivial difference being that one must integrate by parts to show that the analogue

of first term in (3.3.8) goes to zero.

Therefore, (3.4.5) implies (
‖u− U‖Lp∗
‖u‖Lp∗

)ζ′
≤ C

δ(u)

‖∇u‖Lp

where U ∈M attains the infimum in (3.1.7). Paired with Theorem 3.1.1, this proves

Corollary 3.1.2 with ζ = ζ ′p.

3.5 Spectral Properties of LU

In this section, we give the proofs of the compact embedding theorem and Sturm-

Liouville theory that were postponed in the proof of Proposition 3.2.1. As in Proposi-

tion 3.2.1, by scaling, it suffices to consider the operator L = LU where U = U0,1.
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3.5.1 The discrete spectrum of L

Given two measurable functions ω0, ω1 : Ω→ R, let

W 1,2(Ω, ω0, ω1) := {g : ‖g‖W 1,2(Ω,ω0,ω1) <∞},

where ‖ · ‖W 1,2(Ω,ω0,ω1) is the norm defined by

‖g‖W 1,2(Ω,ω0,ω1) =

(∫
Ω

g2ω0 +

∫
Ω

|∇g|2ω1

)1/2

. (3.5.1)

The space W 1,2
0 (Ω, ω0, ω1) is defined as the completion of the space C∞0 (Ω) with

respect to the norm ‖ · ‖W 1,2(Ω,ω0,ω1). The following compact embedding result was

shown in [Opi88]:

Theorem 3.5.1 (Opic, [Opi88]). Let Z = W 1,2
0 (Rn, ω0, ω1) and suppose

ωi ∈ L1
loc and ω

−1/2
i ∈ L2∗

loc, (3.5.2)

i = 0, 1. If there are local compact embeddings

W 1,2(Bk, ω0, ω1) ⊂⊂ L2(Bk, ω0), k ∈ N, (3.5.3)

where Bk = {x : |x| < k}, and if

lim
k→∞

sup
{
‖u‖L2(Rn\Bk,ω0) : u ∈ Z, ‖u‖Z ≤ 1

}
= 0, (3.5.4)

then Z embeds compactly in L2(Rn, ω0).

We apply Theorem 3.5.1 to show that the space

X = W 1,2
0 (Rn, Up∗−2, |∇U |p−2), (3.5.5)

embeds compactly into L2(Rn, Up∗−2).
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Corollary 3.5.2. The compact embedding X ⊂⊂ L2(Rn, Up∗−2) holds, with X as in

(3.5.5).

Proof. Let us verify that Theorem 3.5.1 may be applied in our setting, taking

ω0 = Up∗−2, ω1 = |∇U |p−2.

In other words, we must show that (3.5.2)–(3.5.4) are satisfied. A simple computation

verifies (3.5.2). To show (3.5.3), we fix δ > 0 small (the smallness depending only on

n and p) and show the three inclusions below:

W 1,2(Br, ω0, ω1)
(1)
⊂ W 1,2(n+δ)/(n+2)(Br)

(2)
⊂⊂ L2(Br)

(3)
⊂ L2(Br, ω0).

Since (2n/(2+n))∗ = 2, the Rellich-Kondrachov compact embedding theorem implies

(2), while the inclusion (3) holds simply because Up∗−2 ≥ cn,p,r for x ∈ Br. In the

direction of showing (1), we use this fact and Hölder’s inequality to obtain(∫
Br

|u|2(n+δ)/(n+2)
)(n+2)/(n+δ)

≤ |Br|(2−δ)/(n+δ)

∫
Br

|u|2 ≤ Cn,p,r

∫
Br

|U |p∗−2|u|2.

(3.5.6)

Furthermore, since

|∇U |p−2 = C(1 + |x|p′)−n(p−2)/p|x|(p−2)/(p−1) ≥ cn,p,r|x|(p−2)/(p−1) for x ∈ Br,

Hölder’s inequality implies that(∫
Br

|∇u|2(n+δ)/(n+2)
)(n+2)/(n+δ)

≤
(∫

Br

|x|(p−2)/(p−1)|∇u|2
)(∫

Br

|x|−β
)(2−δ)/(n+δ)

≤ Cn,p,r

∫
Br

|∇U |p−2|∇u|2,

(3.5.7)
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where β =
(
p−2
p−1

)(
n+δ
n+2

)(
n+2
2−δ

)
. Then the inclusion (1) follows from (3.5.6) and (3.5.7),

and thus (3.5.3) is verified.

To show (3.5.4), let uk be a function almost attaining the supremum in (3.5.4), in

other words, for a fixed η > 0, let uk be such that uk ∈ X, ‖uk‖X ≤ 1, and

sup
{
‖u‖L2(Rn\Bk,ω0) : u ∈ X, ‖u‖X ≤ 1

}
≤ ‖uk‖L2(Rn\Bk,ω0) + η.

By mollifying u and multiplying by a smooth cutoff η ∈ C∞0 (Rn\Bk), we may assume

without loss of generality that uk ∈ C∞0 (Rn\Bk). Recalling that U = U1 with U1 as

in (3.1.3), we have∫
Rn\Bk

Up∗−2u2
k =

∫
Rn\Bk

κ0(1+|x|p′)−(p∗−2)(n−p)/pu2
k ≤ 2κ0

∫
Rn\Bk

|x|−(p∗−2)(n−p)/(p−1)u2
k

(3.5.8)

for k ≥ 2. We use Hardy’s inequality in the form∫
Rn
|x|su2 ≤ C

∫
Rn
|x|s+2|∇u|2 (3.5.9)

for u ∈ C∞0 (Rn) (see, for instance, [Zyg02]). Applying (3.5.9) to the right-hand side

of (3.5.8) implies∫
Rn\Bk

|x|−(p∗−2)(n−p)/(p−1)u2
k ≤ C

∫
Rn\Bk

|x|−(p∗−2)(n−p)/(p−1)+2|∇uk|2 (3.5.10)

and (3.5.8) and (3.5.10) combined give∫
Rn\Bk

Up∗−2u2
k ≤ C

∫
Rn\Bk

|x|−(p∗−2)(n−p)/(p−1)+2|∇uk|2

= C

∫
Rn\Bk

|x|−p′ |x|−(p−2)(n−1)/(p−1)|∇uk|2
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≤ Ck−p
′
∫
Rn\Bk

|∇U |p−2|∇uk|2,

where the final inequality follows because

|∇U |p−2 ≥ C|x|−(p−2)(n−1)/(p−1) for x ∈ Rn\B1.

Thus ∫
Rn\Bk

Up∗−2u2
k ≤ Ck−p

′‖uk‖X ,

and (3.5.4) is proven.

Thanks to the compact embedding X ⊂⊂ L2(Rn, ω0), we can now prove the following

important fact:

Corollary 3.5.3. The operator L has a discrete spectrum {αi}∞i=1.

Proof. We show that the operator L−1 : L2(Up∗−2) → L2(Up∗−2) is bounded, com-

pact, and self-adjoint. From there, one applies the spectral theorem (see for instance

[Eva98]) to deduce that L−1 has a discrete spectrum, hence so does L.

Approximating by functions in C∞0 (Rn), the Poincaré inequality (3.3.9) holds for all

functions ϕ ∈ X, with X as defined in (3.5.5). Thanks to this fact, the existence and

uniqueness of solutions to Lu = f for f ∈ L2(Up∗−2) follow from the Direct Method,

so the operator L−1 is well defined.

Self-adjointness is immediate. From (3.3.9) and Hölder’s inequality, we have

c‖u‖2
X ≤

∫
|∇U |p−2|∇u|2 ≤

∫
A[∇u,∇u] ≤ ‖u‖X‖Lu‖L2(Up∗−2).

This proves that L−1 is bounded from L2(Up∗−2) to L2(Up∗−2), and by Corollary 3.5.2

we see that L−1 is a compact operator.
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3.5.2 Sturm-Liouville theory

Multiplying by the integrating factor rn−1, the ordinary differential equation (3.2.12)

takes the form of the Sturm-Liouville eigenvalue problem

Lf + αf = 0 on [0,∞), (3.5.11)

where

Lf =
1

w
[(Pf ′)′ −Qf ]

with
P (r) = (p− 1)|U ′|p−2rn−1,

Q(r) = µrn−3|U ′|p−2,

w(r) = Up∗−2rn−1.

(3.5.12)

This is a singular Sturm-Liouville problem; first of all, our domain is unbounded, and

second of all, the equation is degenerate because U ′(0) = 0. Nonetheless, we show

that Sturm-Liouville theory holds for this singular problem.

Lemma 3.5.4 (Sturm-Liouville Theory). The following properties hold for the sin-

gular Sturm-Liouville eigenvalue problem (3.5.11):

1. If f1 and f2 are two eigenfunctions corresponding to the eigenvalue α, then

f1 = cf2. In other words, each eigenspace of L is one-dimensional.

2. The ith eigenfunction of L has i− 1 interior zeros.

Note that L has a discrete spectrum because L does (Corollary 3.5.3), and that

eigenfunctions f of L live in the space

Y = W 1,2
0

(
[0,∞), Up∗−2rn−1, |U ′|p−2rn−1

)
,
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using the notation introduced at the beginning of Section 3.5.1. In any ball BR

around zero, the operator L is degenerate elliptic with the matrix A bounded by an

A2-Muckenhoupt weight, so eigenfunctions of L are Hölder continuous; see [FKS82,

Gut89]. Therefore, eigenfunctions of L are Hölder continuous on [0,∞).

Remark 3.5.5. The function P (r) as defined in (3.5.12) has the following behavior:

P (r) ≈ r(p−2)(p−1)+n−1 in [0, 1],

P (r) ≈ r(n−1)/(p−1) as r →∞.

In particular, the weight |U ′|p−2rn−1 ≈ r(n−1)/(p−1) goes to infinity as r → ∞, which

implies that
∫∞

1
|f ′|2dr <∞ for any f ∈ Y .

In order to prove Lemma 3.5.4, we first prove the following lemma, which describes

the asymptotic decay of solutions of (3.5.11).

Lemma 3.5.6. Suppose f ∈ Y is a solution of (3.5.11). Then, for any 0 < β < n−p
p−1

,

there exist C and r0 such that

|f(r)| ≤ Cr−β and |f ′(r)| ≤ Cr−β−1

for r ≥ r0.

Proof. Step 1: Qualitative Decay of f . For any function f ∈ Y , f(r)→ 0 as r →∞.

Indeed, near infinity, |U ′|p−2rp−1 behaves like Crγ where γ := n−1
p−1

> 1. Then for any

r, s large enough with r < s,

|f(r)− f(s)| ≤
∫ ∞
r

|f ′(t)|dt ≤
(∫ ∞

r

f ′(t)2tγdt
)1/2(∫ ∞

r

t−γdt
)1/2

(3.5.13)
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by Hölder’s inequality. As both integrals on the right-hand side of (3.5.13) converge,

for any ε > 0, we may take r large enough such that the right-hand side is bounded

by ε, so the limit of f(r) as r →∞ exists.

We claim that this limit must be equal to zero. Indeed, since Y is obtained as a

completion of C∞0 , if we apply (3.5.13) to a sequence fk ∈ C∞0 ([0,∞)) converging in

Y to f and we let s→∞, we get

|fk(r)| ≤
(∫ ∞

r

f ′k(t)
2tγdt

)1/2(∫ ∞
r

t−γdt
)1/2

,

thus, by letting k →∞,

|f(r)| ≤
(∫ ∞

r

f ′(t)2tγdt
)1/2(∫ ∞

r

t−γdt
)1/2

.

Since the right-hand side tends to zero as r →∞, this proves the claim.

Step 2: Qualitative Decay of f ′. For r > 0, (3.5.11) can be written as

L′f := f ′′ + af ′ + bf = 0 (3.5.14)

where

a =
P ′

P
and b =

−Q+ wα

P
.

Fixing ε > 0, an explicit computation shows that there exists r0 large enough such

that
(1− ε)(n− 1)

p− 1

1

r
≤ a ≤ (1 + ε)(n− 1)

p− 1

1

r

and

− µ

p− 1

1

r2
+

(1− ε)cp,nα
r(3p−2)/(p−1)

≤ b ≤ − µ

p− 1

1

r2
+

(1 + ε)cp,nα

r(3p−2)/(p−1)
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for r ≥ r0, where cn,p is a positive constant depending only on n and p. Asymptoti-

cally, therefore, our equation behaves like

f ′′ +
n− 1

p− 1

f ′

r
+
(cp,nα
rp′
− µ

p− 1

) f
r2

= 0.

If f is a solution of (3.5.11), then squaring (3.5.14) on [r0,∞), we obtain

|f ′′|2 ≤ 2

((n− 1

p− 1
+ ε
)f ′
r

)2

+ 2

(((1 + ε)cp,nα

rp′
+

µ

p− 1

) f
r2

)2

≤ C(|f |2 + |f ′|2).

Integrating on [R,R + 1] for R ≥ r0 implies∫ R+1

R

|f ′′|2 ≤ C

∫ R+1

R

|f ′|2 + C

∫ R+1

R

|f |2.

Step 1 and Remark 3.5.5 ensure that both terms on the right-hand side go to zero.

Applying Morrey’s embedding to f ′ηR, where ηR is a smooth cutoff equal to 1 in

[R,R+ 1], we determine that ‖f ′‖L∞([R,R+1]) → 0 as R→∞, proving that f ′(r)→ 0

as r →∞.

Step 3: Quantitative Decay of f and f ′. Standard arguments (see for instance [CH89,

VI.6]) show that, also in our case, the ith eigenfunction f of L has at most i−1 interior

zeros; in particular, f(r) does not change sign for r sufficiently large. Without loss

of generality, we assume that eventually f ≥ 0.

Taking r0 as in Step 2 and applying the operator L′ defined in (3.5.14) to the function

g = Cr−β + c, c > 0, for r ≥ r0 gives

L′g ≤ Cβ(β + 1)r−β−2 − (1− ε)(n− 1)

p− 1
Cβr−β−2 +

((1 + ε)cp,nα

r(3p−2)/(p−1)
− µ

p− 1

)
(Cr−β−2 + c)
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≤ Cr−β−2
(
β(β + 1)− (1− ε)(n− 1)

p− 1
β +

(1 + ε)cp,nα

rp′

)
+

(1 + ε)cp,nα

r(3p−2)/(p−1)
c.

For any 0 < β < (n−p)/(p−1), r0 may be taken large enough (and therefore ε small

enough) such that

L′g < 0 on [r0,∞),

so g is a supersolution of the equation on this interval.

Choosing C = f(r0)rβ0 and c > 0, then (g − f)(r0) > 0 and (g − f)(r) → c > 0 as

r →∞. Since L′(g − f) < 0, we claim that g − f > 0 on (r0,∞). Indeed, otherwise,

g − f would have a negative minimum at some r ∈ (r0,∞), implying that

(g − f)(r) ≤ 0, (g − f)′(r) = 0, and (g − f)′′(r) ≥ 0,

forcing L′(g − f) ≥ 0, a contradiction. This proves that 0 ≤ f ≤ g on [r0,∞), and

since c > 0 was arbitrary, we determine that f ≤ Cr−β on [r0,∞).

We now derive bounds on f ′: by the fundamental theorem of calculus and using

(3.5.14) and the bound on f for r ≥ r0, we get

|f ′(r)| =
∣∣∣ ∫ ∞

r

f ′′
∣∣∣ ≤ C

r

∣∣∣∣∫ ∞
r

f ′
∣∣∣∣+ C

∣∣∣∣∫ ∞
r

t−β−2

∣∣∣∣ ≤ C

r
|f(r)|+ C

β + 2
r−β−1 ≤ Cr−β−1.

With these asymptotic decay estimates in hand, we are ready to prove

Lemma 3.5.4.
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Proof of Lemma 3.5.4. We begin with the following remark about uniqueness of so-

lutions. If f1 and f2 are two solutions of (3.5.11) and

f1(r0) = f2(r0), f ′1(r0) = f ′2(r0)

for some r0 > 0, then f1 = f2 on [0,∞). Indeed, for r > 0, we may express our

equation as in (3.5.14). As a and b are continuous on (0,∞), the standard proof of

uniqueness for (non-degenerate) second order ODE holds. Once f1 = f2 on (0,∞),

they are also equal at r = 0 by continuity.

Proof of (1). Suppose α is an eigenvalue of L with f1 and f2 satisfying (3.5.11). In

view of the uniqueness remark, if there exists r0 > 0 and some linear combination f

of f1 and f2 such that f(r0) = f ′(r0) = 0, then f is constantly zero and f1 and f2 are

linearly dependent. Let

W (r) = W (f1, f2)(r) := det

[
f1 f2

f ′1 f ′2

]
(r)

denote the Wronskian of f1 and f2. This is well defined for r > 0 (since f1 and f2

are C2 there) and a standard computation shows that (PW )′ = 0 on (0,∞): indeed,

since W ′ = f1f
′′
2 − f2f

′′
1 , we get

(PW )′ = PW ′ + P ′W = P (f1f
′′
2 − f2f

′′
1 ) + P ′(f1f

′
2 − f2f

′
1),

and by adding and subtracting the term (αw −Q)f1f2 it follows that

(PW )′ = f1 (Pf ′′2 + P ′f ′2 + (αw −Q)f2)− f2 (Pf ′′1 + P ′f ′2 + (αw −Q)f1) = 0.
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Thus PW is constant on (0,∞). We now show that that PW is continuous up to

r = 0 and that (PW )(0) = 0. Indeed, (3.5.11) implies that

(Pf ′i)
′ = (Q− αw)fi

for i = 1, 2. The right-hand side is continuous, so (Pf ′i)
′ is continuous, from which it

follows easily that PW is also continuous on [0,∞).

To show that (PW )(0) = 0, we first prove that (Pf ′i)(0) = 0. Indeed, let ci :=

(Pf ′i)(0). If ci 6= 0, then keeping in mind Remark 3.5.5,

f ′i(r) ≈
ci

P (r)
≈ ci
r(p−2)/(p−1)+n−1

for r � 1, (3.5.15)

therefore∫ R

0

|U ′|p−2|f ′|2rn−1dr &
∫ R

0

r(p−2)/(p−1)+n−1|f ′|2dr &
∫ R

0

dr

r(p−2)/(p−1)+n−1
= +∞,

contradicting the fact that f ∈ Y . Hence, we conclude that lim
r→0

(Pf ′i)(r) = 0, and

using this fact we obtain

(PW )(0) = lim
r→0

(Pf ′1f2 − Pf ′2f1) = lim
r→0

(Pf ′1) lim
r→0

f2 − lim
r→0

(Pf ′2) lim
r→0

f1 = 0.

Therefore (PW )(r) = 0 for all r ∈ [0,∞). Since P (r) > 0 for r > 0, we determine

that W (r) = 0 for all r > 0. In particular, given r0 ∈ (0,∞), there exist c1, c2 such

that c2
1 + c2

2 6= 0 and

c1f1(r0) + c2f2(r0) = 0,

c1f
′
1(r0) + c2f

′
2(r0) = 0.
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Then f := c1f1 + c2f2 solves (3.5.11) and f(r0) = f ′(r0) = 0. By uniqueness, f ≡ 0

for all t ∈ (0,∞), and so f1 = cf2.

Proof of (2). Thanks to our preliminary estimates on the behavior of fi at infinity,

the following is an adaptation of the standard argument in, for example, [CH89, VI.6].

Suppose that f1 and f2 are eigenfunctions of L corresponding to eigenvalues α1 and

α2 respectively, with α1 < α2, that is,

(Pf ′i)
′ −Qfi + αiwfi = 0.

Our first claim is that between any two consecutive zeros of f1 is a zero of f2, including

zeros at infinity. Note that

(PW )′ = P [f1f
′′
2 − f2f

′′
1 ] + P ′[f1f

′
2 − f2f

′
1]

= f1[(Pf ′2)′ + (α2 −Q)f2]− f2[(Pf ′1)′ + (α1w −Q)f1] + (α1 − α2)wf1f2

= (α1 − α2)wf1f2. (3.5.16)

Suppose that f1 has consecutive zeros at r1 and r2, and suppose for the sake of

contradiction that f2 has no zeros in the interval (r1, r2). With no loss of generality,

we may assume that f1 and f2 are both nonnegative in [r1, r2].

Case 1: Suppose that r2 <∞. Then integrating (3.5.16) from r1 to r2 implies

0 > (α1 − α2)

∫ r2

r1

wf1f2 = (PW )(r2)− (PW )(r1)

= P (r2)[f1(r2)f ′2(r2)− f ′1(r2)f2(r2)]− P (r1)[f1(r1)f ′2(r1)− f ′1(r1)f2(r1)]

= −P (r2)f ′1(r2)f2(r2) + P (r1)f ′1(r1)f2(r1).
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The function f1 is positive on (r1, r2), so f ′1(r1) ≥ 0 and f ′1(r2) ≤ 0. Also, since

f1(r1) = f1(r2) = 0 we cannot have f ′1(r1) = 0 or f ′1(r2) = 0, as otherwise f1 would

vanish identically. Furthermore, f2 is nonnegative on [r1, r2], so we conclude that the

right-hand side is nonnegative, giving us a contradiction.

Case 2: Suppose that r2 =∞. Again integrating the identity (3.5.16) from r1 to ∞,

we obtain

0 > (α1 − α2)

∫ ∞
r1

wf1f2 = lim
r→∞

(PW )(r)− (PW )(r1)

= lim
r→∞

[P (r)(f1(r)f ′2(r)− f ′1(r)f2(r))]− P (r1)(f1(r1)f ′2(r1)− f ′1(r1)f2(r1)).

(3.5.17)

We notice that Lemma 3.5.6 implies that

lim
r→∞

[P (r)(f1(r)f ′2(r)− f ′1(r)f2(r))] = 0.

Indeed, taking n−p
2(p−1)

< β < n−p
p−1

,

|f ′1f2 − f1f
′
2| ≤ |f ′1||f2|+ |f1||f ′2| ≤ Cr−2β−1,

and, recalling Remark 3.5.5,

P (r) ≤ Cr(n−1)/(p−1),

implying that

P |f ′1f2 − f1f
′
2| ≤ Crγ → 0,

where γ = −2β − 1 + n−1
p−1

< 0. Then (3.5.17) becomes

0 > −P (r1)f ′1(r1)f2(r1).
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Since f ′1(r1) > 0 and f2(r1) ≥ 0 (see the argument in Case 1), this gives us a contra-

diction.

We now claim that f2 has a zero in the interval [0, r1), where r1 is the first zero of

f1. Again, we assume for the sake of contradiction that f2 has no zero in this interval

and that, without loss of generality, f1 and f2 are nonnegative in [0, r1]. Integrating

(3.5.16) implies

0 > (α1 − α2)

∫ r1

0

wf1f2 = PW (r1)− PW (0). (3.5.18)

The same computation as in the proof of Part (1) of this lemma implies that

(PW )(0) = 0, so (3.5.18) becomes

0 > −P (r1)f ′1(r1)f2(r1),

once more giving us a contradiction.

The first eigenfunction of an operator is always positive in the interior of the domain,

so the second eigenfunction of L must have at least one interior zero by orthogonality.

Thus the claims above imply that the ith eigenfunction has at least i−1 interior zeros.

On the other hand, as mentioned in the proof of Lemma 3.5.6, the standard theory

also implies that the ith eigenfunction has at most i− 1 interior zeros, and the proof

is complete.

106



Chapter 4

Strong form stability for the Wulff inequality

4.1 Overview

In this chapter,1 we prove a strong form stability result for the Wulff inequality

F(E) ≥ n|K|1/n|E|1/n′ . (4.1.1)

Let us recall from the introduction that the (anisotropic) surface energy of a set of

finite perimeter E ⊂ Rn is defined by

F(E) =

∫
∂∗E

f(νE(x)) dHn−1(x)

given a convex positively 1-homogeneous surface tension f : Rn → [0,+∞) that is

positive on Sn−1. We also recall that equality is attained in (4.1.1) if and only if E is

a translation or dilation of the Wulff shape

K =
⋂

ν∈Sn−1

{x ∈ Rn : x · ν < f(ν)} .

Given a surface tension f , the gauge function f∗ : Rn → [0,+∞) is defined by

f∗(x) = sup{x · ν : f(ν) ≤ 1}.

The gauge function provides another characterization of the Wulff shape: K = {x :

f∗(x) < 1}.

1This chapter is based on work originally appearing in [Neu16].

107



4.1.1 Statements of the main theorems

We prove a strong form of the quantitative Wulff inequality along the lines of (1.2.6),

improving (1.2.4) by adding a term to the left hand side that quantifies the oscillation

of ∂∗E with respect to ∂K. We define the anisotropic oscillation index by

βf (E) = min
y∈Rn

(
1

n|K|1/n|E|1/n′
∫
∂∗E

f(νE(x))− νE(x) · x− y
f∗(x− y)

dHn−1(x)

)1/2

.

(4.1.2)

The following theorem is a strong form of the quantitative Wulff inequality that holds

for an arbitrary surface tension.

Theorem 4.1.1. There exists a constant C depending only on n such that

αf (E)2 + βf (E)4n/(n+1) ≤ Cδf (E) (4.1.3)

for every set of finite perimeter E with 0 < |E| <∞.

As in (1.2.4), the constant is independent of f . We expect that, as in (1.2.6), the

sharp exponent for βf (E) in (4.1.3) should be 2. With additional assumptions on

the surface tension f , we prove the stability inequality in sharp form for two special

cases.

Definition 4.1.2. A surface tension f is λ-elliptic, λ > 0, if f ∈ C2(Rn \ {0}) and

(∇2f(ν)τ) · τ ≥ λ

|ν|

∣∣∣∣τ − (τ · ν|ν|) ν|ν|
∣∣∣∣2

for ν, τ ∈ Rn with ν 6= 0.

This is a uniform ellipticity assumption for ∇2f(ν) in the tangential directions to ν.

If f is λ-elliptic, then the corresponding Wulff shape K is of class C2 and uniformly
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convex (see [Sch13], page 111). When F is a surface energy corresponding to a λ-

elliptic surface tension, the following sharp result holds. The constant depends on

mf and Mf , a pair of constants defined in (4.2.2) that describe how much f stretches

and shrinks unit-length vectors.

Theorem 4.1.3. Suppose f is a λ-elliptic surface tension with corresponding surface

energy F . There exists a constant C depending on n, λ,mf/Mf , and ‖∇2f‖C0(∂K)

such that

αf (E)2 + βf (E)2 ≤ Cδf (E) (4.1.4)

for any set of finite perimeter E with 0 < |E| <∞.

The second case where we obtain the strong form quantitative Wulff inequality with

the sharp power is the case of a crystalline surface tension.

Definition 4.1.4. A surface tension f is crystalline if it is the maximum of finitely

many linear functions, in other words, if there exists a finite set {xj}Nj=1 ⊂ Rn \

{0}, N ∈ N, such that

f(ν) = max
1≤j≤N

{xj · ν} for all ν ∈ Sn−1.

If f is a crystalline surface tension, then the corresponding Wulff shape K is a convex

polyhedron. In dimension two, when f is a crystalline surface tension, we prove the

following sharp quantitative Wulff inequality.

Theorem 4.1.5. Let n = 2 and suppose f is a crystalline surface tension with

corresponding surface energy F . There exists a constant C depending on f such that

αf (E)2 + βf (E)2 ≤ Cδf (E)
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for any set of finite perimeter E with 0 < |E| <∞.

Some remarks about the definition of the anisotropic oscillation index βf in (4.1.2)

are in order. The oscillation index β1(E) in (1.2.5) measures oscillation of the reduced

boundary of a set E with respect to the boundary of the ball. Indeed, the quantity

β1(E) is the integral over ∂∗E of the Cauchy-Schwarz deficit 1 − x
|x| · νE(x), which

quantifies in a Euclidean sense how closely νE(x) aligns with x
|x| .

To understand (4.1.2), we remark that f and f∗ satisfy a Cauchy-Schwarz-type in-

equality called the Fenchel inequality, which states that

νE(x) · x

f∗(x)
≤ f(νE(x)). (4.1.5)

Just as β1(E) in (1.2.5) quantifies the overall Cauchy-Schwarz deficit between x
|x| and

νE(x), the term βf (E) is an integral along ∂∗E of the deficit in the Fenchel inequality.

In Section 4.2.2, we show that f(νE(x)) = y · νE(x) for y ∈ ∂K if and only if νE(x)

is normal to a supporting hyperplane of K at y. In this way, βf (E) quantifies how

much normal vectors of E align with corresponding normal vectors of K, and thus

provides a measure of the oscillation of the reduced boundary of E with respect to

the boundary of K. Note that in the case f constantly equal to one, βf agrees with

β1.

It is not immediately clear that (4.1.2) is the appropriate analogue of (1.2.5) in the

anisotropic case. Noting that x 7→ (x−y)/f∗(x−y) is the radial projection of Rn\{0}

onto ∂K + y, one may initially want to consider the term

β∗f (E) = min
y∈Rn

(
1

2n|K|1/n|E|1/n′
∫
∂∗E

∣∣∣νE(x)− νK
( x− y
f∗(x− y)

)∣∣∣2 dHn−1(x)

)1/2
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= min
y∈Rn

(
1

n|K|1/n|E|1/n′
∫
∂∗E

1− νE(x) · νK
( x− y
f∗(x− y)

)
dHn−1(x)

)1/2

.

(4.1.6)

In Section 4.6, however, we show that such a term does not admit any stability result

for general f . Indeed, in Example 4.6.1, we construct a sequence of crystalline surface

tensions that show that there does not exist a power σ such that

β∗f (E)σ ≤ C(n, f)δf (E) (4.1.7)

for all sets E of finite perimeter with 0 < |E| < ∞ and for all F . Furthermore,

Example 4.6.2 shows that even if we restrict our attention to surface energies which

are γ-λ convex, a weaker notion of λ-ellipticity introduced in Definition 4.1.6, an

inequality of the form (4.1.7) cannot hold with an exponent less than σ = 4. The

examples in Section 4.6 illustrate the fact that, in the anisotropic case, measuring

the alignment of normal vectors in a Euclidean sense is not suitable for obtaining

a stability inequality for general f ; it is essential to account for the anisotropy in

this measurement. The anisotropic oscillation index βf (E) in (4.1.2) does exactly

this.

In the positive direction, when the surface tension f is γ-λ convex, β∗f (E) is controlled

by βf (E). As one expects from Example 4.6.2, the exponent in this bound depends

on the γ-λ convexity of f . We now define γ-λ convexity.

Definition 4.1.6. Let f : Rn → R be a nonnegative, convex, positively one-

homogeneous function. Then we say that f is γ-λ convex for γ ≥ 0, λ > 0 if

f(ν + τ) + f(ν − τ)− 2f(ν) ≥ λ

|ν|

∣∣∣∣τ − (τ · ν|ν|) ν|ν|
∣∣∣∣2+γ

(4.1.8)

for all ν, τ ∈ Rn such that ν 6= 0.
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Dividing (4.1.8) by τ 2, the left hand side gives a second difference quotient of f .

While λ-ellipticity assumes that f ∈ C2(Rn \ {0}) and that its second derivatives in

directions τ that are orthogonal to ν are bounded from below, γ-λ convexity only

assumes that the second difference quotients in these directions have a bound from

below that degenerates as τ goes to 0. Of course, a 0-λ convex surface tension f with

f ∈ C2(Rn \{0}) is λ-elliptic. The `p norms fp(x) = (
∑n

i=1 |xi|p)1/p for p ∈ (1,∞) are

examples of γ-λ convex surface tensions; see Section 4.6. For a γ-λ convex surface

tension f , the following theorem shows that βf controls β∗f .

Theorem 4.1.7. Let f be a γ-λ convex surface tension. Then there exists a constant

C depending on γ, λ, and mf/Mf such that

β∗f (E)(2+γ)/2 ≤ C

(
P (E)

n|K|1/n|E|1/n′
)γ/4

βf (E).

for any set of finite perimeter E with 0 < |E| <∞.

As in Theorem 4.1.3, the constant depends onmf andMf which are defined in (4.2.2).

As an immediate consequence of Theorem 4.1.7, Theorem 4.1.1, and Theorem 4.1.3,

we have the following result.

Corollary 4.1.8. If f is a γ-λ convex surface tension, then there exists a constant

C depending on n, γ, λ, and mf/Mf such that

αf (E)2 + β∗f (E)σ ≤ C

(
P (E)

n|K|1/n|E|1/n′
)γn/(n+1)

δf (E)

for any set of finite perimeter E with 0 < |E| <∞, where σ = 2n(2 + γ)/(n+ 1).

If f is a λ-elliptic surface tension, then there exists a constant C depending on
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n, γ, λ,mf/Mf , and ‖∇2f‖C0(∂K) such that

αf (E)2 + β∗f (E)2 ≤ Cδf (E)

for any set of finite perimeter E with 0 < |E| <∞.

4.1.2 Discussion of the proofs

At the core of the proof of (1.2.6) are a selection principle argument, the regularity

theory of almost-minimizers of perimeter, and an analysis of the second variation of

perimeter. Indeed, with a selection principle argument in the spirit of the proof of

(1.2.3) by Cicalese and Leonardi in [CL12], Fusco and Julin reduce to a sequence {Fj}

such that each Fj is a (Λ, r0)-minimizer of perimeter (Definition 4.4.4) and Fj → B

in L1. Then, by the standard regularity theory, each set Fj has boundary given by a

small C1 perturbation of the boundary of the ball. This case is handled by a theorem

of Fuglede in [Fug89], which says the following: Let E be a nearly spherical set, i.e., a

set with barycenter barE = |E|−1
∫
E
x dx at the origin such that |E| = |B| and

∂E = {x+ u(x)x : x ∈ ∂B}

for u : ∂B → R with u ∈ C1(∂B). There exist C and ε depending on n such that if

‖u‖C1(∂B) ≤ ε, then

‖u‖2
H1(∂B) ≤ Cδ1(E). (4.1.9)

The proof of (4.1.9) makes explicit use of spherical harmonics to provide a lower bound

for the second variation of perimeter. It is then easily shown that α1(E) + β1(E) ≤

C‖u‖H1(∂B), and therefore (4.1.9) implies (1.2.6) in the case of nearly spherical sets.
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Indeed, α1(E) ≤ Cβ1(E) as shown in Proposition 4.2.4, and in the case of nearly

spherical sets, the oscillation index β1 is essentially an L2 distance of gradients: if

w(x) = x+ u(x)x, then

νE(w(x)) =
x(1 + u(x)) +∇u(x)√

(1 + u)2 + |∇u|2
,

where the ∇u is the tangential gradient of u. Then

n|K|β1(E)2 ≤
∫
∂E

1− νE(w) · w
|w|

dHn−1

=

∫
∂B

√
(1 + u)2 + |∇u|2 − (1 + u) dHn−1

=

∫
∂B

1

2
|∇u|2 +O(|∇u|2) dHn−1 ≤ ‖u‖2

H1(∂B).

In each of Theorems 4.1.1, 4.1.3, and 4.1.5, at least one of the three key ingredients of

the proof of Fusco and Julin is missing. The proof of Theorem 4.1.1 uses a selection

principle to reduce to a sequence of (Λ, r0)-minimizers of F converging in L1 to K.

However, for an arbitrary surface tension, uniform density estimates (Lemma 4.3.3)

are the strongest regularity property that one can hope to extract. We pair these

estimates with (1.2.4) to obtain the result.

The proof of Theorem 4.1.3 follows a strategy similar to that of the proof of (1.2.6) in

[FJ14]. If f is a λ-elliptic surface tension, then (Λ, r0)-minimizers of the correspond-

ing surface energy F enjoy strong regularity properties. Using a selection principle

argument and the regularity theory, we reduce to the case where ∂E is a small C1

perturbation of ∂K. The difficulty arises, however, in showing the following analogue

of Fuglede’s result (4.1.9) in the setting of the anisotropic surface energy.
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Proposition 4.1.9. Let f be a λ-elliptic surface tension with corresponding surface

energy F and Wulff shape K. Let E be a set such that |E| = |K| and barE = barK,

where barE = |E|−1
∫
E
x dx denotes the barycenter of E. Suppose

∂E = {x+ u(x)νK(x) : x ∈ ∂K}

where u : ∂K → R is in C1(∂K). There exist C and ε1 depending on n, λ, and

mf/Mf such that if ‖u‖C1(∂K) ≤ ε1, then

‖u‖2
H1(∂K) ≤ Cδf (E). (4.1.10)

Again, mf and Mf are defined in (4.2.2). To prove (4.1.9), Fuglede shows that, due

to the volume and barycenter constraints respectively, the function u is orthogonal

to the first and second eigenspaces of the Laplace operator on the sphere. This

implies that, thanks to a gap in the spectrum of this operator, functions satisfying

these constraints satisfy an improved Poincaré inequality. Fuglede’s reasoning uses

that fact that the eigenvalues and eigenfunctions of the Laplacian on the sphere are

explicitly known.

The analogous operator on ∂K arising in the second variation of F also has a discrete

spectrum, but one cannot expect to understand its spectrum explicitly. Instead, to

prove (4.1.9), we exploit (1.2.4) in order to obtain an improved Poincaré inequality

for functions u ∈ H1(∂K) satisfying the volume and barycenter constraints.

Then, as in the isotropic case, one shows that αf (E) + βf (E) ≤ C‖u‖H1(∂K) for a

constant C = C(n, ‖∇2f‖C0(∂K)), and therefore (4.1.10) implies (4.1.4) for small C1

perturbations. Indeed, Proposition 4.2.4 implies that αf (E) ≤ C(n)βf (E), while
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βf (E) ≤ C‖u‖H1(∂K) by a Taylor expansion and a change of coordinates. The

computation is postponed until (4.4.16) as it relies on notation introduced in Sec-

tion 4.4.

The proof of Theorem 4.1.5 also uses a selection principle-type argument to reduce

to a sequence of almost-minimizers of F converging in L1 to the Wulff shape. In

this case, a rigidity result of Figalli and Maggi in [FM11] allows us reduce to the

case where E is a convex polygon whose set of normal vectors is equal to the set of

normal vectors of K. From here, an explicit computation (Proposition 4.5.1) shows

the result.

4.1.3 Organization of the chapter

In Section 4.2, we introduce some necessary preliminaries for our main objects of

study. Section 4.3 is dedicated to the proof of Theorem 4.1.1, while in Sections 4.4

and 4.5 we prove Theorems 4.1.3 and 4.1.5 respectively. In Section 4.6, we consider

the term β∗f (E) defined in (4.1.6), providing two examples that show that one

cannot expect stability with a power independent of the regularity of f and proving

Theorem 4.1.7.

4.2 Preliminaries

Let us introduce a few key properties about sets of finite perimeter, the anisotropic

surface energy, and the anisotropic oscillation index βf .
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4.2.1 Sets of finite perimeter

Given an Rn-valued Borel measure µ on Rn, the total variation |µ| of µ on a Borel

set E is defined by

|µ|(E) = sup

{∑
j∈N

|µ(Ej)| : Ej ∩ Ei = ∅,
⋃
j∈N

Ej ⊂ E

}
.

A measurable set E ⊂ Rn is said to be a set of finite perimeter if the distributional

gradient D1E of the characteristic function of E is an Rn-valued Borel measure on Rn

with |D1E|(Rn) <∞.

For a set of finite perimeter E, the reduced boundary ∂∗E is the set of points x ∈ Rn

such that |D1E|(Br(x)) > 0 for all r > 0 and

lim
r→0+

D1E(Br(x))

|D1E|(Br(x))
exists and belongs to Sn−1. (4.2.1)

If x ∈ ∂∗E, then we let −νE denote the limit in (4.2.1). We then call νE : ∂∗E →

Sn−1 the measure theoretic outer unit normal to E. Up to modifying E on a set of

Lebesgue measure zero, one may assume that the topological boundary ∂E is the

closure of the reduced boundary ∂∗E. For the remainder of the chapter, we make this

assumption.

4.2.2 The surface tension and the gauge function

Throughout the chapter, we let

mf = inf
ν∈Sn−1

f(ν), Mf = sup
ν∈Sn−1

f(ν). (4.2.2)
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It follows that
1

Mf

= inf
x∈Sn−1

f∗(x),
1

mf

= sup
x∈Sn−1

f∗(x).

One easily shows that f(ν) = sup{x · ν : x ∈ K} and f∗(x) = inf{λ : x
λ
∈ K}. This

also implies that Bmf ⊂ K ⊂ BMf
, and so if |K| = 1, then mn

f |B| ≤ 1 ≤ Mn
f |B|.

As mentioned in the chapter overview, f and f∗ satisfy the Fenchel inequality (4.1.5)

for all x, ν ∈ Rn. We may characterize the equality cases in the Fenchel inequality:

for any ν, x · ν = f∗(x)f(ν) if and only if ν is normal to a supporting hyperplane of

K at the point x
f∗(x)

∈ ∂K. Indeed, ν is normal to a supporting hyperplane of K at

x ∈ ∂K if and only if ν · (y − x) ≤ 0 (so ν · y ≤ ν · x) for all y ∈ K. This holds if and

only if ν · x = sup{y · ν : y ∈ K} = f(ν). In particular, if x ∈ ∂∗K, then f∗(x) = 1

and

f(νK(x)) = x · νK(x). (4.2.3)

We may compute the gradient of f∗ at points of differentiability using the Fenchel

inequality. The gauge function f∗ is differentiable at x0 ∈ Rn if there is a unique

supporting hyperplane to K at x0
f∗(x0)

∈ ∂K. For such an x0, let ν0 = νK( x
f∗(x)

) ∈ Rn

be normal to the supporting hyperplane to K at x0
f∗(x0)

, so x0
f∗(x0)

·ν0 = f(ν0) by (4.2.3).

We define the Fenchel deficit functional by G(x) = f(ν0)f∗(x)−x ·ν0. By the Fenchel

inequality, G(x) ≥ 0 for all x and G(x0) = 0, so G has a local minimum at x0 and

thus

0 = ∇G(x0) = f(ν0)∇f∗(x0)− ν0.

Rearranging, we obtain ∇f∗(x0) = ν0
f(ν0)

. The 1-homogeneity of f then implies
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that

f(∇f∗(x)) = 1. (4.2.4)

Furthermore, this implies that

x · ∇f∗(x) = x · νK
( x

f∗(x)

)
= f∗(x) (4.2.5)

(alternatively, this follows from Euler’s identity for homogeneous functions). An

analogous argument ensures that

∇f(νK(x)) = x (4.2.6)

for x ∈ ∂∗K. Furthermore, using (4.2.5), we compute

div
x

f∗(x)
=
n− 1

f∗(x)
. (4.2.7)

4.2.3 Properties of αf , βf , and γf

Using the divergence theorem, by approximation and the dominated convergence

theorem, and (4.2.7), we find that for any y ∈ Rn,∫
∂∗E

x− y
f∗(x− y)

· νE(x) dHn−1 = (n− 1)

∫
E

dx

f∗(x− y)
.

We may then write

βf (E)2 =
F(E)− (n− 1)γf (E)

n|K|1/n|E|1/n′
, (4.2.8)

where γf (E) is defined by

γf (E) = sup
y∈Rn

∫
E

dx

f∗(x− y)
. (4.2.9)
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The supremum in (4.2.9) is attained, though perhaps not uniquely. If y ∈ Rn is a

point such that

γf (E) =

∫
E

dx

f∗(x− y)
,

then we call y a center of E, and we denote by yE a generic center of E. The Wulff

shape K has unique center yK = 0. Indeed, take any y ∈ Rn, y 6= 0, and recall that

K = {f∗(x) < 1}. Then∫
K

dx

f∗(x)
−
∫
K

dx

f∗(x− y)
=

∫
K

dx

f∗(x)
−
∫
K+y

dx

f∗(x)

=

∫
K\(K+y)

dx

f∗(x)
−
∫

(K+y)\K

dx

f∗(x)
>

∫
K\(K+y)

1dx−
∫

(K+y)\K
1dx = 0.

A similar argument verifies that if |E| = |K|, then

γf (E) ≤ γf (K). (4.2.10)

Moreover, (n− 1)γf (K) = F(K) = n|K|.

The following continuity properties of F and γf will be useful.

Proposition 4.2.1. Suppose that {Ej} is a sequence of sets converging in L1 to

a set E, and suppose that {f j} is a sequence of surface tensions converging locally

uniformly to f , with corresponding surface energies {Fj} and F .

(1) The following lower semicontinuity property holds:

F(E) ≤ lim inf
j→∞

Fj(Ej).

(2) The function γf defined in (4.2.9) is Hölder continuous with respect to L1 con-

vergence of sets with Hölder exponent equal to 1/n′. In particular,

|γf (E)− γf (F )| ≤ n|K|
n− 1

|E∆F |1/n′
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for any two sets of finite perimeter E,F ⊂ Rn. Moreover,

lim
j→∞

γfj(Ej) = γf (E).

Proof. Proof of (1): From the divergence theorem and the characterization f(ν) =

sup{x · ν : f∗(x) ≤ 1}, one finds that the surface energy of a set E is the anisotropic

total variation of its characteristic function 1E:

Fj(Ej) = TVfj(1Ej) := sup
{∫

Ej

div T dx
∣∣ T ∈ C1

c (Rn,Rn), f j∗ (T ) ≤ 1
}
. (4.2.11)

Let T ∈ C1
c (Rn,Rn) be a vector field such that f∗(T ) ≤ 1 for all x ∈ Rn. Then,∫

E

div T dx = lim
j→∞

∫
Ej

div T dx = lim
j→∞
‖f j∗ (T )‖L∞(Rn)

∫
Ej

divSj dx ≤ lim inf
j→∞

Fj(Ej),

where we take Sj = T/‖f j∗ (T )‖L∞(Rn). Taking the supremum over all T ∈ C1
c (Rn,Rn)

with f∗(T ) ≤ 1, we obtain the result.

Proof of (2): By (4.2.9),

γf (E)− γf (F ) ≤
∫
E

dx

f∗(x− yE)
−
∫
F

dx

f∗(x− yE)
≤
∫
E∆F

dx

f∗(x− yE)
.

Letting r be such that |rK| = |E∆F | and recalling (4.2.10), we have∫
E∆F

dx

f∗(x− yE)
≤
∫
rK

dx

f∗(x)
= γf (rK)

=
F(rK)

n− 1
=
n|K|rn−1

n− 1
=
n|K|
n− 1

|E∆F |1/n′ .
(4.2.12)

Thus γf (E) − γf (F ) ≤ n|K|
n−1
|E∆F |1/n′ . The analogous argument holds for γf (F ) −

γf (E), implying the Hölder continuity of γf .
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For the second equation, we note that if f j → f locally uniformly, then f j∗ → f∗

locally uniformly and Mfj →Mf . The triangle inequality gives

|γfj(Ej)− γf (E)| ≤ |γfj(Ej)− γf (Ej)|+ |γf (Ej)− γf (E)|.

The second term goes to zero by the Hölder continuity that we have just shown. To

bound the first term, let yEj be a center of Ej with respect to the surface energy Fj.

If γfj(Ej) ≥ γf (Ej), then

0 ≤ γfj(Ej)−γf (Ej) ≤
∫
Ej

1

f j∗ (x− yEj)
− 1

f∗(x− yEj)
dx =

∫
Ej+yEj

1

f j∗ (x)
− 1

f∗(x)
dx

=

∫
Rn

1(Ej+yEj )\Bε(0)

(
1

f j∗ (x)
− 1

f∗(x)

)
dx+

∫
Bε(0)

1

f j∗ (x)
− 1

f∗(x)
dx.

For ε > 0 fixed, the first integral goes to zero as j →∞. For the second integral, we

have ∫
Bε(0)

1

f j∗ (x)
+

1

f∗(x)
dx ≤

∫
Bε(0)

Mfj +Mf

|x|
dx ≤ Cεn−1.

Taking ε → 0, we conclude that γfj(Ej) − γf (Ej) → 0 as j → ∞. The case where

γfj(Ej) ≤ γf (Ej) is analogous.

Remark 4.2.2. With sequences as in the hypothesis of Proposition 4.2.1 above, βf

has the following lower semicontinuity property:

βf (E) ≤ lim inf
j→∞

βfj(Ej).

This follows immediately from parts (1) and (2) of Proposition 4.2.1 and the decom-

position in (4.2.8).

Lemma 4.2.3. For every ε > 0, there exists η > 0 such that if |F∆K| ≤ η, then

|yF | < ε for any center yF of F .
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Proof. Suppose |K∆Fj| → 0. By the triangle inequality,∫
K

dx

f∗(x)
≤
∣∣∣∣ ∫

K

dx

f∗(x)
−
∫
Fj

dx

f∗(x− yFj)

∣∣∣∣
+

∣∣∣∣ ∫
Fj

dx

f∗(x− yFj)
−
∫
K

dx

f∗(x− yFj)

∣∣∣∣+

∫
K

dx

f∗(x− yFj)
.

By (4.2.12), the first two terms on the right hand side go to zero as j →∞, implying

that ∫
K

dx

f∗(x)
≤ lim

j→∞

∫
K

dx

f∗(x− yFj)
.

Because K has unique center yK = 0, we conclude that |yFj | → 0.

We now introduce the relative surface energy and the anisotropic coarea formula.

Given an open set A and a set of finite perimeter E, the anisotropic surface energy

of E relative to A is defined by

F(E;A) =

∫
∂∗E∩A

f(νE(x)) dHn−1(x).

For a Lipschitz function u : Rn → R and an open set E, the anisotropic coarea

formula states that ∫
E

f(−∇u(x)) dx =

∫ ∞
0

F({u > r};E) dr.

The anisotropic coarea formula is proved in the same way as the coarea formula (see,

for instance, [Mag12, Theorem 13.1]), replacing the Euclidean norm with f and f∗

and using (4.2.11). When u is bounded by a constant C on E, then applying the

anisotropic coarea formula to w = C − u yields∫
E

f(∇u(x)) dx =

∫
E

f(−∇w(x)) dx =

∫ C

0

F({C − u > r};E) dt
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=

∫ C

0

F({u < C − r};E) dr =

∫ C

0

F({u < r};E) dr

Moreover, approximating by simple functions, we may produce a weighted ver-

sion: ∫
E

f(∇u(x))g(f∗(x)) dx =

∫ ∞
0

F({u < r};E)g(r) dr

whenever g : R → [0,∞] is a Borel function. We will frequently use this weighted

version with u(x) = f∗(x), E a bounded set, and g(r) = 1
r
, which, using (4.2.4),

gives ∫
E

dx

f∗(x)
=

∫ ∞
0

F({f∗(x) < r};E)

r
dr =

∫ ∞
0

F(rK;E)

r
dr. (4.2.13)

We conclude this section with the following Poincaré-type inequality, which shows

that βf (E) controls αf (E) for all sets of finite perimeter E.

Proposition 4.2.4. There exists a constant C(n) such that if E is a set of finite

perimeter with 0 < |E| <∞, then

αf (E) + δf (E)1/2 ≤ C(n)βf (E). (4.2.14)

Proof. We follow the proof of the analogous result for the perimeter in [FJ14]. Due

to the scaling and translation invariance of αf , βf , and δf , we may assume that

|E| = |K| = 1 and that E has center zero. We have

γf (K)− γf (E) =

∫
K

dx

f∗(x)
−
∫
E

dx

f∗(x)
=

∫
K\E

dx

f∗(x)
−
∫
E\K

dx

f∗(x)
.

Therefore, adding and subtracting F(K)/n = (n− 1)γf (K)/n in (4.2.8), we have

βf (E)2 = δf (E) +
n− 1

n

(∫
K\E

dx

f∗(x)
−
∫
E\K

dx

f∗(x)

)
.
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We want to bound the final two integrals from below by αf (E)2. To this end, we let

a := |E \K| = |K \ E| and define the K-annuli AR,1 = KR \K and A1,r = K \Kr,

where R > 1 > r are chosen such that |AR,1| = |A1,r| = a. In particular, R = (1+a)1/n

and r = (1− a)1/n. By (4.2.10) and (4.2.13),∫
K\E

dx

f∗(x)
≥
∫
A1,r

dx

f∗(x)
=

∫ 1

r

F(sK)

s
ds =

∫ 1

r

nsn−2 ds =
n

n− 1
[1− rn−1]

and∫
E\K

dx

f∗(x)
≤
∫
AR,1

dx

f∗(x)
=

∫ R

1

F(sK)

s
ds =

∫ R

1

nsn−2 ds =
n

n− 1
[Rn−1 − 1].

Subtracting the second from the first, we have

n− 1

n

(∫
K\E

dx

f∗(x)
−
∫
E\K

dx

f∗(x)

)
≥ 2− rn−1 −Rn−1.

The function g(t) = (1 + t)1/n′ is function is strictly concave, with 1
2
(g(t) + g(s)) ≤

g( t
2

+ s
2
)− C|t− s|2, and therefore 2− [(1 + a)1/n′ + (1− a)1/n′ ] ≥ 8C|a|2. Thus

βf (E)2 ≥ δf (E) + [2− (1− a)1/n′ − (1 + a)1/n′ ]

≥ δf (E) + 8C|a|2 = δf + 2C (|E \K|+ |K \ E|)2

= δf (E) + 2C|K∆E|2 ≥ δf (E) + 2Cαf (E)2.

4.3 General surface tensions

In this section, we prove Theorem 4.1.1. We begin by introducing a few lemmas that

are needed the proof. The first allows us to reduce the problem to sets contained in

some fixed ball.
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Lemma 4.3.1. There exist constants R0 > 0 and C > 0 depending only on n and

Mf such that, given a set of finite perimeter E with |E| = |K|, we may find a set E ′

such that |E ′| = |K|, E ′ ⊂ BR0, and

βf (E)2 ≤ βf (E
′)2 + Cδf (E), δf (E

′) ≤ Cδf (E). (4.3.1)

Proof. A simple adaptation of the proof of [Mag08, Theorem 4.1] ensures that we may

find constants δ0, C0, C1, and R̃0 depending on n and Mf such that C0δ0 < 1/2 and

the following holds: if δf (E) ≤ δ0, then there exists a set Ẽ ⊂ E such that Ẽ ⊂ BR̃0

and

|Ẽ| ≥ |K|(1− C1δf (E)), F(Ẽ) ≤ F(E) + C0δf (E)|E|1/n′ . (4.3.2)

If δf (E) > δ0, then

β2
f (E) ≤ F(E)

n|K|
= δf (E) + 1 ≤ 1 + δ0

δ0

δf (E).

Simply taking E ′ = K, we have δf (E ′) ≤ δf (E) and βf (E)2 ≤ 1+δ0
δ0
δf (E), proving

(4.3.1).

On the other hand, if δf (E) ≤ δ0, let E ′ = rẼ with r ≥ 1 such that |E ′| = |rẼ| = |E|.

By (4.2.8),

βf (E)2 − βf (E ′)2 =
F(E)−F(E ′)

n|K|
+
n− 1

n|K|
(γf (E

′)− γf (E))

≤ δf (E) +
n− 1

n|K|

(
rn−1γf (Ẽ)− γf (E)

)
.

(4.3.3)

Since Ẽ ⊂ E, γf (Ẽ) ≤ γf (E), which implies that

n− 1

n|K|

(
rn−1γf (Ẽ)− γf (E)

)
≤ n− 1

n|K|
(rn−1 − 1)γf (E).
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By (4.2.10) and the fact that γf (K) = n|K|/(n− 1),

n− 1

n|K|
(rn−1 − 1)γf (E) ≤ n− 1

n|K|
(rn−1 − 1)γf (K) = rn−1 − 1,

and since r ≥ 1,

rn−1 − 1 ≤ rn − 1 =
|E| − |Ẽ|
|Ẽ|

.

The first part of (4.3.2) implies that

|E| − |Ẽ|
|Ẽ|

≤ C1δf (E)

1− C1δf (E)
≤ C1

1− C1δ0

δf (E).

We have therefore shown that

n− 1

n|K|

(
rn−1γf (Ẽ)− γf (E)

)
≤ C1

1− C1δ0

δf (E);

this together with (4.3.3) concludes the proof of the first claim in (4.3.1).

In the direction of the second claim in (4.3.1), the first and second parts of (4.3.2)

respectively imply that

F(E ′) = rn−1F(Ẽ) ≤ F(Ẽ)

(1− C1δf (E))1/n′
≤ F(E) + C0δf (E)|E|1/n′

(1− C1δf (E))1/n′
.

A Taylor expansion in δf (E) of the right hand side shows that

F(E ′) ≤ F(E) + C0δf (E)|E|1/n′ + n− 1

n
C1δf (E)F(E) +O(δf (E)2)

≤ F(E) + Cδf (E)F(E)

for δ0 chosen sufficiently small. Thus

δf (E
′) =

F(E ′)−F(K)

n|K|
≤ F(E ′)−F(E)

n|K|
≤ CF(E)δf (E)

n|K|
≤ Cδf (E),

since F(E) ≤ F(K) + n|K|δ0. Finally, since Ẽ ⊂ BR̃0
and E ′ = rẼ with r ≤

1/(1− C1δ0)1/n, we have E ′ ⊂ BR0 for R0 = rR̃0.
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Let us now consider the functional

Q(E) = F(E) +
|K|mf

8Mf

∣∣βf (E)2 − ε2
∣∣+ Λ

∣∣|E| − |K|∣∣, (4.3.4)

with 0 < ε < 1 and Λ > 0.

Lemma 4.3.2. A minimizer exists for the problem

min {Q(E) : E ⊂ BR0}

for Λ > 4n and ε > 0 sufficiently small. Moreover, any minimizer F satisfies

|F | ≥ |K|
2
, F(F ) ≤ 2n|K|. (4.3.5)

Proof. Let Q = inf{Q(E) : E ⊂ BR0}, and let {Fj} be a sequence such that Q(Fj)→

Q. Since Fj ⊂ BR0 and F(Fj) < 2Q for j large enough, up to a subsequence, Fj → F

in L1 for some F ⊂ BR0 . The lower semicontinuity of F (Proposition 4.2.1(1)) ensures

that F(F ) <∞.

We first show that |F | ≥ |K|
2
. For any η > 0, Q(Fj) ≤ Q + |K|η for j sufficiently

large. Furthermore, Q ≤ Q(K) = F(K) +
ε2|K|mf

8Mf
, so

∣∣|Fj| − |K|∣∣ ≤ 1

Λ

(
F(K) + |K|η +

ε2|K|mf

8Mf

)
=
|K|
Λ

(
n+ η +

ε2mf

8Mf

)
≤ |K|

2

for ε and η sufficiently small. Therefore |Fj| ≥ |K|
2
, implying that |F | ≥ |K|

2
as well.

We now show that lim inf Q(Fj) ≥ Q(F ), so F is a minimizer. Recalling (4.2.8), we

have

Q(Fj) = F(Fj) +
|K|mf

8Mf

∣∣∣∣F(Fj)− (n− 1)γf (Fj)

n|K|1/n|Fj|1/n′
− ε2

∣∣∣∣+ Λ
∣∣|Fj| − |K|∣∣
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≥ F(Fj) +
|K|mf

8Mf

∣∣∣∣F(F )− (n− 1)γf (Fj)

n|K|1/n|Fj|1/n′
− ε2

∣∣∣∣
− |K|mf

8Mf

∣∣∣∣F(Fj)−F(F )

n|K|1/n|Fj|1/n′
∣∣∣∣+ Λ

∣∣|Fj| − |K|∣∣.
Let a = lim inf F(Fj). Up to a subsequence, we may take this limit infimum to be a

limit. By the lower semicontinuity of F , a ≥ F(F ). Furthermore, γf is continuous

by Proposition 4.2.1(2), so

lim inf
j→∞

Q(Fj) ≥ Q(F ) + (a−F(F ))− |K|1/n′mf

8n|F |1/n′Mf

|a−F(F )|

= Q(F ) + (a−F(F ))
(

1− |K|1/n′mf

8n|F |1/n′Mf

)
≥ Q(F ) + (a−F(F ))

(
1− 21/n′mf

8nMf

)
≥ Q(F ).

Finally, ε < 1 and therefore F(F ) ≤ Q(F ) ≤ Q(K) ≤ 2n|K|.

The following lemma shows that a minimizer of (4.3.4) satisfies uniform density esti-

mates.

Lemma 4.3.3 (Density Estimates). Suppose F is a minimizer of Q(E) as defined

in (4.3.4) among all sets E ⊂ BR0. Then there exist r0 > 0 depending on n,Λ, and

|K| and 0 < c0 < 1/2 depending on n and Λ such that for any x ∈ ∂∗F and for any

r < r0,
c0m

n
f

Mn
f

ωnr
n ≤ |Br(x) ∩ F | ≤

(
1−

c0m
n
f

Mn
f

)
ωnr

n. (4.3.6)

Proof. We follow the standard argument for proving uniform density estimates for

minimizers of perimeter functionals; see, for example, [Mag12, Theorem 16.14]. The

only difficulty arises when handling the term |K|mf
8Mf
|βf (E)2 − ε2| in Q(E), as it scales

like the surface energy.
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For any x0 ∈ ∂∗F , let r < r0, where r0 is to be chosen later in the proof and r is

chosen such that

Hn−1(∂∗F ∩ ∂Br(x0)) = 0. (4.3.7)

This holds for almost every r > 0. Note that if (4.3.6) holds for almost every r < r0,

then it must hold for all r < r0 by continuity; it is therefore enough to consider r

such that (4.3.7) holds. Let G = F \Br(x0). For simplicity, we will use the notation

Br for Br(x0). Because F minimizes Q,

F(F ) +
|K|mf

8Mf

∣∣βf (F )2 − ε2
∣∣+ Λ

∣∣|F | − |K|∣∣
≤ F(G) +

|K|mf

8Mf

∣∣βf (G)2 − ε2
∣∣+ Λ

∣∣|G| − |K|∣∣ ,
and so rearranging and using the triangle inequality, we have

F(F ) ≤ F(G) +
|K|mf

8Mf

∣∣βf (F )2 − βf (G)2
∣∣+ Λ|F ∩Br|.

We subtract F(F ;Rn \ Br) from both sides; this is the portion of the surface energy

where ∂∗F and ∂∗G agree. We obtain

F(F ;Br) ≤
∫
∂Br∩F

f(νBr) dHn−1 +
|K|mf

8Mf

∣∣βf (F )2 − βf (G)2
∣∣+ Λ|F ∩Br|. (4.3.8)

Indeed, this holds because (4.3.7) implies that

F(G) = F(F ;Rn \Br) +

∫
∂Br∩F

f(νBr) dHn−1.

We must control the term |K|mf
8Mf

|βf (F )2 − βf (G)2| and require a sharper bound than

the one obtained using Hölder continuity of γf shown in Proposition 4.2.1(2). Indeed,

we must show that the only contributions of this term are perimeter terms that match
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those in (4.3.8) and terms that scale like the volume and thus behave as higher order

perturbations. We have

|βf (F )2 − βf (G)2| = 1

n|K|1/n

∣∣∣∣F(F )− (n− 1)γf (F )

|F |1/n′
− F(G)− (n− 1)γf (G)

|G|1/n′
∣∣∣∣

≤ 2F(F )

n|K|1/n
∣∣|F |−1/n′ − |G|−1/n′

∣∣+
|F(F )−F(G)|+ (n− 1) |γf (F )− γf (G)|

n|K|1/n|G|1/n′
.

The function v(z) = 1 − (1 − z)1/n′ is convex and increasing with v(1) = 1, hence

v(z) ≤ z for z ∈ [0, 1]. Thus, as |G| = |F | − |F ∩Br|,

∣∣|F |−1/n′ − |G|−1/n′
∣∣ = |G|−1/n′

(
1−

(
1− |F ∩Br|

|F |

)1/n′ )
≤ |F ∩Br|
|G|1/n′ |F |

. (4.3.9)

Since 2|F | ≥ |K| by (4.3.5), 4|G| ≥ |K| for r0 sufficiently small depending on n,

so the right hand side of (4.3.9) is bounded by 8|K|−1−1/n′ |F ∩ Br|. The coefficient
2F(F )

n|K|1/n is bounded by 4|K|1/n′ thanks to (4.3.5), so

2F(F )

n|K|1/n
∣∣|F |−1/n′ − |G|−1/n′

∣∣ ≤ 32|K|−1|F ∩Br|. (4.3.10)

Therefore, by (4.3.10) and again using the facts that 4|G| ≥ |K|, 2|F | ≥ |K|, and

mf/Mf ≤ 1, we have shown that

|K|mf

8Mf

|βf (F )2 − βf (G)2|

≤ 4|F ∩Br|+
|F(F )−F(G)|

2n
+
mf

Mf

n− 1

2n
|γf (F )− γf (G)| .

(4.3.11)

For the term |F(F )−F(G)|, using (4.3.7), we have

|F(F )−F(G)| =
∣∣∣∣∫
∂∗F

f(νF ) dHn−1 −
∫
∂∗G

f(νG) dHn−1

∣∣∣∣
≤ F(F ;Br) +

∫
∂Br∩F

f(νBr) dHn−1 ,

(4.3.12)
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using (4.3.7) and the fact that ∂∗F and ∂∗G agree outside of Br. Similarly, for the

term |γf (F )− γf (G)|, when γf (F ) ≥ γf (G), thanks to (4.3.7) we have

γf (F )− γf (G) ≤
∫
∂∗F

(x− yF ) · νF (x)

f∗(x− yF )
dHn−1 −

∫
∂∗G

(x− yF ) · νG(x)

f∗(x− yF )
dHn−1

≤ Mf

mf

(
F(F ;Br) +

∫
∂Br∩F

f(νBr) dHn−1
)
.

The analogous inequality holds when γf (G) ≥ γf (F ), so

|γf (F )− γf (G)| ≤ Mf

mf

(
F(F ;Br) +

∫
∂Br∩F

f(νBr) dHn−1
)
. (4.3.13)

Combining (4.3.11), (4.3.12), and (4.3.13), we have shown

|K|mf

8Mf

∣∣βf (F )2 − βf (G)2
∣∣ ≤ 4|F ∩Br|+

1

2

(
F(F ;Br) +

∫
∂Br∩F

f(νBr) dHn−1
)
.

(4.3.14)

Combining (4.3.8) and (4.3.14) and rearranging, we have

1

2
F(F ;Br) ≤

3

2

∫
∂Br∩F

f(νBr) dHn−1 + (4 + Λ) |F ∩Br| .

Proceeding in the standard way, we add the term 1
2

∫
∂Br∩F f(νBr) dHn−1 to both sides,

which gives

1

2
F(F ∩Br) ≤ 2

∫
∂Br∩F

f(νBr) dHn−1 + (4 + Λ) |F ∩Br| .

By the Wulff inequality, F(F ∩ Br) ≥ n|K|1/n|F ∩ Br|1/n
′ , and for r0 small enough

depending on n,Λ, and |K|, we may absorb the last term on the right hand side to

obtain

n|K|1/n|F ∩Br|1/n
′

4
≤ 2

∫
∂Br∩F

f(νBr) dHn−1. (4.3.15)
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Let u(r) = |F ∩Br|, and thus u′(r) = Hn−1(∂Br ∩F ), so the right hand side above is

bounded by 2Mfu
′(r). Furthermore, |K|1/n ≥ mf , so (4.3.15) yields the differential

inequality
nmf

8Mf

≤ u′(r)u(r)−1/n′ = n(u1/n)′.

Integrating these quantities over the interval [0, r], we get

mfr

8Mf

≤ u(r)1/n = |Br ∩ F |1/n,

and taking the power n of both sides yields the lower density estimate. The upper

density estimate is obtained by applying an analogous argument, usingG = F∪Br(x0)

as a comparison set for x0 ∈ ∂∗F and r < r0 satisfying (4.3.7).

The following lemma is a classical argument showing that a set that is close to K in

L1 and satisfies uniform density estimates is close to K in an L∞ sense.

Lemma 4.3.4. Suppose that F satisfies uniform density estimates as in (4.3.6). Then

there exists C depending on mf/Mf , n, and Λ such that

hd(∂F, ∂K)n ≤ C|F∆K|,

where hd(·, ·) is the Hausdorff distance between sets. In particular, for any η > 0,

there exists ε > 0 such that if |F∆K| < ε, then K1−η ⊂ F ⊂ K1+η, where Ka = aK.

Proof. Let d = hd(∂F, ∂K). Then there is some x ∈ ∂F such that either Bd(x) is

contained entirely in the complement of K or Bd(x) is entirely contained in K. If the

first holds, then the lower density estimate in (4.3.6) implies that

|F∆K| ≥ |F ∩Bd(x)| ≥
c0m

n
f

Mn
f

dn,
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while if the second holds, then the upper density estimate in (4.3.6) implies that

|F∆K| ≥ |Bd(x) \ F | ≥
c0m

n
f

Mn
f

dn.

We will make use of the following form of the Wulff inequality without a volume

constraint.

Lemma 4.3.5. Let R0 > diam(K) and Λ > n. Up to translation, the Wulff shape K

is the unique minimizer of the functional

F(F ) + Λ
∣∣|F | − |K|∣∣

among all sets F ⊂ BR0.

Proof. Let E be a minimizer of F(F )+Λ
∣∣|F |−|K|∣∣ among all sets of finite perimeter

F ⊂ BR0 ; this functional is lower semicontinuous so such a set exists. Comparing

with K, we find that

F(E) + Λ
∣∣|E| − |K|∣∣ ≤ F(K) = n|K|. (4.3.16)

The Wulff inequality implies that |E| ≤ |K|, and so F(E) ≥ n|E|1/n′|K|1/n ≥ n|E|.

Thus (4.3.16) implies that Λ (|K| − |E|) ≤ n (|K| − |E|) . Since Λ > n, it follows

that |E| = |K|. It follows that E must be a translation of K, the unique (up to

translation) equality case in the Wulff inequality.

We are now ready to prove Theorem 4.1.1.
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Proof of Theorem 4.1.1. By (1.2.4), we need only to show that there exists a constant

C = C(n) such that

βf (E)4n/(n+1) ≤ Cδf (E), (4.3.17)

for any set of finite perimeter E with 0 < |E| < ∞. By Lemma 4.3.1, it suffices to

consider sets contained in BR0 . Let us introduce the set

XN =
{
f :

Mf

mf

≤ N
}

for N ≥ 1, recalling Mf and mf defined in (4.2.2). In Steps 1–4, we prove that, for

every N ≥ 1, there exists a constant C = C(n,N) such that (4.3.17) holds for any

surface energy F corresponding to a surface tension f ∈ XN . In Step 5, we remove

the dependence of the constant on N .

Step 1: Set-up.

Suppose for the sake of contradiction that (4.3.17) is false for some N . We may then

find a sequence of sets {Ej} with Ej ⊂ BR0 and a sequence of surface energies {Fj},

each Fj with corresponding surface tension f j ∈ XN , Wulff shape Kj, and support

function f j∗ , such that the following holds:

|Ej| = |Kj| = 1,

Fj(Ej)−Fj(Kj)→ 0,

Fj(Ej) < Fj(Kj) + c1βfj(Ej)
4n/(n+1), (4.3.18)

where c1 = c1(N, n) is a constant to be chosen later in the proof.
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Each f j is in XN and is normalized to make |Kj| = 1 implying that {f j} is locally

uniformly bounded above, and hence, by convexity, locally uniformly Lipschitz. By

the Arzelà-Ascoli theorem, up to a subsequence, f j → f∞ locally uniformly. The

uniform convergence ensures that this limit function f∞ is a surface tension in XN .

We denote the corresponding surface energy by F∞, Wulff shape by K∞ and support

function by f∞∗ . Note that |K∞| = 1.

There exists c(N) such that Fj(E) ≥ c(N)P (E) for any set of finite perimeter E,

again thanks to f j ∈ XN and |Kj| = 1. Then, since Fj(Ej)→ n (as Fj(Kj) = n), the

perimeters are uniformly bounded. Furthermore, Ej ⊂ BR0 , so up to a subsequence,

Ej → E∞ in L1 with |E∞| = 1.

Proposition 4.2.1(1) implies that F∞(E∞) ≤ lim Fj(Ej) = n, so by the Wulff inequal-

ity, E∞ = K∞ up to translation. Furthermore, Proposition 4.2.1(2) then ensures that

lim γfj(Ej) = γf∞(K∞) = n
n−1

, and therefore, by (4.2.8),

lim
j→∞

βfj(Ej)
2 = lim

j→∞

1

n

(
Fj(Ej)− (n− 1)γfj(Ej)

)
= 0.

Step 2: Replace each Ej with a minimizer Fj.

As in [FJ14], the idea is to replace each Ej with a set Fj for which we can say more

about the regularity. We let εj = βfj(Ej) and let Fj be a minimizer to the problem

min
{
Qj(F ) = Fj(F ) +

mfj

8Mfj
|βfj(F )2 − ε2

j |+ Λ
∣∣|F | − 1

∣∣ : F ⊂ BR0

}
for a fixed Λ > 4n. Lemma 4.3.2 ensures that such a minimizer exists. As before,

Fj(Fj) ≥ c(N)P (Fj). Pairing this with (4.3.5) provides a uniform bound on P (Fj),

so by compactness, Fj → F∞ in L1 up to a subsequence for some F∞ ⊂ BR0 .
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For each j, we use the fact that Fj minimizes Qj, choosing Ej as a comparison set.

This, combined with (4.3.18) and Lemma 4.3.5, yields

Fj(Fj) +
1

8N
|βfj(Fj)2 − ε2

j |+ Λ
∣∣|Fj| − 1

∣∣ ≤ Qj(Fj) ≤ Fj(Ej)

≤ Fj(Kj) + c1ε
4n/(n+1)
j ≤ Fj(Fj) + Λ

∣∣|Fj| − 1
∣∣+ c1ε

4n/(n+1)
j . (4.3.19)

It follows that 1
8N

∣∣βfj(Fj)2−ε2
j

∣∣ ≤ c1ε
4n/(n+1)
j , immediately implying that βfj(Fj)→ 0.

Moreover, rearranging and using the fact that εj → 0 and 4n
n+1

> 2, we have

ε2
j

2(n+1)/2n
≤ ε2

j − 8Nc1ε
4n/(n+1)
j ≤ βfj(Fj)

2,

where the exponent (n + 1)/2n is chosen so that, taking the power 2n/(n + 1), we

obtain

ε
4n/(n+1)
j ≤ 2βfj(Fj)

4n/(n+1). (4.3.20)

In the last inequality in (4.3.19), if we replace Fj with arbitrary set of finite perimeter

E ⊂ BR0 , then we obtain

Fj(Fj) + Λ
∣∣|Fj| − 1

∣∣ ≤ Fj(E) + Λ
∣∣|E| − 1

∣∣+ c1ε
4n/(n+1)
j ,

again using Lemma 4.3.5. Taking the limit inferior as j → ∞, this implies that F∞

is a minimizer of the problem

min {F∞(F ) + Λ||F | − 1| : F ⊂ BR0} ,

and so F∞ = K∞ up to a translation by Lemma 4.3.5. With no loss of generality, we

translate each Fj such that inf{|(Fj + z)∆K∞| : z ∈ Rn} = |Fj∆K∞|.

Step 3: For j sufficiently large, 1
2
Kj ⊂ Fj ⊂ 2Kj and |Fj| = 1.

Lemma 4.3.3 implies that each Fj satisfies uniform density estimates, and thus for
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j sufficiently large, Lemma 4.3.4 ensures that 1
2
Kj ⊂ Fj ⊂ 2Kj, as |Kj∆Fj| ≤

|Kj∆K∞|+ |K∞∆Fj| and both terms on the right hand side go to zero.

Let rj > 0 be such that |rjFj| = 1. We may take rjFj as a comparison set for

Fj; rj ≤ 2 by Lemma 4.3.2, so rjFj ⊂ 4Kj ⊂ BR0 as long as R0 > 4Mf > CN,

the second inequality following from |Kj| = 1. Since βfj is invariant under scaling,

Qj(Fj) ≤ Qj(rjFj) yields

Fj(Fj) + Λ|1− |Fj|| ≤ rn−1
j Fj(Fj). (4.3.21)

This immediately implies that rj ≥ 1 for all j, in other words, |Fj| ≤ 1. Furthermore,

rj → 1 because Fj → K∞ in L1 and |K∞| = 1. Suppose that, for some subsequence,

rj > 1. Then, using |Fj| = 1/rnj , (4.3.21) implies

Λ ≤
(
rnj (rn−1

j − 1)

rnj − 1

)
Fj(Fj). (4.3.22)

For any 0 < η < 1
n

and for j sufficiently large, the right hand side is bounded

by (1 − η)Fj(Fj), as lim
r→1+

rn(rn−1−1)
rn−1

= n−1
n

. Furthermore, Fj(Fj) ≤ n + ε2
j since

Qj(Fj) ≤ Qj(Kj), so (4.3.22) implies that

Λ ≤ (1− η)Fj(Fj) ≤ (1− η)
(
n+ ε2

j

)
≤ n

for j sufficiently large. Since n < Λ, we reach a contradiction, concluding that |Fj| = 1

for j sufficiently large.

Step 4: Derive a contradiction to (4.3.18).

We will show that βfj(Fj)4n/(n+1) ≤ Cδfj(Fj), which in turn will be used to contradict
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(4.3.18). Adding and subtracting the term Fj(Kj)/n = (n − 1)γfj(Kj)/n to (4.2.8),

we have

βfj(Fj)
2 ≤ Fj(Fj)

n
− n− 1

n

∫
Fj

dx

f j∗ (x)
= δfj(Fj) +

n− 1

n

(∫
Kj

dx

f j∗ (x)
−
∫
Fj

dx

f j∗ (x)

)
= δfj(Fj) +

n− 1

n

(∫
Fj\Kj

1− 1

f j∗ (x)
dx+

∫
Kj\Fj

1

f j∗ (x)
− 1 dx

)
.

We now control the last term in terms of δfj(Fj). Note the following: since 1
2
Kj ⊂

Fj ⊂ 2Kj, the last term above is bounded by C|Fj∆Kj| ≤ δfj(Fj)
1/2. This could

establish (4.3.17) with the exponent 4. However, with the following argument, we

obtain the improved exponent 4n/(n+ 1).

As noted before, Lemma 4.3.3 implies that each Fj satisfies uniform density estimates

(4.3.6) with mfj/Mfj ≥ 1/N . The lower density estimate provides information about

how far f j∗ (x) can deviate from 1 for x ∈ Fj \Kj, thus bounding the first integrand.

Indeed, arguing as in the proof of Lemma 4.3.4, for any x ∈ Fj \Kj, let d = f j∗ (x)−1.

The intersection Kj ∩ Bd(x) is empty by the definition of f j∗ , and thus Fj ∩ Bd(x) ⊂

Fj \Kj. Therefore, for x ∈ ∂∗Fj \Kj,

c0d
n

Nn
≤ |Bd(x) ∩ Fj| ≤ |Fj∆Kj| ≤ Cδfj(Fj)

1/2

by the lower density estimate in (4.3.6) and the quantitative Wulff inequality as in

(1.2.4). In fact, this bound holds for any x ∈ Fj \ Kj; since Fj is bounded, for

any x ∈ Fj \ Kj, there is some y ∈ ∂∗Fj \ Kj such that f j∗ (x) ≤ f ∗j (y). Therefore,

f j∗ (x)− 1 ≤ Cδfj(Fj)
1/2n for all x ∈ Fj \Kj, and so∫

Fj\Kj
1− 1

f j∗ (x)
dx ≤

∫
Fj\Kj

f∗(x)− 1 dx ≤
∫
Fj\Kj

Cδfj(Fj)
1/2n dx

= C|Fj∆Kj|δfj(Fj)1/2n ≤ Cδfj(Fj)
1/2+1/2n,

(4.3.23)
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where C = C(N, n) and the final inequality uses (1.2.4) once more. The analogous

argument using the upper density estimate in (4.3.6), paired with the fact that even-

tually 1
2
Kj ⊂ Fj, provides an upper bound for the size of 1 − f j∗ (x) for x ∈ Kj \ Fj,

giving ∫
Kj\Fj

1

f j∗ (x)
− 1 dx ≤ 2

∫
Kj\Fj

1− f j∗ (x) dx ≤ Cδfj(Fj)
1/2+1/2n. (4.3.24)

Combining (4.3.23) and (4.3.24), we conclude that

βfj(Fj)
4n/(n+1) ≤ C1δfj(Fj) (4.3.25)

where C1 = C1(N, n).

We now use the minimality of Fj, comparing against Ej, along with (4.3.18) and

(4.3.20) to obtain

Fj(Fj) ≤ Fj(Ej) ≤ Fj(Kj) + c1ε
4n/(n+1)
j ≤ Fj(Kj) + 2c1βfj(Fj)

4n/(n+1).

By (4.3.20), βfj(Fj) is positive, so by choosing c1 < n/2C1, this contradicts (4.3.25),

thus proving (4.3.17) for the class XN with the constant C depending on n and N .

Step 5: Remove the dependence on N of the constant in (4.3.17).

We argue as in [FMP10]. We will use the following notation: FK is the surface energy

with Wulff shape K, surface tension fK , and support function fK∗ . We use δK , βK ,

and γK to denote δfK , βfK , and γfK respectively.

By John’s Lemma ([Joh48, Theorem III]), for any convex set K ⊂ Rn, there exists

an affine transformation L such that detL > 0 and B1 ⊂ L(K) ⊂ Bn. This implies
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that ML(K)/mL(K) ≤ n and so fL(K) ∈ Xn. Our goal is therefore to show that βK(E)

and δK(E) are invariant under affine transformations. Indeed, once we verify that

βK(E) = βL(K)(L(E)) and δK(E) = δL(K)(L(E)), we have

βK(E)4n/(n+1) = βL(K)(L(E))4n/(n+1) ≤ C(n)δL(K)(L(E)) = C(n)δK(E),

and (4.3.17) is proven with a constant depending only on n.

Suppose E is a smooth, open, bounded set. Then

FK(E) = lim
ε→0

|E + εK| − |E|
ε

;

this is shown by applying the anisotropic coarea formula to the function

dK(x, ∂E) :=

{
inf{f∗(x− y) : y ∈ ∂E} if x ∈ Ec

− inf{f∗(x− y) : y ∈ ∂E} if x ∈ E

and noting that (E + εK) \ E = {x : 0 ≤ dK(x, ∂E) < ε}.

Since L is affine, |L(E + εK)| − |L(E)| = detL (|E + εK| − |E|), and so

FK(E) = lim
ε→0

|L(E + εK)| − |L(E)|
ε detL

=
FL(K)(L(E))

detL
.

Since |E| = |L(E)|/ detL, we have

δK(E) =
FK(E)

n|K|1/n|E|1/n′
− 1 =

FL(K)(L(E))

n|L(K)|1/n|L(E)|1/n′
− 1 = δL(K)(L(E)),

and thus δK(E) is invariant. Similarly,

fK∗ (L−1z − y) = inf
{
λ :

L−1(z)− y
λ

∈ K
}

= inf
{
λ :

z − L(y)

λ
∈ L(K)

}
= fL(K)

∗ (z − L(y)) ,
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and thus∫
E

dx

fK∗ (x− y)
=

∫
L(E)

dz

fK∗ (L−1(z)− y) detL
=

∫
L(E)

dz

f
L(K)
∗ (z − L(y)) detL

.

Taking the supremum over y ∈ Rn of both sides, we have

γK(E) =
γL(K)(L(E))

detL
.

From (4.2.8),

βK(E) =

(
FK(E)− (n− 1)γK(E)

n|K|1/n|E|1/n′
)1/2

.

We have just shown that, for the denominator,(
1

n|K|1/n|E|1/n′
)1/2

=

(
detL

n|L(K)|1/n|L(E)|1/n′
)1/2

,

and for the numerator,(
FK(E)− (n− 1)γK(E)

)1/2

=

(
FL(K)(L(E))− (n− 1)γL(K)(L(E))

detL

)1/2

.

The term detL cancels, yielding

βK(E) =

(
FL(K)(L(E))− (n− 1)γL(K)

n|L(K)|1/n|L(E)|1/n′
)1/2

= βL(K)(L(E)),

showing that βK(E) too is invariant.

4.4 Elliptic surface tensions

In this section, we prove Theorem 4.1.3. This proof closely follows the proof of (1.2.6)

in [FJ14]. Using a selection principle argument and the regularity theory for (Λ, r0)-

minimizers of F , we reduce to the case of sets that are small C1 perturbations of the
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Wulff shape K. In [FJ14], this argument brings Fusco and Julin to the case of nearly

spherical sets, at which point they call upon (4.1.9), where Fuglede proved precisely

this case in [Fug89].

We therefore prove in Proposition 4.1.9 an analogue of (4.1.9) in the case of the

anisotropic surface energy F when f is a λ-elliptic surface tension. The following

lemma shows that if E is a small C1 perturbation of the Wulff shapeK with |E| = |K|,

then the Taylor expansion of the surface energy vanishes at first order and takes the

form (4.4.1). We then use the quantitative Wulff inequality as in (1.2.4) and the

barycenter constraint along with (4.4.1) to prove Proposition 4.1.9.

Lemma 4.4.1. Suppose that F is a surface energy corresponding to a λ-elliptic sur-

face tension f , and E is a set such that |E| = |K| and

∂E = {x+ u(x)νK(x) : x ∈ ∂K}

where u : ∂K → R and ‖u‖C1(∂K) = ε. There exists ε0 > 0 depending on λ and n

such that if ε < ε0,

F(E) = F(K)+
1

2

∫
∂K

(∇u)T∇2f(νK)∇u−HKu
2 dHn−1 + ε O(‖u‖2

H1(∂K)), (4.4.1)

where HK is the mean curvature of K and all derivatives are restricted to the tan-

gential directions.

Remark 4.4.2. The second fundamental form AK of K satisfies

∇2f(νK(x))AK(x) = IdTx∂K for all x ∈ ∂K.

Therefore, HK = tr(AK) is equal to tr(∇2f A2
K) and thus (4.4.1) agrees with, for

example, [CVDM04, Corollary 4.2].
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Proof of Lemma 4.4.1. For a point x ∈ ∂K, let {τ1, . . . , τn−1} be normalized eigen-

vectors of ∇νK , where each τi corresponds to the eigenvalue λi. This set is an or-

thonormal basis for TxK, and thus {τ1, . . . , τn−1, νK} is an orthonormal basis for Rn.

A basis for Tx+uνKE is given by the set {g1, . . . , gn−1}, where, adopting the notation

ui = ∂τiu,

gi = ∂τi [x+ uνK ] = (1 + λiu)τi + uiνK .

We make the standard identification of an (n − 1)-vector with a vector in Rn in the

following way. The norm of an (n−1)-vector v1∧· · ·∧vn−1 is given by |v1∧. . .∧vn−1| =

| det(v1, . . . , vn−1)|. If |v1 ∧ . . . ∧ vn−1| 6= 0, then the vectors v1, . . . , vn−1 are linearly

independent and we may consider the n − 1 dimensional hyperplane Π spanned by

v1, · · · , vn−1. Letting ν be a normal vector to Π, we make the identification

v1 ∧ . . . ∧ vn−1 = ±|v1 ∧ . . . ∧ vn−1| ν,

where the sign is chosen such that det(v1, . . . , vn−1,±ν) > 0. In particular, we make

the identifications

τ1∧ . . .∧τn−1 = νK ,
g1 ∧ . . . ∧ gn−1

|g1 ∧ . . . ∧ gn−1|
= νE, and τ1∧ . . .∧νK∧ . . .∧τn−1 = −τi.

The sign is negative in the third identification because

det(τ1, . . . , νK , . . . , τn−1,−τi) = − det(τ1, . . . ,−τi, . . . , τn−1, νK)

= det(τ1, . . . , τi, . . . , τn−1, νK) = 1.

We let w := g1 ∧ . . . ∧ gn−1, and so

w = [(1 + λ1u)τi + u1νK ] ∧ . . . ∧ [(1 + λn−1u)τn−1 + un−1νK ]
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=
n−1∏
i=1

(1 + λiu)νK −
n−1∑
i=1

ui
∏
i 6=j

(1 + λju)τi

=
[
1 +HKu+

∑
i<j

λiλju
2
]
νK −

n−1∑
i=1

ui

[
1 +

∑
j 6=i

λju
]
τi + εO(|u|2 + |∇u|2). (4.4.2)

In order to show (4.4.1), the volume constraint is used to show that the first order

terms in the Taylor expansion of the surface tension vanish. We achieve this by

expanding the volume in two different ways. First, the divergence theorem implies

that

n|E| =
∫
∂E

x · νE dHn−1 =

∫
∂K

(x+ u νK) · w
|w|
|w| dHn−1 =

∫
∂K

(x+ u νK) · w dHn−1.

Adding and subtracting νK = τ1 ∧ . . . ∧ τn−1, and using (4.4.2) and the fact that

νK · τi = 0, we have

n|E| =
∫
∂K

x · νK dHn−1 +

∫
∂K

u+ x · (w − νK) +HKu
2 dHn−1 + εO(‖u‖2

H1(∂K)).

Since
∫
∂K
x · νK dHn−1 = n|K|, the volume constraint |E| = |K| implies that∫

∂K

x · (w − νK) dHn−1 = −
∫
∂K

u+HKu
2 dHn−1 + εO(‖u‖2

H1(∂K)). (4.4.3)

Now we expand the volume in a different way. Because f is a λ-elliptic surface tension,

the Wulff shape K is C2 with mean curvature depending on λ and n. Therefore, there

exists t0 = t0(λ, n) > 0 such that the neighborhood

D = {x+ tνK(x) : x ∈ ∂K, t ∈ (−t0, t0)}

satisfies the following property: for each y ∈ D, there is a unique projection π : D →

∂K such that π(y) = x if and only if y = x + tνK(x) for some t ∈ (−t0, t0). In this
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way, we extend the normal vector field νK to a vector field NK defined on D by letting

NK : D → Rn be defined by NK(y) = νK(π(y)). We also extend u to be defined on

D by letting u(y) = u(π(y)) for all y ∈ D. Therefore, if ε0 < t0, ∂E may be realized

as the time t = 1 image of ∂K under the flow defined by

d

dt
ψt(x) = uNK(ψt(x)), ψ0(x) = x.

Such a flow is given by ψt(x) = x + tuNK , and so ∇ψt(x) = Id + tA where A =

∇(uNK). An adaptation of the proof of [Mag12, Lemma 17.4] gives

Jψt = 1 + t tr(A) +
t2

2
(tr(A)2 − tr(A2)) + εO(|u|2 + |∇u|2). (4.4.4)

Integrating by parts, it is easily verified that∫
K

tr(A)2 − tr(A2) dx

=

∫
K

div (uNK div (uNK)) dx−
∫
∂K

n∑
i,j=1

(uNK)(i)∂i(uNK)(j)ν
(j)
K dHn−1

=

∫
K

div(uNK div (uNK)) dx−
∫
∂K

u∇u · νK dHn−1.

The second equality is clear by choosing the basis τ1, . . . , τn−1, τn, where τn = νK .

Furthermore, the divergence theorem implies that∫
K

div (uNK div (uNK)) dx =

∫
∂K

u div (uNK) dHn−1 =

∫
∂K

u∇u · νK +HKu
2 dHn−1,

so that ∫
K

tr(A)2 − tr(A2) dx =

∫
∂K

HKu
2 dHn−1.

With this and (4.4.4) in hand, we have the following expansion of the volume:

|ψt(K)| =
∫
K

Jψt dx = |K|+ t

∫
∂K

u dHn−1 +
t2

2

∫
∂K

HKu
2 dHn−1 + t3εO(‖u‖2

H1(∂K)).
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Therefore, the volume constraint |K| = |E| = |ψ1(K)| implies that∫
∂K

u dHn−1 = −1

2

∫
∂K

HKu
2 dHn−1 + εO(‖u‖2

H1(∂K)). (4.4.5)

Combining (4.4.3) and (4.4.5), we conclude that∫
∂K

x · (w − νK) dHn−1 = −1

2

∫
∂K

u2HK dHn−1 + εO(‖u‖2
H1(∂K)). (4.4.6)

We now proceed with a Taylor expansion of the surface energy of E:

F(E) =

∫
∂∗E

f(νE) dHn−1 =

∫
∂K

f
( w
|w|

)
|w| dHn−1 =

∫
∂K

f(w) dHn−1

=

∫
∂K

f(νK) dHn−1 +

∫
∂K

∇f(νK) · (w − νK) dHn−1

+
1

2

∫
∂K

[w − νK ]T∇2f(νK)[w − νK ] dHn−1 + εO(‖u‖2
H1(∂K)),

so, recalling that ∇f(νK(x)) = x by (4.2.6),

F(E) = F(K) +

∫
∂K

x · (w − νK) dHn−1

+
1

2

∫
∂K

n−1∑
i,j=1

uiuj(τ
T
i ∇2f(νK)τj) dHn−1 + εO(‖u‖2

H1(∂K)) .

Applying (4.4.6) yields (4.4.1), completing the proof.

We now prove Proposition 4.1.9, using (4.4.1) as a major tool.

Proof of Proposition 4.1.9. Suppose E is a set as in the hypothesis of the proposition,

i.e., |E| = |K|, barE = barK, and

∂E = {x+ u(x)νK(x) : x ∈ ∂K},
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where u : ∂K → R is a function such that u ∈ C1(∂K) and ‖u‖C1(∂K) = ε ≤ ε1 with

ε1 to be fixed during the proof. Up to multiplying f by a constant, which changes λ

by the same factor and leaves mf/Mf unchanged, we may assume that |K| = 1. Let

B(u) =
1

2

∫
∂K

(∇u)T∇2f(νK)∇u dHn−1 − 1

2

∫
∂K

HKu
2 dHn−1,

so that, by (4.4.1),

δf (E) =
1

n
B(u) + εO(‖u‖2

H1(∂K)) (4.4.7)

as long as ε1 ≤ ε0 for ε0 from Lemma 4.4.1.

Step 1: There exists C = C(n, λ,mf/Mf ) such that, for ε1 small enough depending

on mf/Mf and λ, (∫
∂K

|u| dHn−1
)2

≤ Cδf (E). (4.4.8)

Step 1(a): There exists C = C(n,mf/Mf ) such that, for ε1 = ε1(mf/Mf ) small

enough,

|E∆K| ≤ Cδf (E)1/2. (4.4.9)

The quantitative Wulff inequality in the form (1.2.4) states that |E∆(K + x0)| ≤

C(n)δf (E)1/2 for some x0 ∈ Rn, so by the triangle inequality,

|E∆K| ≤ C(n)δf (E)1/2 + |(K + x0)∆K|. (4.4.10)

It therefore suffices to show that |(K + x0)∆K| ≤ Cδf (E)1/2. By [Mag12, Lemma

17.9],

|K∆(K + x0)| ≤ 2|x0|P (K) ≤ 2n

mf

|x0|. (4.4.11)
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Furthermore, the barycenter constraint barE = barK implies that

x0 =

∫
K

x0 dx =

∫
E

x dx−
∫
K

x− x0 dx =

∫
E

x dx−
∫
K+x0

x dx.

For ε1 small enough depending on Mf/mf , E,K + x0 ⊂ B2Mf
, a fact that is verified

geometrically since |x0| → 0 as ε→ 0 and thus |x0| may be taken as small as needed.

Therefore,

|x0| =
∣∣∣∣ ∫

E

x dx−
∫
K+x0

x dx

∣∣∣∣ ≤ 2Mf |E∆(K + x0)| ≤MfC(n)δf (E)1/2,

where the second inequality comes from (1.2.4). This, (4.4.11), and (4.4.10) prove

(4.4.9).

Step 1(b): For ε1 sufficiently small depending on λ and n,∫
∂K

|u| dHn−1 ≤ 2|E∆K|. (4.4.12)

Let dK(x) = dist(x, ∂K). As in the proof of Lemma 4.4.1, there exists t0 = t0(λ, n)

such that for all t < t0, {dK = t} = {x + tνK(x)}. Take ε1 < t0 and let Gt = {dK =

t} ∩ (E \K). Then

E \K = {x+ tνK : x ∈ {x ∈ ∂K : u(x) > 0}, t ∈ (0, u(x))},

Gt = {x+ tνK : x ∈ {x ∈ ∂K : u(x) > t}}.

The coarea formula and the area formula imply that

|E \K| =
∫
E\K
|∇dK | dx =

∫ ∞
0

dt

∫
Gt

dHn−1 =

∫ ∞
0

dt

∫
{u>t}

J(Id + tνK) dHn−1,
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so

|E \K| ≥ 1

2

∫ ∞
0

dt

∫
{u>t}

dHn−1 =
1

2

∫ ∞
0

|{u > t}| dt =
1

2

∫
∂K

u+ dHn−1.

The analogous argument yields |K \ E| ≥ 1
2

∫
∂K
u− dHn−1, and (4.4.12) is shown.

Combining (4.4.9) and (4.4.12) implies (4.4.8).

Step 2: There exists C = C(n, λ,mf/Mf ) such that, for ε1 = ε1(n, λ,mf/Mf ) small

enough,

‖u‖2
H1(∂K) ≤ Cδf (u). (4.4.13)

The λ-ellipticity of f implies∫
∂K

|∇u|2 dHn−1 ≤ 1

λ

∫
∂K

(∇u)T∇2f(νK)(∇u) dHn−1

=
1

λ

(
2B(u) +

∫
∂K

HK |u|2 dHn−1
)
.

The Wulff shape K is bounded and C2, so HK is bounded by a constant C = C(n, λ).

Therefore, ∫
∂K

|∇u|2 dHn−1 ≤ 2

λ
B(u) + C

∫
∂K

|u|2 dHn−1. (4.4.14)

As pointed out in [DPM14, proof of Theorem 4], from the Sobolev inequality on ∂K

([Sim83, Section 18]), one may produce a version of Nash’s inequality on ∂K that

takes the form∫
∂K

|u|2 dHn−1 ≤ cη(n+2)/n

∫
∂K

|∇u|2 dHn−1 +
c

η(n+2)/2

(∫
∂K

|u| dHn−1
)2

(4.4.15)

for all η > 0, Here, c is a constant depending on HK (and therefore on λ and n) and

Mf/mf . We pair (4.4.15) with (4.4.14) and (4.4.8) to obtain∫
∂K

|∇u|2 dHn−1 ≤ 2

λ
B(u) + Cη(n+2)/n

∫
∂K

|∇u|2 dHn−1 +
C

η(n+2)/2
δf (E).
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For η small enough, we absorb the middle term into the left hand side. Then, recalling

(4.4.7), we have

1

2

∫
∂K

|∇u|2 dHn−1 ≤ Cδf (E) + εO
(
‖u‖2

H1(∂K)

)
.

Combining this estimate with (4.4.15) and (4.4.8), we find that
∫
∂K
|u|2 dHn−1 is also

bounded by Cδf (E) + εO
(
‖u‖2

H1(∂K)

)
. Therefore,

‖u‖2
H1(∂K) ≤ Cδf (E) + εO

(
‖u‖2

H1(∂K)

)
.

Finally, taking ε1 small enough, we absorb the second term on the right, proving

(4.4.13).

We now show that if ∂E = {x+ uνK : x ∈ ∂K} with ‖u‖C1(∂K) small, then βf (E) is

controlled by ‖u‖H1(∂K). With the notation from the proof of Lemma 4.4.1,

n|K|βf (E)2 ≤
∫
∂E

f(νE)− x

f∗(x)
· νE dHn−1 =

∫
∂K

f(w)− x · w dHn−1.

From the expansion of F in the proof of Lemma 4.4.1 and the fact that x ·νK = f(νK)

by (4.2.3), the right hand side is equal to

1

2

∫
∂K

(∇u)T∇2f(νK)∇u dHn−1 + εO(‖u‖2
H1(∂K)) ≤ C‖u‖2

H1(∂K) + εO(‖u‖2
H1(∂K)),

where C = ‖∇2f‖C0(∂K). For ε sufficiently small, we absorb the term εO(‖u‖2
H1(∂K))

and have

βf (E)2 ≤ C

n|K|
‖u‖2

H1(∂K). (4.4.16)

Remark 4.4.3. This is the first point at which we use the upper bound on the

Hessian of f . In other words, Proposition 4.1.9 still holds for surface tensions f ∈
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C1,1(Rn \ {0}) that satisfy the lower bound on the Hessian in the definition of λ-

ellipticity.

Next, we prove Theorem 4.1.3, for which we need the following definition.

Definition 4.4.4. A set of finite perimeter E is a (Λ, r0)-minimizer of F , for some

0 ≤ Λ <∞ and r0 > 0, if

F(E;B(x, r)) ≤ F(F ;B(x, r)) + Λ|E∆F |

for E∆F ⊂⊂ B(x, r) and r < r0.

Proof of Theorem 4.1.3. Proposition 4.2.4 implies that the proof reduces to showing

βf (E)2 ≤ Cδf (E). (4.4.17)

where C = C(n, λ, ‖∇2f‖C0(∂K),mf/Mf ). Suppose for contradiction that (4.4.17)

fails. There exists a sequence {Ej} such that |Ej| = |K| for all j, δf (Ej)→ 0, and

F(Ej) ≤ F(K) + c2βf (Ej)
2 (4.4.18)

for c2 to be chosen at the end of this proof. Arguing as in the proof of Theorem 4.1.1,

we determine that, up to a subsequence, {Ej} converges in L1 to a translation of K.

As in the proof of Theorem 4.1.1 (and as in [FJ14]), we replace the sequence {Ej}

with a new sequence {Fj}, where each Fj is a minimizer of the problem

min

{
Qj(E) = F(E) +

|K|mf

8Mf

∣∣βf (E)2 − ε2
j

∣∣+ Λ
∣∣|E| − |K|∣∣ : E ⊂ BR0

}
with εj = βf (Ej); existence for this problem is shown in Lemma 4.3.2. Continuing as

in the proof of Theorem 4.1.1, we determine that

ε2
j ≤ 2βf (Fj)

2, (4.4.19)
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that up to a subsequence and translation, Fj → K in L1, and that |Fj| = |K| for

j sufficiently large. By Lemma 4.3.3, each Fj satisfies uniform density estimates,

and so by Lemma 4.3.4, for any η > 0, we may choose j sufficiently large such that

K1−η ⊂ Fj ⊂ K1+η.

Arguing as in [FJ14], we show that Fj is a (Λ, r0)-minimizer of F for j large enough,

where Λ and r0 are uniform in j. LetG such thatG∆Fj ⊂⊂ Br(x0) for x0 ∈ Fj and for

r < r0, where r0 is to be fixed during the proof. For any η > 0, if Br(x0) ⊂ K1−η, then

trivially F(G) ≥ F(Fj). If Br(x0) 6⊂ K1−η, then for η sufficiently small, Lemma 4.2.3

implies that |yFj | ≤ 1/4 and |yG| ≤ 1/4. Furthermore, by choosing η and r0 sufficiently

small, we may take Br(x0) ∩K1/2 = ∅. The minimality of Fj implies Q(Fj) ≤ Q(G);

after rearranging and applying the triangle inequality, this implies that

F(Fj) ≤ F(G) + Λ|Fj∆G|+
|K|mf

8Mf

∣∣βf (G)2 − βf (Fj)2
∣∣ . (4.4.20)

As in (4.3.11) in the proof of Lemma 4.3.3,

|K|mf

8Mf

∣∣βf (F )2 − βf (G)2
∣∣ ≤ |F(Fj)−F(G)|

2
+
|γf (Fj)− γf (G)|

2
+ 4|Fj∆G|

for r0 small enough depending on n. If F(Fj) ≤ F(G), then the (Λ, r0)-minimizer

condition is automatically satisfied. Otherwise, subtracting 1
2
F(Fj) from both sides

of (4.4.20) and renormalizing, we have

F(Fj) ≤ F(G) + |γf (G)− γf (Fj)|+ (8 + 2Λ)|Fj∆G|. (4.4.21)

To control |γf (G)− γf (Fj)|, we need something sharper than the Hölder modulus of

continuity of γf given in Proposition 4.2.1(2). Indeed, γf is Lipschitz continuous for
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sets whose intersection contains a ball around their centers:

γf (Fj)− γf (G) ≤
∫
Fj

dx

f∗(x− yFj)
−
∫
G

dx

f∗(x− yFj)
=

∫
Fj∆G

dx

f∗(x− yFj)
,

and analogously,

γf (G)− γf (Fj) ≤
∫
Fj∆G

dx

f∗(x− yG)
.

Since Br ∩K1/2 = ∅, |yFj | ≤ 1/4, and |yG| ≤ 1/4, we know that 1/f∗(x−yFj) ≥ 4/mf

and 1/f∗(x− yG) ≥ 4/mf for any x ∈ Fj∆G, implying that

|γf (Fj)− γf (G)| ≤ 4

mf

|Fj∆G|.

Therefore, (4.4.21) becomes

F(Fj) ≤ F(G) + Λ0 |Fj∆G| , (4.4.22)

where Λ0 = 8 + 2Λ + 4/mf , and so Fj is a (Λ0, r0)-minimizer for j large enough.

We now exploit some regularity theorems for sets Fj that are (Λ, r0)-minimizers that

converge in L1 to a C2 set. First, let us introduce a bit of notation. For x ∈ Rn,

r > 0, and ν ∈ Sn−1, we define

Cν(x, r) = {y ∈ Rn : |pν(y − x)| < r, |qν(y − x) < r},

Dν(x, r) = {y ∈ Rn : |pν(y − x)| < r, |qν(y − x)| = 0},

where qν(y) = y · ν and pν(y) = y − (y · ν)y. We then define the cylindrical excess of

E at x in direction ν at scale r to be

exc(E, x, r, ν) =
1

rn−1

∫
Cν(x,r)∩∂∗E

|νE − ν|2

2
dHn−1
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The following regularity theorem for almost minimizers of an elliptic integrand is the

translation in the language of sets of finite perimeter of a classical result in the theory

of currents, see [Alm66, SSA77, Bom82, DS02]. For a closer statement to ours, see

Lemma 3.1 in [DPM15].

Theorem 4.4.5. Let f be a λ-elliptic surface tension with corresponding surface

energy F . Suppose E is a (Λ, r0)-minimizer of F . For all α < 1 there exist constants

ε and C1 depending on n, λ and α such that if

exc(E, x, r, ν) + Λr < ε

then there exists u ∈ C1,α(Dν(x, r)) with u(x) = 0 such that

Cν(x, r/2) ∩ ∂∗E = (Id + uν)(Dν(x, r/2)),

‖u‖C0(Dν(x0,r/2)) < C1r exc(E, x, r, ν)1/(2n−2),

‖∇u‖C0(Dν(x0,r/2)) < C1 exc(E, x, r, ν)1/(2n−2),

and rα[∇u]C0,α(Dν(x,r/2)) < C1 exc(E, x, r, ν)1/2.

Applying Theorem 4.4.5 as in [CL12], we come to prove the following statement.

Theorem 4.4.6. Let f be λ-elliptic with corresponding surface energy F and let {Ej}

be a sequence of (Λ, r0)-minimizers such that Ej → E in L1, with ∂E ∈ C2. Then

there exist functions ψj ∈ C1(∂E) such that

∂Ej = (Id + ψjνE)(∂E),

and ‖ψj‖C1(∂E) → 0.
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Theorem 4.4.6 implies that we may express ∂Fj as

∂Fj = {x+ ψjνK : x ∈ ∂K},

where ‖ψj‖C1(∂K) → 0. Moreover, barFj = barK and |Fj| = |K|, so Proposition 4.1.9

and (4.4.16) imply that

Cδf (Fj) ≥ ‖ψj‖2
H1(∂K) ≥ cβf (Fj)

2. (4.4.23)

On the other hand, Fj minimizes Qj, so choosing Ej as a comparison set and using

(4.4.18) and (4.4.19), we have

F(Fj) ≤ F(Ej) ≤ F(K) + c2ε
2
j ≤ F(K) + 2c2βf (Fj)

2.

By (4.4.19), βf (Fj) > 0,. Then, using (4.4.23) and choosing c2 sufficiently small, we

reach a contradiction.

4.5 Crystalline surface tensions in dimension 2

In this section, we prove Theorem 4.1.5. As in the previous section, we begin by

showing the result in a special case, and then use a selection principle argument

paired with specific regularity properties to reduce to this case.

Let n = 2 and suppose that f is a crystalline surface tension as defined in Defini-

tion 4.1.4, with F the corresponding anisotropic surface energy. The corresponding

Wulff shape K ⊂ R2 is a convex polygon with normal vectors {νi}Ni=1. Let us fix

some notation to describe K, illustrated in Figure 1. Denote by si the side of K with

normal vector νi, choosing the indices such that si is adjacent to si+1 and si−1. Let
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θi ∈ (0, π) be the angle between si and si+1, adopting the convention that sn+1 = s1.

Let Hi be the distance from the origin to the side si. By construction,

f(νi) = Hi. (4.5.1)

We say that a set E ⊂ R2 is parallel to K if E is an open convex polygon with

{νE} = {νi}Ni=1, that is, νE(x) ∈ {νi}Ni=1 for all x ∈ ∂∗E, and for each i ∈ {1, . . . , N},

there exists x ∈ ∂∗E with νE(x) = νi. For a set E that is parallel to K, we denote

by σi the side of E with normal vector νi, and hi the distance between the origin and

σi; again see Figure 1. We define εi = hi −Hi. Notice that εi has a sign, with εi ≥ 0

when dist(0, si) ≤ dist(0, σi) and εi ≤ 0 when dist(0, si) ≥ dist(0, σi). For simplicity

of notation, we let |s| = H1(s) for any line segment s.

The following proposition proves strong form stability for sets E that are parallel to

K such that |E| = |K| and |E∆K| = inf{|E∆(K+y)| : y ∈ R2}. Then, by a selection

principle-type argument and a rigidity result, we will reduce to this case.

Proposition 4.5.1. Let E ⊂ R2 be parallel to K such that |E| = |K| and |E∆K| =

inf{|E∆(K + y)| : y ∈ R2}. Then there exists a constant C depending on f such that

βf (E)2 ≤ Cδf (E).

Proof. Let E be as in the hypothesis of the proposition. By (4.5.1), we have

F(E) =
N∑
i=1

Hi|σi|, F(K) =
N∑
i=1

Hi|si|, |E| =
N∑
i=1

hi|σi|
2

, |K| =
N∑
i=1

Hi|si|
2

.

Recalling that εi = hi −Hi, we may express the volume constraint |E| = |K| as
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Figure 4.1: Notation used for K and a parallel set E.

N∑
i=1

Hi|si|
2

= |K| = |E| =
N∑
i=1

Hi|σi|
2

+
N∑
i=1

εi|σi|
2

.

Furthermore,

2|K|δf (E) = F(E)−F(K) =
N∑
i=1

Hi(|σi| − |si|) = −
N∑
i=1

εi|σi|. (4.5.2)

Note that
∑N

i=1 |εi| ≤ C|E∆K| for some constant C = C(f), and so by (1.2.4),( N∑
i=1

|εi|
)2

≤ Cδf (E), (4.5.3)

and in particular, |εi|2 ≤ Cδf (E) for each i.

Step 1: We use (4.2.8) and add and subtract F(K)
2|K| =

γf (K)

2|K| to obtain

βf (E)2 ≤ 1

2|K|

(
F(E)−

∫
E

dx

f∗(x)

)
= δf (E) +

1

2|K|

(∫
K\E

dx

f∗(x)
−
∫
E\K

dx

f∗(x)

)
.

Thus we need only to control the term A−B linearly by the deficit, where

A =

∫
K\E

dx

f∗(x)
, B =

∫
E\K

dx

f∗(x)
.
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Figure 4.2: The surface energy of rK relative to K \E is bounded by the right hand side of
(4.5.5).

To bound the term A − B from above, we bound A from above and bound B from

below. Our main tool is the anisotropic coarea formula in the form given in (4.2.13).

First, we consider the term A, where (4.2.13) yields

A =

∫
K\E

dx

f∗(x)
=

∫ ∞
0

F(rK;K \ E)

r
dr =

∫ 1

0

F(rK;K \ E)

r
dr. (4.5.4)

We introduce the notation

I− = {i ∈ {1, . . . N} : εi < 0}, I+ = {1, . . . N} \ I−.

From (4.5.4), we obtain an upper bound on A by integrating over r, for each i ∈ I−,

the part of the perimeter of rK that lies between σi and si. This means that for each

r, we pick up the part of ∂∗(rK) that is parallel to σi and si, as well as part of the

adjacent sides:

F(rK;K \ E) ≤
∑
I−

[
Hir|si|+Hi−1

(rHi − hi)
sin(θi−1)

+Hi+1
(rHi − hi)

sin(θi)

]
; (4.5.5)

see Figure 2 and recall (4.5.1). This and (4.5.4) imply that

A ≤
∑
I−

∫ 1

hi/Hi

[
Hir|si|+Hi−1

(rHi − hi)
sin(θi−1)

+Hi+1
(rHi − hi)

sin(θi)

]
dr

r
, (4.5.6)
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Now we add and subtract the term
∫ 1

hi/Hi
Hi|σi|drr . The idea is that Hi|σi| gives a

rough estimate of the term in brackets on the right hand side of (4.5.6). Indeed, for

each r, the part of ∂∗(rK) between σi and si has length roughly equal to Hi|σi|. We

will see that this estimate is not too rough; the error can be controlled by the deficit.

Thus we rewrite (4.5.6) as

A ≤
∑
i∈I−

∫ 1

hi/Hi

Hi|σi|
r

dr

+
∑
i∈I−

∫ 1

hi/Hi

Hi|si|+
[
Hi −

hi
r

](
Hi−1

sin(θi−1)
+

Hi+1

sin(θi)

)
− Hi|σi|

r
dr.

Noting that Hi/ sin(θj) ≤ C = C(f) for each i, j, the right hand side is bounded by

A1 + A2, where

A1 =
∑
i∈I−

∫ 1

hi/Hi

Hi|σi|
r

dr, A2 =
∑
i∈I−

∫ 1

hi/Hi

Hi|si|+ C

[
Hi −

hi
r

]
− Hi|σi|

r
dr.

The term A2 is the error term that we will show is controlled by the deficit in Step 2.

First, we perform an analogous computation for B, and show how, once the error

terms are taken care of, the proof is complete. Again, by (4.2.13), we have

B =

∫
E\K

dx

f∗(x)
=

∫ ∞
0

F(rK;E \K)

r
dr =

∫ ∞
1

F(rK;E \K)

r
dr.

To bound B from below, we integrate, for each i ∈ I+, only the part of ∂∗(rK)

that is parallel to si and σi and lies between si and σi . We call this segment `ri :=

E \K ∩ {ei + rxi}, where ei is the vector parallel to the sides σi and si, xi ∈ si, and

r ∈ [1, hi/Hi].

Thus, letting sri be the side of rK parallel to si and recalling (4.5.1), we have∫ ∞
1

F(rK;E \K)

r
dr ≥

∑
i∈I+

∫ hi/Hi

1

Hi|sri ∩ `ri |
r

dr.
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Once again, a rough estimate for Hi|sri ∩ `ri | is given by Hi|σi|. We will again show

that this estimate is not too rough, specifically, that the error between these integrals

is controlled by the deficit. So we continue:

B ≥
∑
i∈I+

∫ hi/Hi

1

Hi|σi|
r

dr +
∑
i∈I+

∫ hi/Hi

1

Hi|sri ∩ `ri |
r

− Hi|σi|
r

dr = B1 +B2,

where

B1 =
∑
i∈I+

∫ hi/Hi

1

Hi|σi|
r

dr, B2 =
∑
i∈I+

∫ hi/Hi

1

Hi|sri ∩ `ri |
r

− Hi|σi|
r

dr.

Like A2, B2 is an error term that we will show is controlled by the deficit in Step 2.

Before bounding |A2| and |B2| by the deficit, let us see how this will conclude the

proof. As we saw, βf (E)2 ≤ δf (E) + 1
2|K|(A−B). Recalling that hi = Hi + εi,

A−B =
∑
i∈I−

∫ 1

hi/Hi

Hi|σi|
r

dr −
∑
i∈I+

∫ hi/Hi

1

Hi|σi|
r

dr + A2 −B2

= −
∑
i∈I−

Hi|σi| log
( hi
Hi

)
−
∑
i∈I+

Hi|σi| log
( hi
Hi

)
+ A2 −B2

= −
N∑
i=1

Hi|σi|
( εi
Hi

+O(ε2
i )
)

+ A2 −B2 = −
N∑
i=1

εi|σi|+
N∑
i=1

O(ε2
i ) + A2 −B2.

The first term is precisely equal to 2|K|δf (E) by (4.5.2), while
∑

iO(ε2
i ) ≤ Cδf (E)

by (4.5.3). Therefore, once we show that |A2| and |B2| are controlled linearly by the

deficit, our proof is complete.

Step 2: In this step we bound the error terms. We show that |A2| ≤ Cδf (E); the

proof that |B2| ≤ Cδf (E) is analogous. The main idea for estimating the integral A2
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is to show that the contribution of the adjacent sides is small, and then estimate the

rest of integrand slice by slice. Recalling A2, the triangle inequality gives

|A2| ≤
∣∣∣∣∑
i∈I−

∫ 1

hi/Hi

Hi

r
(r|si| − |σi|)dr

∣∣∣∣+ C
∑
i∈I−

∣∣∣∣ ∫ 1

hi/Hi

[
Hi −

hi
r

]
dr

∣∣∣∣. (4.5.7)

The second term in (4.5.7) corresponds to the contribution of adjacent sides. By

hi = Hi + εi,

C
∑
i∈I−

∣∣∣∣ ∫ 1

hi/Hi

[
Hi −

hi
r

]
dr

∣∣∣∣ = C
∑
i∈I−

∣∣∣∣(Hi − hi) + hi log
( hi
Hi

)∣∣∣∣
=C

∑
i∈I−

∣∣∣− εi + hi
εi
Hi

+O(ε2
i )
∣∣∣ = C

∑
i∈I−

∣∣∣ ε2
i

Hi

+O(ε2
i )
∣∣∣ = C

∑
I−

O(ε2
i ) ≤ Cδf (E).

To bound the first term in (4.5.7), we will show that
∣∣r|si| − |σi|∣∣ ≤ C max{|εi−1|}

for r ∈ [hi/Hi, 1], where the constant C depends on f , and then obtain our bound by

integrating. To this end, we rotate our coordinates such that νi = e2, so the side si

has endpoints (a,Hi) and (b,Hi) for some a < b. We compute explicitly the endpoints

of σi; it has, respectively, left and right endpoints(
a+tan (θi−1 − π/2) εi−

εi−1

sin(θi−1)
, hi

)
and

(
b−tan (θi − π/2) εi+

εi+1

sin(θi)
, hi

)
.

Thus

|σi| =
∣∣∣b− tan (θi − π/2) εi +

εi+1

sin(θi)
−
(
a+ tan (σi−1 − π/2) εi −

εi−1

sin(θi−1)

)∣∣∣.
and so

‖σi| − |b− a|| ≤ C(|εi|+ |εi+1|+ |εi−1|),

where C depends on f . Therefore, recalling that |b− a| = |si|,∣∣∣r|si| − |σi|∣∣∣ ≤ (1− r)|si|+ C(|εi|+ |εi+1|+ |εi−1|) ≤
|εi|
Hi

|si|+ C max{|εj|} ≤ C max{|εj|}.
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Given this estimate on slices, we integrate over r:

∑
i∈I−

∫ 1

hi/Hi

Hi

r
(r|si| − |σi|) dr ≤ C max{|εj|}

∑
i∈I−

∫ 1

hi/Hi

Hi

r
dr

= C max{|εj|}
∑
i∈I−

Hi

∣∣∣ log
( hi
Hi

)∣∣∣
= C max{|εj|}

∑
i∈I−

(εi +O(ε2
i )) = O(max{|εj|2}) ≤ C(F)δf (E),

where the last inequality follows from (4.5.3).

We prove Theorem 4.1.5 after introducing the following definition that we will need

in the proof.

Definition 4.5.2. A set E is a volume constrained (ε, η0)-minimizer of F if

F(E) ≤ F(F ) + ε|E∆F |

for all F such that |E| = |F | and (1− η0)E ⊂ F ⊂ (1 + η0)E.

Proof of Theorem 4.1.5. By Proposition 4.2.4, we need only to show that there exists

some C depending on f such that

βf (E)2 ≤ Cδf (E). (4.5.8)

for all sets E of finite perimeter with 0 < |E| < ∞. Suppose for contradiction that

(4.5.8) does not hold. There exists a sequence {Ej} such that |Ej| = |K|, δf (Ej)→ 0,

and

F(Ej) ≤ F(K) + c3βf (Ej)
2 (4.5.9)
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for c3 to be chosen at the end of this proof. By an argument identical to the one

given in the proof of Theorem 4.1.3, we obtain a new sequence {Fj} with Fj ⊂ BR0

for all j such that the following properties hold:

• each Fj is a minimizer of Qj(E) = F(E) +
|K|mf
8Mf
|βf (E)2 − ε2

j | + Λ
∣∣|E| − |K|∣∣

among all sets E ⊂ BR0 , where εj = βf (Ej);

• Fj converges in L1 to a translation of K;

• |Fj| = |K| for j sufficiently large;

• the following lower bound holds for βf (Fj) :

ε2
j ≤ 2βf (Fj)

2. (4.5.10)

Translate each Fj such that |Fj∆K| = inf{|Fj∆(K+y)| : y ∈ R2}. We claim that for

all ε > 0, there exists η0 > 0 such that Fj is a volume constrained (ε, η0)-minimizer

of F (Definition 4.5.2) for j large enough. Indeed, fix ε > 0 and let η1 = c1ε,

where c1 = c1(f) will be chosen later. By Lemma 4.2.3, there exists η2 such that if

(1− η2)K ⊂ E ⊂ (1 + η2)K, then |yE| < η1. Let η0 = min{η1, η2}/2.

By Lemma 4.3.3, each Fj satisfies uniform density estimates, and so Lemma 4.3.4

implies that, for j large, (1− η0)K ⊂ Fj ⊂ (1 + η0)K and thus |yFj | < η1. Let E be

such that |E| = |Fj| and (1− η0)Fj ⊂ E ⊂ (1 + η0)Fj. Then |yE| < η1 and

(1− η1)K ⊂ Fj ⊂ (1 + η1)K, (1− η1)K ⊂E ⊂ (1 + η1)K.

Because Fj minimizes Qj,

F(Fj) +
|K|mf

4Mf

|βf (Fj)2 − ε2
j | ≤ F(E) +

|K|mf

4Mf

|βf (E)2 − ε2
j |
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and so by the triangle inequality and since mf ≤Mf ,

F(Fj) ≤ F(E) +
|K|
4
|βf (E)2 − βf (Fj)2|.

If F(Fj) ≤ F(E), then the volume constrained minimality condition holds trivially.

Otherwise, with a bound as in (4.3.11), we have

F(Fj) ≤ F(E) +
F(Fj)−F(E)

2
+
|γf (E)− γf (Fj)|

2
.

and so

F(Fj) ≤ F(E) + |γf (E)− γf (Fj)|.

As in the proof of Theorem 4.1.3, the Hölder modulus of continuity for γf shown in

Proposition 4.2.1(2) does not provide a sharp enough bound on the term |γf (E) −

γf (Fj)|; we must show that γf is Lipschitz when the centers of E and Fj are bounded

away from their symmetric difference. In this case, we must be more careful and show

that the Lipschitz constant is small when |E| = |F | and E and Fj are L∞ close. If

γf (E) ≥ γf (Fj), then using (4.2.9), we have

γf (E)− γf (Fj) ≤
∫
E

dx

f∗(x− yE)
−
∫
Fj

dx

f∗(x− yE)

=

∫
E\Fj

dx

f∗(x− yE)
−
∫
Fj\E

dx

f∗(x− yE)
.

One easily shows from the definition that for any x, y ∈ Rn,

f∗(x)− 1

mf

|y| ≤ f∗(x− y) ≤ f∗(x) +
1

mf

|y|.

Therefore, since (1− η1)K ⊂ E∆Fj ⊂ (1 + η1)K and |yE| ≤ η1,

1− η1(1 + 1/mf ) ≤ f∗(x− yE) ≤ 1 + η1(1 + 1/mf )
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for x ∈ E∆Fj, implying that

γf (E)− γf (Fj) ≤
∫
E\Fj

dx

1− η1(1 + 1/mf )
−
∫
Fj\E

dx

1 + η1(1 + 1/mf )
≤ Cη1|E∆Fj|.

where C = 1 + 1/mf . The analogous argument holds if γf (E) ≤ γf (Fj), and so

F(Fj) ≤ F(E) + Cη1|E∆Fj|.

Letting c1 = 1/C, we conclude that Fj is a volume constrained (ε, η0)-minimizer

of surface energy, and for j large enough, (1 − η0/2)K ⊂ Fj ⊂ (1 + η0/2)K by

Lemma 4.3.4. Therefore, Theorem 4.5.3 below implies that, for j sufficiently large,

Fj is a convex polygon with νFj(x) ∈ {vi}Ni=1 for H1-a.e. x ∈ ∂Fj. Moreover, for

any η, (1 − η)K ⊂ Fj ⊂ (1 + η)K for j large enough, so actually {vFj} = {vi}Ni=1

for j sufficiently large. In other words, for j large enough, Fj is parallel to K, so

Proposition 4.5.1 implies that

βf (Fj)
2 ≤ C1δf (Fj), (4.5.11)

where C1 depends on f . On the other hand, Fj minimizes Qj, so comparing against

Ej and using (4.5.9) and (4.5.10) implies

F(Fj) ≤ F(Ej) ≤ F(K) + c3ε
2
j ≤ F(K) + 2c3βf (Fj)

2.

By (4.5.10), βf (Fj) > 0, so choosing c3 small enough such that c3 < |K|/C1, we reach

a contradiction.

Theorem 4.5.3 (Figalli, Maggi, Theorem 7 of [FM11]). Let n = 2 and let f be a

crystalline surface tension. There exists a constant ε0 such that if, for some η > 0
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and some 0 < ε < ε0 , (1− η/2)K ⊂ E ⊂ (1 + η/2)K and E is a volume constrained

(ε, η)-minimizer, then E is a convex polygon with

νE(x) ∈ {vi}Ni=1 for H1-a.e. x ∈ ∂E.

Remark 4.5.4. In [FM11, Theorem 7], Figalli and Maggi assume that E is a volume

constrained (ε, 3)-minimizer (and actually, their notion of (ε, 3)-minimality is slightly

stronger than ours). However, by adding the additional assumption that (1−η/2)K ⊂

E ⊂ (1 + η/2)K, it suffices to take E to be a volume constrained-(ε, η) minimizer

(with the definition given here) with η as small as needed. Indeed, if (1 − η/2)K ⊂

E ⊂ (1 + η/2)K, then (1− η)E ⊂ co(E) ⊂ (1 + η)E where co(E) is the convex hull

of E. Then, in the proof of [FM11, Theorem 7], the only sets F used as comparison

sets are such that |E| = |F | and (1− η)E ⊂ F ⊂ (1 + η)E.

4.6 An alternative definition of the oscillation index

The oscillation index βf (E) is the natural way to quantify the oscillation of the

boundary of a set E relative to the Wulff shape K for a given surface energy F ,

as it admits the stability inequality (4.1.3) with a power that is independent of f .

One may wonder if it would be suitable to quantify the oscillation of E by looking

at the Euclidean distance between normal vectors of E and corresponding normal

vectors of K. While such a quantity may be useful in some settings, in this section

we show that it does not admit a stability result with a power independent of f . This

section examines the term β∗f (E) defined in (4.1.6) and gives two examples showing a

failure of stability. We then give a relation between βf and β∗f for γ-λ convex surface
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tensions. As a consequence of Theorem 4.1.1, this implies a stability result for β∗f ,

though, as the examples show, there is a necessary dependence on the γ-λ convexity

of f .

The following example illustrates that there does not exist a power σ such that

β∗f (E)σ ≤ C(n, f)δf (E) (4.6.1)

for all sets E of finite perimeter with 0 < |E| <∞ and for all surface energies F .

Example 4.6.1. In dimension n = 2, we construct a sequence of Wulff shapes Kθ

(equivalently, a sequence of surface tensions fθ and surface energies Fθ) and a sequence

of sets Eθ such that δθ(Eθ) → 0 but β∗θ (Eθ) → ∞ as θ → 0. We use the notation

δθ = δfθ and β∗θ = β∗fθ .

We let Kθ be a unit area rhombus where one pair of opposing vertices has angle θ < π
4

and the other has angle π
2
− θ. The length of each side of Kθ is proportional to θ−1/2.

Let L = θ−1/4. We then construct the sets Eθ by cutting away a triangle with a zigzag

base and with height L from both corners of Kθ with vertex of angle θ (see Figure 3).

We choose the zigzag so that each edge in the zigzag is parallel to one of the adjacent

edges of Kθ. By taking each segment in the zigzag to be as small as we wish, we may

make the area of each of the two zigzag triangles arbitrarily close to the area of the

triangle with a straight base, which is

A = L2 tan(θ/2) = θ−1/2 tan(θ/2) ≈ θ1/2,

as this triangle has base 2L tan(θ/2). Both of the other two sides of the triangle have

length m = L/ cos(θ/2).
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Figure 4.3: The sets Eθ are formed by cutting away a zigzag triangle from the top and
bottom of Kθ and have δθ(Eθ)→ 0 but β∗θ (Eθ)→∞ as θ → 0.

Let us now compute the deficit δθ and the Euclidean oscillation index β∗θ of Eθ. By

construction, Fθ(Eθ) = Fθ(Kθ) = 2, and therefore

δθ(Eθ) =
2

2(1− A)1/2
− 1 =

1

(1− A)1/2
− 1 = θ1/2 + o(θ1/2).

To compute β∗θ (Eθ)2, we cannot characterize the point y for which the minimum in

(4.1.6) is attained in general. However, something may be said for an n-symmetric

set, i.e., a set E that for which there exist n orthogonal hyperplanes such that E is

invariant under reflection with respect to each of them. The intersection of these or-

thogonal hyperplanes is called the center of symmetry of E. Indeed, a slight variation

in the proof of [Mag08, Lemma 5.2] shows that

3β∗θ (E) ≥
(

1

n|K|1/n|E|1/n′
∫
∂∗E

1− νE(x) · νK
( x− z
f∗(x− z)

)
dHn−1(x)

)1/2

. (4.6.2)

where z is the center of symmetry of E. By construction, Eθ is a 2-symmetric set
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with center of symmetry 0, so

9β∗θ (Eθ)
2 ≥ 1

2(1− A)1/2

∫
Z

1− νEθ(x) · νKθ
( x

f∗(x)

)
dH1

≥ 1

2

∫
Z

1− νEθ(x) · νKθ
( x

f∗(x)

)
dH1,

where Z denotes the union of the two zigzags. By construction, H1(Z) is exactly

equal to H1(∂Kθ \ ∂Eθ) = 4m. Moreover, because the edges of Eθ are parallel to

those of Kθ, we find that

1− νEθ(x) · νKθ
( x

f∗(x)

)
=

{
0 x ∈ Z1

1− cos(π − θ) x ∈ Z2

where Z1 is the set of x ∈ Z where νEθ(x) is equal to νKθ(
x

f∗(x)
) and Z2 is the set of

x ∈ Z where νEθ(x) is equal to the normal vector to the other side of Kθ. Moreover,

we have constructed Eθ so that H1(Z1) = H1(Z2) = 2m. Thus, as θ < π
4
,

β∗θ (Eθ)
2 ≥ 1

2

∫
Z2

1− cos(π − θ) dH1 ≥ H
1(Z2)

2
= m = 1/(θ1/4 cos(θ/2))→∞

as θ → 0. Therefore, for any exponent σ, the inequality (4.6.1) fails to hold; we may

choose θ sufficiently small such that Eθ is a counterexample.

The next example shows that, even if we restrict our attention to surface energies that

are γ-λ convex (Definition 4.1.6), an inequality of the form in (4.6.1) cannot hold with

an exponent smaller than σ = 4. The example is presented in dimension n = 2 for

convenience, though the analogous example in higher dimension also holds.

Example 4.6.2. Fix p > 2 and define the surface tension fp(x) = (|x1|p + |x2|p)1/p to

be the `p norm in R2. We show below that fp is a γ-λ convex surface tension. Hölder’s

inequality ensures that the support function f∗ is given by fq, in the notation above,
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Figure 4.4: The sets Er formed by replacing the top and bottom of the `q unit ball with a
cone show that (4.6.1) cannot hold for σ < 4.

where q is the Hölder conjugate of p. The Wulff shape K = {fq(x) < 1} is therefore

the `q unit ball. We let Fp denote the surface energy corresponding to the surface

tension fp.

We build a sequence of sets {Er} depending on p such that, for any σ < 4, we

may choose p large enough so that δp(Er)/β∗p(Er)σ → 0 as r → 0. Here we use

the notation β∗p(E) = β∗fp(E) and δp(E) = δfp(E). We may locally parameterize K

near (0, 1) as the subgraph of the function vq(x1) = (1− |x1|q)1/q . Thus v′q(x1) =

−|x1|q−2x1/(1− |x1|q)1/p and

νK((x1, vq(x1))) =

(
|x1|q−2x1

(1−|x1|q)1/p
, 1
)

√
1 + |x1|2q−2

(1−|x1|q)2/p

=
(|x1|q−2x1 +O(|x1|2q−1), 1)√

1 + |x1|2q−2 +O(|x1|3q−2)
(4.6.3)

The sets Er are formed by replacing the top and bottom of K with cones. More

precisely, let Cr = (−r, r)×R. We form Er by replacing ∂K ∩Cr with the graphs of

w and −w, where w1 : (−r, r)→ R is defined by w(x1) = −rq−1|x1|/(1− rq)1/p +C0.

Here, the constant C0 = (1−rq)1/q+rq/(1− rq)1/p is chosen so that w(r) = vq(r) and

w(−r) = vq(−r). For x1 ∈ (−r, r) for r < 1, we have w′(x1) = −rq−1sgn(x1)/(1 −
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rq)1/p and

νE ((x1, w(x1))) =

(
sgn(x1) rq−1

(1−rq)1/p , 1
)

√
1 + r2q−2

(1−rq)2/p

=
(sgn(x1)rq−1 +O(r2q−1), 1)√

1 + r2q−2 +O(r3q−2)
. (4.6.4)

Now, Fp(Er) = Fp(K) + Fp(Er;Cr)−Fp(K;Cr), so

Fp(Er)−Fp(K) =

∫ r

−r

( rq

1− rq
+ 1
)1/p

−
( |x1|q

1− |x1|q
+ 1
)1/p

dx1

=
1

p

∫ r

−r
rq − |x1|q +O(r2q) dx1 = Crq+1 + o(rq+1).

The graph of w lies above the graph of vq for all |x1| < r, so |Er| > |K|. This implies

that

δp(Er) ≤
Fp(Er)−Fp(K)

2|K|
= Crq+1 + o(rq+1).

Next we compute β∗p(Er) in several steps. As in Example 4.6.1, Er is a 2-symmetric set

with center of symmetry 0, thus it is enough to compute the right hand side of (4.6.2).

First, the Taylor expansions in (4.6.3) and (4.6.4) imply that, for x ∈ Cr ∩ ∂∗E,

νE(x) · νK
(

x
f∗(x)

)
is given by

(|x1|q−2x1 +O(|x1|2q−1), 1)√
1 + |x1|2q−2 +O(|x1|3q−2)

· (sgn(x1)rq−1 +O(r2q−1), 1)√
1 + r2q−2 +O(r3q−2)

=
1 + |x1|q−1rq−1 +O(r3q−2)√

(1 + |x1|2q−2 + r2q−2 +O(r4q−4))

= 1 + |x1|q−1rq−1 − 1

2
(|x1|2q−2 + r2q−2) +O(r3q−2)

= 1− 1

2
(|x1|q−1 − rq−1)2 +O(r3q−2).

For x ∈ ∂∗E \Cr, νE(x) · νK
(

x
f∗(x)

)
= 0. Hence,(1

2

∫
∂∗E

∣∣∣νE(x)− νK
( x

f∗(x)

)∣∣∣2 dH1
)1/2

=
(∫

∂∗E∩Cr
1− νE · νK

( x

f∗(x)

)
dH1

)1/2
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=
(∫ r

−r

1

2
(|x1|q−1 − rq−1)2

√
1 + r2q−2 +O(r3q−1) +O(r3q−2) dx1

)1/2

= B9g(

∫ r

−r

1

2
(|x1|q−1 − rq−1)2 +O(r3q−2) dx1

)1/2

= Crq−1/2 + o(rq−1/2).

Furthermore, |E| = |K|+ o(1), so
√

2|K|−1/4|E|−1/4 =
√

2|K|−1/2 + o(1), and so

β∗p(Er) =
1

2|K|1/4|E|1/4
(∫

∂∗E

∣∣∣νE(x)− νK
( x

f∗(x)

)∣∣∣2dH1
)1/2

= Crq−1/2 + o(rq−1/2).

Therefore,
δp(Er)

β∗p(Er)
σ
≈ r(q+1)

rσ(q−1/2)
= rq+1−σq+σ/2.

This quantity goes to 0 as r goes to zero if and only if q + 1 − σq + σ/2 > 0, or,

equivalently, if and only if 2+σ
2(σ−1)

> q. For any σ < 4 we may find 1 < q < 2+σ
2(σ−1)

.

Therefore, for any σ < 4, there exists a γ-λ convex surface tension f such that a

bound of the form δf (E) ≥ Cβ∗f (E)σ fails.

When f is γ-λ convex (recall Definition 4.1.6), we can control β∗f (E) by βf (E). As one

expects after the previous example, the exponent in this bound depends on the γ-λ

convexity of F . Indeed, this is the content of Theorem 4.1.7. First, we show that the `p

norms fp as defined in the previous example are γ-λ convex for each p ∈ (1,∞). In the

case where 1 < p ≤ 2, fp is actually uniformly convex in tangential directions, so it is

γ-λ convex with γ = 0. Indeed, fp(ν+τ) = fp(ν)+∇fp(ν)τ+ 1
2

∫ 1

0
∇2fp(ν+sτ)[τ, τ ]ds,

and thus

fp(ν + τ) + fp(ν − τ)− 2fp(ν) =
1

2

∫ 1

−1

∇2fp(ν + sτ)[τ, τ ]ds.

We can bound the integrand from below pointwise. We compute

∂iifp(ν) = (p− 1)
( |νi|p−2

fp(ν)p−1
− |νi|2p−2

fp(ν)2p−1

)
, ∂ijfp(ν) = (1− p) |νi|

p−2νi|νj|p−2νj
fp(ν)2p−1

.
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Therefore, if fp(ν) = 1, then

∇2fp(ν) = (p− 1)
n∑
i=1

|νi|p−2ei ⊗ ei − (p− 1)
n∑

i,j=1

|νi|p−2νi|νj|p−2νjei ⊗ ej

and so

∇2fp(ν)[τ, τ ] = (p− 1)
n∑
i=1

|νi|p−2τ 2
i − (p− 1)

( n∑
i=1

|νi|p−2νiτi

)2

.

It is enough to consider τ such that τ is tangent to Kp = {fp < 1} at ν, as fp

is positive 1-homogeneous and the span of ν and TνKp is all of Rn. Observe that

∇fp(ν) =
∑n

i=1 |νi|p−2νiei; this is verified by the fact that the support function of fp

is fq, and that ∇fp(ν) = x
fq(x)

such that x
fq(x)
· ν = fp(ν) = 1. Thus τ is tangent to Kp

at ν if and only if τ · ∇fp(ν) =
∑n

i=1 |νi|p−2νiτi = 0. Therefore, for such τ ,

∇2fp(ν)[τ, τ ] = (p− 1)
n∑
i=1

|νi|p−2τ 2
i ≥ (p− 1)|τ |2.

In the case where p ≥ 2, we use Clarkson’s inequality, which states that for p ≥

2,

fp

(x+ y

2

)p
+ fp

(x− y
2

)p
≤ fp(x)p

2
+
fp(y)p

2
.

For ν such that fp(ν) = 1 and τ tangent to Kp at ν with fp(τ) = 1, Clarkson’s

inequality with x = ν + ετ and y = ν − ετ implies

2εp ≤ fp(ν + ετ)p + fp(ν − ετ)− 2.

This is almost the condition we need, except we have fpp instead of fp for the terms

on the right hand side. Note that both fp(ν + ετ) and fp(ν − ετ) are greater than 1,

as moving in the tangent direction to Kp = {fp < 1} increases fp. The function zp is
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convex with derivative pzp−1, so zp ≤ 2p−1pz+ (2p−1p− 1) for all z ∈ [1, 2]. Applying

this to z1 = fp(ν + ετ) and z2 = fp(ν − ετ) yields

2εp ≤ 2p−1pfp(ν + ετ)p + 2p−1pfp(ν − ετ)p − 2(2p−1p).

Thus fp is γ-λ convex with γ = p− 2 and λ = 1/(2p−2p).

The following lemma about γ-λ convexity condition will be used in the proof of

Theorem 4.1.7.

Lemma 4.6.3. Assume that f is γ-λ convex. Then for all ν, τ ∈ Rn such that ν 6= 0,

f(ν + τ) ≥ λ

22+γ|ν|

∣∣∣τ − (τ · ν|ν|) ν|ν|∣∣∣2+γ

+ f(ν) +∇f(ν) · τ, (4.6.5)

Proof. Note that if f is γ-λ convex, then f is convex. To see that (4.6.5) holds for

given ν0 and τ0, we let f̃(ν) = f(ν) − f(ν0) − ∇f(ν0) · (ν − ν0). At the midpoint

ν0 + τ0
2
, the γ-λ convexity condition gives us the following:

f̃(ν0) + f̃(ν0 + τ0)− 2f̃(ν0 +
τ0

2
) ≥ λ

|ν0|

∣∣∣τ0

2
−
(τ0

2
· ν0

|ν0|

) ν0

|ν0|

∣∣∣2+γ

.

Convexity implies that f̃(ν0 + τ0
2

) ≥ 0, and f̃(ν0) = 0 by definition of f̃ , implying

(4.6.5).

Finally, we prove Theorem 4.1.7.

Proof of Theorem 4.1.7. The quantity β∗f (E) measures the overall size of the Cauchy-

Schwarz deficit on the boundary of E, while βf (E) measures the overall deficit in the

Fenchel inequality. Our aim is to obtain a pointwise bound of the Cauchy-Schwarz

deficit functional by the Fenchel deficit functional, and then integrate over the reduced
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boundary of E. Without loss of generality, we may assume that |E| = |K| = 1 and

E has center zero in the sense defined in Section 4.2.3.

We fix x ∈ ∂∗E and consider the Fenchel deficit functional G(ν) = f(ν) − ν · x
f∗(x)

,

which possesses the properties that G(ν) ≥ 0 and G(ν) = 0 if and only if ν = c∇f∗(x)

for some c > 0.

Let w = ∇f∗(x)
|∇f∗(x)| = νK( x

f∗(x)
). Lemma 4.6.3, with ν = w and τ = νE − w, implies that

f(νE) ≥ λ

22+γ
|(νE − w)− ((νE − w) · w)w|2+γ + f(w) +∇f(w) · (νE − w).

Therefore, since ∇f(w) = x
f∗(x)

and f(w) = ∇f(w) · w,

G(νE) ≥ λ

22+γ
|(νE − w)− ((νE − w) · w)w|2+γ =

λ(1− (νE · w)2)(2+γ)/2

22+γ

=
λ((1− νE · w)(1 + νE · w))(2+γ)/2

22+γ
.

We want to show that there exists some c1 such that

G(νE) ≥ c1(1− νE · w)(2+γ)/2. (4.6.6)

When w · νE ≥ −c0 for some fixed 0 < c0 < 1, then G(νE) ≥ λ
22+γ

(1 − c0)(2+γ)/2(1 −

νE · w)(2+γ)/2 and (4.6.6) holds. On the other hand, when w · νE < −c0 for c0 small,

we expect that x
f∗(x)
· νE must also be small and so G(νE) is not too small. Indeed,

mf ≤ f(w) =
x

f∗(x)
· w =

|x|
f∗(x)

cos(θ1) ≤Mf cos(θ1),

where θ1 is the angle between w and x
f∗(x)

. Similarly,

−c0 ≥ νE · w = cos(θ2),

176



where θ1 is the angle between w and νE. Noting that 0 < mf/Mf < 1, and so

cos−1(mf/Mf ) ∈ (0, π/2), we let θ0 = 2 cos−1(mf/Mf )+ε, where ε > 0 is chosen small

enough so that θ0 < π. Letting c0 = − cos(θ0), we deduce that θ1 ≤ cos−1(mf/Mf )

and θ2 ≥ θ0. Then

x

f∗(x)
· νE ≤

|x|
f∗(x)

cos(θ2 − θ1) ≤Mf cos
(
cos−1(mf/Mf ) + ε

)
≤ mf −Mfcε,

for a constant cε > 0. Since f(νE) ≥ mf , we have G(νE) ≥ Mfcε, implying (4.6.6)

because 1− νE · w ≤ 2.

Hölder’s inequality and (4.6.6) imply∫
∂∗E

1− νE · w dHn−1 ≤ Hn−1(∂∗E)γ/(2+γ)
(∫

∂∗E

(1− νE · w)(2+γ)/2dHn−1
)2/(2+γ)

= c
−2/(2+γ)
1 P (E)γ/(2+γ)

(∫
∂∗E

c1(1− νE · w)(2+γ)/2dHn−1
)2/(2+γ)

≤ c
−2/(2+γ)
1 P (E)γ/(2+γ)

(∫
∂∗E

G(νE)dHn−1
)2/(2+γ)

.

Dividing by n|K|1/n|E|1/n′ and taking the square root, we obtain

β∗f (E) ≤ c
−1/(2+γ)
1

( P (E)

n|K|1/n|E|1/n′
)γ/2(2+γ)

βf (E)2/(2+γ).
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Appendix A

Uniqueness of minimizers of Φ(T )

In this appendix, we prove Theorem 2.2.3, which aims to characterize the equality

cases in Theorem 2.2.1. The main step is to prove the validity of (2.2.10) (see the

proof of Theorem 2.2.1) without the assumption that f ∈ C1
c (H). This is the content

of the following lemma, whose proof resembles [CENV04, Theorem 7].

Lemma A.0.1. If n ≥ 2, p ∈ [1, n), and f and g are non-negative functions in

L1
loc(H), vanishing at infinity, with

∫
H
|∇f |p <∞ and

∫
H
|x|p′gp? <∞ if p > 1

|Df |(H) <∞ and spt g ⊂⊂ H if p = 1

‖f‖Lp? (H) = ‖g‖Lp? (H) = 1

(A.0.1)

then (2.2.10) holds for every t ∈ R, that is

n

∫
H

gp
] ≤ −p]

∫
H

fp
]−1∇f · (T − t e1) + t

∫
∂H

fp
]

, ∀t ∈ R . (A.0.2)

Here T = ∇ϕ is the Brenier map from fp
?
dx and gp?dx.

Proof. We let Ω be the interior of {ϕ <∞}, and recall that T ∈ (BV ∩L∞)loc(Ω;Rn)

with F dx concentrated on H ∩Ω. We notice that in the proof of Theorem 2.2.1, see

(2.2.9), the identity ∫
H

gp
]

=

∫
H

(det∇2ϕ)1/nfp
]

, (A.0.3)
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was established without exploiting the additional assumption f ∈ C1
c (H). Thus

(A.0.3) also holds in the present setting.

We first let p ∈ (1, n). By a translation orthogonal to e1, we may assume that 0 ∈ Ω.

For ε > 0 let ηε ∈ C∞c (B2/ε; [0, 1]) with ηε = 1 on B1/ε and ηε ↑ 1 pointwise on Rn as

ε→ 0+, and set

fε(x) = min
{
f
( x

1− ε

)
, f(x)ηε(x)

}
1Hε(x), x ∈ H ,

whereHε = {x1 > ε}. By density of C0
c (H) into Lp?(H) we see that f◦((1−ε)−1Id)→

f in Lp?(H) as ε→ 0+, so that fε → f in Lp?(H). Analogously, ∇[f ◦((1−ε)−1Id)]→

∇f in Lp(H) as ε→ 0+. If we choose ηε(x) = η(ε x) for some fixed η ∈ C1
c (B2; [0, 1])

with η = 1 on B1, then we find∫
H

|f∇ηε|p ≤
(∫

Rn\B1/ε

fp
?
)p/p? (∫

B2

|∇η|n
)p/n

→ 0 as ε→ 0+ ,

and thus ∇(f ηε)→ ∇f in Lp(H). Finally,
∫
H\Hε |∇f |

p → 0 as ε→ 0+, so that fε → f in Lp?(H) and a.e. on H

1Hε∇fε → ∇f in Lp(H)
as ε→ 0+ . (A.0.4)

Moreover, as 0 ∈ Ω and f = 0 a.e. on Ωc, there exists an open set ΩεcΩ such that

spt(fε)cΩε. We can thus find {fε,k}k∈N ⊂ C1
c (Ωε ∩Hε) such that fε,k → fε in Lp

?
(Hε) and a.e. on Hε

∇fε,k → ∇fε in Lp(Hε)
as k →∞ . (A.0.5)

Since fε,k ∈ C1
c (Hε), arguing as in Theorem 2.2.1 we find that

n

∫
Hε

(det∇2ϕ)1/nfp
]

ε,k ≤ −p
]

∫
Hε

fp
]−1

ε,k ∇fε,k · Sdx+ t

∫
∂Hε

fp
]

ε,k dH
n−1 (A.0.6)
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where S = T − t e1 ∈ L∞loc(Ω;Rn). Since S is bounded on Ωε, where the fε,k are

uniformly supported in, and since p] − 1 = p?/p′, by (A.0.5) we find

lim
k→∞

∫
Hε

fp
]−1

ε,k ∇fε,k · Sdx =

∫
Hε

fp
]−1

ε ∇fε · Sdx .

Moreover, by the trace inequality

‖u‖
Lp
]
(∂A)
≤ C(A)

(
‖∇u‖Lp(A) + ‖u‖L1(A)

)
,

which is valid whenever A is an open bounded Lipschitz set (see, for example, [MV05]),

and again by the uniform support property, (A.0.5) implies

lim
k→∞

∫
∂Hε

fp
]

ε,k dH
n−1 =

∫
∂Hε

fp
]

ε dHn−1 .

Hence, by pointwise convergence and Fatou’s lemma, (A.0.6) implies

n

∫
Hε

(det∇2ϕ)1/nfp
]

ε ≤ −p]
∫
Hε

fp
]−1

ε ∇fε · S + t

∫
∂Hε

fp
]

ε dHn−1 . (A.0.7)

In order to take the limit ε → 0+ in (A.0.7), we first notice that fε ≤ f everywhere

on H. Hence, by (2.2.1) and (A.0.1), we find∫
H

|fp]−1
ε S|p′ ≤

∫
H

fp
? |S|p′ =

∫
H

gp
? |x− t e1|p

′
<∞ .

Since fε → f a.e. on H, it must be fp]−1
ε S ⇀ f p

]−1S in Lp
′
(H) as ε → 0+. By

combining this last fact with the strong convergence 1H ∇fε → ∇f in Lp(H), we

conclude that ∫
Hε

fp
]−1

ε ∇fε · Sdx =

∫
H

fp
]−1

ε ∇fε · S →
∫
H

fp
]−1∇f · S (A.0.8)
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as ε→ 0+. Next, let us set hε(x) = fε(x+ ε e1) for x ∈ H, so that 1Hε∇fε → ∇f in

Lp(H) and the density of C0
c (H) in Lp(H) gives us ∇hε → ∇f in Lp(H). By applying

(2.1.2) to hε − f we find that hε → f in Lp](H), which clearly implies

lim
ε→0+

∫
∂Hε

fp
]

ε dHn−1 =

∫
∂H

fp
]

dHn−1 .

By combining this last fact with (A.0.8) with the fact that 1Hεf
p]

ε → 1H f
p] a.e. on

Rn and with Fatou’s lemma, we deduce from (A.0.7) that

n

∫
H

(det∇2ϕ)1/nfp
] ≤ −p]

∫
H

fp
]−1∇f · S + t

∫
∂H

fp
]

dHn−1 .

Combining this inequality with (A.0.3), we complete the proof of the lemma in the

case p ∈ (1, n).

We now consider the case p = 1. We now have |Df |(H) < ∞ and spt g bounded.

Thanks to the latter property, by arguing as in [MV05, pg. 96] we can assume that

S = T − t e1 ∈ (BVloc ∩ L∞)(H;Rn). Setting fk = 1Bk min{f, k}, k ∈ N, then

fk S ∈ BV (Rn;Rn) and by the divergence theorem

div (fk S)(H) =

∫
∂H

fk S · (−e1) =

∫
∂H

fk T · (−e1) + t

∫
∂H

f ≤ t

∫
∂H

f .

If we identify fk and S with their precise representatives, we have

div (fk S)(H) =

∫
H

fk d(divS) +

∫
H

S ·Dfk

where, of course,∫
H

fk d(divS) =

∫
H

fk d(div T ) ≥ n

∫
H

fk (det∇2ϕ)1/n .
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We have thus proved

n

∫
H

fk (det∇2ϕ)1/n ≤ −
∫
H

S ·Dfk + t

∫
∂H

fk dHn−1 . (A.0.9)

By monotone convergence
∫
∂H
fk →

∫
∂H
f , while (2.2.3) and the boundedness of sptg

imply the existence of R > 0 such that |S| ≤ R on spt(Df), and thus∣∣∣ ∫
H

S ·Dfk −
∫
H

S ·Dfk
∣∣∣ ≤ R |Df |

(
H \ (Bk ∪ {f < k}(1)

)
where E(1) denotes the set of density points of a Borel set E ⊂ Rn and we have used

D(1E f)(K) = Df(E(1) ∩K) for every K ⊂ Rn. Since |Df |(H) <∞, letting k →∞

and finally exploiting Fatou’s lemma we deduce from (A.0.9)

−
∫
H

S ·Df + t

∫
∂H

f dHn−1 ≥ n

∫
H

f (det∇2ϕ)1/n = n

∫
H

g ,

where in the last inequality we have used (A.0.3). The proof is complete.

Proof of Theorem 2.2.3. Let us consider two functions f and g as in Lemma A.0.1

such that, for some t ∈ R,

n

∫
H

gp
]

= p]‖∇f‖Lp(H) Y (t, g) + t

∫
∂H

fp
]

with
∫
∂H

fp
]

> 0 . (A.0.10)

where |Df |(H) replaces ‖∇f‖Lp(H) if p = 1. By arguing as in the proof of [CENV04,

Proposition 6] in the case p ∈ (1, n), and as in [FMP10, Theorem A.1] if p = 1, we

find that T (x) = ∇ϕ(x) = λ(x− x0) for some λ > 0 and x0 ∈ Rn.

We claim that x0 · e1 = 0. Keeping the proof of Lemma A.0.1 in mind, (A.0.10)

implies that

lim
ε→0+

lim
k→∞

∫
∂Hε

(T · e1) fp
]

ε,k dH
n−1 = 0 ,
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where T = λ(x− x0) gives∫
∂Hε

(T · e1) fp
]

ε,k = λ(ε− x0 · e1)

∫
∂Hε

fp
]

ε,k .

Since we have proved that

lim
ε→0+

lim
k→∞

∫
∂Hε

fp
]

ε,k dH
n−1 =

∫
∂H

fp
]

dHn−1 ,

where the latter quantity is assumed positive, we conclude that x0 ·e1 = 0, as claimed.

Up to a translation and up to apply an Lp
?-norm preserving dilation to f , we can

now assume that x0 = 0 and λ = 1, that is T (x) = x.

We first consider the case p ∈ (1, n). By combining (A.0.2) and (A.0.10) we find that

we have an equality case in the Hölder’s inequality
∫
H
A ·B dx ≤ ‖A‖Lp(H) ‖B‖Lp′ (H)

with

A = −∇f B = fp
]−1(x− t e1) .

In particular, there exist Borel functions v : H → Rn and a, b : H → [0,∞) such

that A = a v, B = b v, and a = c b1/(p−1) for some constant c > 0. Hence, if we set

r = |x − t e1| and v = (x − t e1)/r, there exists a Borel function u : [0,∞) → [0,∞)

such that

f(x) = u(r) −∇f(x) = −u′(r) x− t e1

|x− t e1|
,

and the above conditions hold with a = −u′(r) and b = ru(r)p
]−1. In particular,

−u′(r) = c (ru(r)p
]−1)1/(p−1) for a.e. r > 0 ,

and consequently, for some c1 > 0 and c2 ∈ R

u(r) = (c1r
p′ + c2)

−n/p?
+ ∀r > 0 ,
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where x+ = max{x, 0}. In terms of f , this means that

f(x) = (c1|x− te1|p
′
+ c2)

−n/p?
+ ∀x ∈ H .

The cases where c2 is positive, zero, and negative correspond, respectively, to f being

a dilation-translation image of US, UE, and UB. If t > 0, the finiteness of the Lp?(H)-

norm of f excludes the possibilities that f is a dilation-translation image orthogonal

to e1 of UE and UB.

Let us now consider the case p = 1. Recall that we have already set T (x) = x, so

that f = g and the combination of (A.0.2) and (A.0.10) gives

−
∫
H

(x− t e1) ·Df = ‖ · −t e1‖L∞(spt(Df))|Df |(H) , (A.0.11)

that is

−Df =
x− t e1

|x− t e1|
|Df | as measures on H .

By [Mag12, Exercise 15.19], there exists µ > 0 such that f = c 1H∩Bµ(t e1). This

completes the proof.
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Appendix B

The operator LU in polar coordinates

In this section we prove the polar coordinates form of the operator div (A(x)∇ϕ)

given in (3.2.10).

Proof of (3.2.10). We will use the following classical relations:

∂rr̂ = 0 ∂rθ̂i = 0, ∂θi r̂ = θ̂i, ∂θi θ̂i = −r̂, ∂θj θ̂i = 0 for i 6= j.

The chain rule implies that

div(A(x)∇ϕ) = tr(A(x)∇2ϕ) + tr(∇A(x)∇ϕ). (B.0.1)

We compute the two terms on the right-hand side of (B.0.1) separately. For the first,

we begin by computing the Hessian of ϕ in polar coordinates, starting from

∇ϕ = ∂rϕ r̂ +
1

r

n−1∑
j=1

∂θjϕ θ̂j, (B.0.2)

We have

∇2ϕ = ∂r

(
∂rϕ r̂ +

1

r

n−1∑
j=1

∂θjϕ θ̂j

)
r̂ +

1

r

n−1∑
i=1

∂θi

(
∂rϕ r̂ +

1

r

n−1∑
j=1

∂θjϕ θ̂j

)
θ̂i

= ∂rrϕ r̂ ⊗ r̂ −
1

r2

n−1∑
j=1

∂θjϕ θ̂j ⊗ r̂ +
1

r

n−1∑
j=1

∂θjrϕ θ̂j ⊗ r̂ +
1

r

n−1∑
i=1

∂θirϕ r̂ ⊗ θ̂i
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+
1

r

n−1∑
i=1

∂rϕ θi ⊗ θi +
1

r2

n−1∑
i=1

n−1∑
j=1

∂θiθjϕ θ̂j ⊗ θ̂i −
1

r2

n−1∑
i=1

∂θiϕ r̂ ⊗ θ̂i .

In order to compute A(x)∇2ϕ, we note that

(r̂ ⊗ r̂)(r̂ ⊗ r̂) = r̂ ⊗ r̂, (r̂ ⊗ r̂)(θ̂j ⊗ θ̂i) = 0,

(r̂ ⊗ r̂)(r̂ ⊗ θ̂i) = 0, (r̂ ⊗ r̂)(θ̂i ⊗ r̂) = θ̂i ⊗ r̂.

Thus we have

A(x)∇2ϕ = (p− 2)|∇U |p−2r̂ ⊗ r̂(∇2ϕ) + |∇U |p−2Id(∇2ϕ)

= (p− 2)|∇U |p−2
[
∂rrϕ r̂ ⊗ r̂ −

1

r2

n−1∑
j=1

∂θjϕ θ̂j ⊗ r̂ +
1

r

n−1∑
j=1

∂θjrϕ θ̂j ⊗ r̂
]

+ |∇U |p−2
[
∂rrϕ r̂ ⊗ r̂ −

1

r2

n−1∑
j=1

∂θjϕ θ̂j ⊗ r̂ +
1

r

n−1∑
j=1

∂θjrϕ θ̂j ⊗ r̂ +
1

r

n−1∑
i=1

∂θirϕ r̂ ⊗ θ̂i

+
1

r

n−1∑
i=1

∂rϕ θi ⊗ θi +
1

r2

n−1∑
i=1

n−1∑
j=1

∂θiθjϕ θ̂j ⊗ θ̂i −
1

r2

n−1∑
i=1

∂θiϕ r̂ ⊗ θ̂i
]
,

and the first term in (B.0.1) is

tr(A(x)∇2ϕ) = (p− 1)|∇U |p−2∂rrϕ+
n− 1

r
|∇U |p−2∂rϕ+

1

r2
|∇U |p−2

n−1∑
i=1

∂θiθiϕ.

(B.0.3)

Now we compute the second term in (B.0.1), starting by computing ∇A(x). We

reintroduce the slight abuse of notation by letting U(r) = U(x), so U ′ = ∂rU , U ′′ =

∂rrU . Note that ∂θId = ∂rId = 0, thus

∇A(x) = ∂rA(x)⊗ r̂ +
1

r

n−1∑
j=1

∂θjA(x)⊗ θ̂j

= (p− 2)2|U ′|p−4U ′ U ′′ r̂ ⊗ r̂ ⊗ r̂ + (p− 2)|U ′|p−4U ′ U ′′ Id⊗ r̂
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+
p− 2

r

n−1∑
j=1

[
|U ′|p−2θ̂j ⊗ r̂ ⊗ θ̂j + |U ′|p−2r̂ ⊗ θ̂j ⊗ θ̂j

]
.

Recalling (B.0.2), we then have

∇A(x)∇ϕ = (p− 2)2|U ′|p−4U ′ U ′′ ∂rϕ(r̂ ⊗ r̂ ⊗ r̂)r̂ + (p− 2)|U ′|p−4U ′ U ′′ ∂rϕ(Id⊗ r̂)r̂

+
p− 2

r

n−1∑
j=1

[
|U ′|p−2∂rϕ(θ̂j ⊗ r̂ ⊗ θ̂j)r̂ + |U ′|p−2∂rϕ(r̂ ⊗ θ̂j ⊗ θ̂j)r̂

]
+

1

r

n−1∑
i=1

[
(p− 2)2|U ′|p−4U ′U ′′∂θiϕ(r̂ ⊗ r̂ ⊗ r̂)θ̂i + (p− 2)|U ′|p−4U ′U ′′∂θiϕ(Id⊗ r̂)θ̂i

]
+
p− 2

r2

n−1∑
i=1

n−1∑
j=1

[
|U ′|p−2∂θiϕ(θ̂j ⊗ r̂ ⊗ θ̂j)θ̂i + |U ′|p−2∂θiϕ(r̂ ⊗ θ̂j ⊗ θ̂j)θ̂i

]
,

where we used that (a⊗ b⊗ c)d = (a · d)b⊗ c. Writing out these terms gives

∇A(x)∇ϕ = (p− 1)(p− 2)|U ′|p−4U ′U ′′∂rϕ r̂ ⊗ r̂ +
p− 2

r
|U ′|p−2

n−1∑
j=1

∂rϕ θ̂j ⊗ θ̂j

+
p− 2

r
|U ′|p−4U ′U ′′

n−1∑
j=1

∂θjϕ θ̂j ⊗ r̂ +
p− 2

r2
|U ′|p−2

n−1∑
j=1

∂θjϕ r̂ ⊗ θ̂j,

thus the second term in (B.0.1) is

tr(∇A(x)∇ϕ) = (p− 1)(p− 2)|∇U |p−4∂rU ∂rrU ∂rϕ+
(n− 1)(p− 2)

r
|∇U |p−2∂rϕ.

(B.0.4)

Combining (B.0.3) and (B.0.4), (B.0.1) implies that

div(A(x)∇ϕ) = (p− 1)|∇U |p−2∂rrϕ+
(p− 1)(n− 1)

r
|∇U |p−2∂rϕ

+
1

r2
|∇U |p−2

n−1∑
j=1

∂θjθjϕ+ (p− 1)(p− 2)|∇U |p−4∂rU ∂rrU ∂rϕ,

as desired.
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