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Abstract. We discuss in this short survey the notion of dp convergence and its application to
studying limits of sequence of Riemannian manifolds (Mn

i , gi) whose scalar curvatures and entropies
are bounded from below by small constants. We will build examples showing how the more classical
notions of Gromov-Hausdorff and Intrinsic Flat convergence must fail in the context of lower scalar
bounds. More fundamentally, we will see how a notion of a metric space itself is the wrong notion
for such limits, as distance functions may degenerate. We will see how to fix these problems by
weakening the convergence criteria with respect to the dp-structure. The d∞-structure corresponds
to the classical metric structure, but for any p < ∞ a dp-structure still comes equipped with a
well behaved analysis. Our main result is to show that if a manifold with lower scalar and entropy
bounds R,µ ≥ −ε(n), then a ball must be dp-close to a Euclidean ball for p = p(n, ε) <∞. We also
study more general limits, and have applications which include apriori estimates on such spaces.
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1. Introduction and ε-Regularity

A broad theme in geometric analysis aims to understand the structure and a priori regularity
of a Riemannian manifold (Mn, g) when restrictions are imposed on its curvature. An essentially
equivalent question is to understand the structure of singular limits Mn

i → X, where (Mn
i , gi) is

a sequence of Riemannian manifolds satisfying the same curvature constraint. Naturally, it is im-
portant here to identify the appropriate notion of convergence and the class of objects that arise as
limits. In the study of manifolds with bounded curvature operator, it suffices to consider manifold
limits X under Ck,α convergence [Che67, Che70]. In the analysis of spaces with (lower) bounds on
Ricci curvature, it is the underlying metric spaces structures of a sequence of Riemannian mani-
folds that converge, in the Gromov-Hausdorff sense [Gro07], to a limiting metric space. This weaker
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convergence allows for the necessary formation of singularities in possible limit spaces. In this set-
ting, it is essential to distinguish between collapsed and noncollapsed limits, where noncollapsing of
the sequence Mn

i can be understood as the existence of a uniform lower bound on the volumes of
balls. The starting point for the regularity theory for spaces with bounds on Ricci curvature is an
ε-regularity theorem. This says that if the volume of a unit ball is close to that of the Euclidean
ball, then that ball must be close both topologically and geometrically to a Euclidean ball.

When one only assumes bounds on the scalar curvature of a Riemannian manifold, the structure
and a priori regularity are significantly less well understood. Here, we survey results from our recent
paper [LNN] concerning Riemannian manifolds and their sequential limits under lower bounds on
scalar curvature. The correct replacement for noncollapsing in this context is a lower bound on the
entropy µ of the manifold, introduced below. In [LNN], we formulate and prove a corresponding
ε-regularity in this context: a statement which should say that if the scalar and entropy lower
bounds are nearly-Euclidean, then a ball should be close to a Euclidean ball.

When studying spaces with lower bounds on scalar curvature, it is already understood from
[Sor17] that the notion of Gromov-Hausdorff closeness cannot be the correct one. The examples
in [Sor17] mimic those from minimal surface theory, and show that small volume tentacles may
appear when only a lower scalar curvature bound is assumed. One possible fix for issues like this
is the Intrinsic Flat distance [SW11]. In fact, the problem is actually much worse. We will build
examples in Section 3 demonstrating that even under small lower bounds on scalar curvature and
entropy—where the metric is expected to be close, when understood in the correct sense, to the
Euclidean metric—the Gromov-Hausdorff and Intrinsic Flat limits may be completely wild, with
jumps in topology, dimension, and the formation of Finsler or worse types of geometries.

Fundamentally, these examples show that lower scalar curvature and entropy bounds simply do
not control the behavior of distance functions. Consequently, one cannot expect to prove an ε-
regularity theorem or develop a study of limit spaces with respect to any notion of convergence
that is based on the distance function. From the correct perspective, this is not entirely surpris-
ing; the distance function is closely related to the W 1,∞ behavior of functions, and it may simply
be too much to ask that this remains uniformly controlled in such a sequence. Indeed, it is now
well understood from the study of RCD spaces [AGS13, BE84, Stu05, LV09] that (said correctly)
W 1,∞-control on the analysis is essentially equivalent to lower bounds on Ricci curvature. So, one
might expect distance functions to break down in the context of only scalar curvature bounds.

In order to solve this problem, we introduce a new notion of convergence, dp convergence. Instead
of considering the convergence of the underlying (geodesic) metric space structures of a sequence
of Riemannian manifolds, the notion of dp convergence is a based on the convergence of another
natural family of distance functions dp that take the place of the geodesic distance. The effect of
this will be to take the required W 1,∞-control needed for convergence of distance functions, and
reduce it to a required W 1,p-control for this weaker notion of convergence.
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Heuristically, we can think of the difference between the geodesic distance and the dp distance in
analogy to the difference between the L∞ norm and Lp norm of a function. For example, consider
a sequence of smooth functions fk : R2 → R that converge pointwise to the characteristic function
of the line ` = {(x, y) : x = 0}. Such a sequence will not have an L∞ limit, but can be constructed
to converge to zero in Lploc, smearing out this lower dimensional set on which the pointwise limit
is equal to 1. Similarly, for a sequence of metrics on R2 that converge to the Euclidean metric
away from ` but become increasingly degenerate along `, the geodesic distance will also degenerate
along `. We introduce dp as a notion of distance so that this singularity is “smeared out” near `, in
analogy to Lp convergence of functions.

Let us begin with a definition of the dp distance functions. Recall that the classical distance on a
Riemannian manifold can be equivalently defined by d(x, y) = sup{|f(x) − f(y)| : ‖∇f‖L∞ ≤ 1};
this supremum is always achieved by the distance function itself.

Definition 1.1 (dp distance on manifolds). Given a Riemannian manifold (Mn, g) and a real
number p ∈ (n,∞], we define the dp,g distance between any x, y ∈M by

dp,g(x, y) = dp(x, y) = sup

{
|f(x)− f(y)| :

ˆ
M
|∇f |p dvolg ≤ 1

}
. (1.1)

We let Bp,g(x, r) = {y ∈M : dp(x, y) < r} denote the ball of radius r with respect to dp.

On any Riemannian manifold, dp defines a distance function, and so (M,dp) is a metric space. The
dp metric space structure of a Riemannian manifold determines its entire geometry in the sense two
Riemannian manifolds which are dp-isometric must in fact be isometric as Riemannian manifolds.
This is analogous to the Myers-Steenrod Theorem for the geodesic metric space structure. The dp
distance understands and controls the behavior of the Sobolev space W 1,p, with d∞ = d becoming
the standard distance function.

While one could define dp for any p ≥ 1, we restrict our attention to p > n since dp(x, y) = +∞
for all x 6= y and p ≤ n on any smooth Riemannian manifold. One may analogously define the
dp distance on more general spaces than smooth Riemannian manifolds, as all that is needed is a
space equipped with a notion of W 1,p Sobolev space. For instance, the dp distance can be defined
on a metric measure space (X, d,m). However, what is important to note in our context is that dp
does not need an underlying metric structure in order to be defined. A rectifiable structure, which
gives the ability to differentiate functions and integrate them, will be sufficient. In particular, the
functions dp are well-defined on rectifiable Riemannian spaces (X, g), which are introduced in Def-
inition 2.2, but roughly are topological measure spaces with a compatible rectifiable structure and
Riemannian metric on the rectifiable charts.

Let us discuss some examples and basic properties of the dp distance. To begin with, we study
the behavior of the dp distance on Euclidean space.

Example 1.2 (The dp distance on Euclidean space). On Euclidean space, for p > n we directly
compute that dp(x, y) = S|x− y|1−n/p, where S = Sn,p is a normalizing constant with Sn,p → 1 as
p→∞. Correspondingly, Bp,geuc(0, Sr1−n/p) = B(0, r) for any r > 0.
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Another interesting example is the dp distance on hyperbolic space, which highlights some im-
portant distinctions from the geodesic distance.

Example 1.3 (The dp distance on hyperbolic space). Given n ≥ 2 and n < p < ∞, hyperbolic
space (Hn, ghyp) has finite bounded diameter with respect to dp. Indeed, the Morrey-Sobolev
inequality on hyperbolic space (see [Ngu18, MT98]), there exists C = C(n, p) > 0 such that
|f(x)− f(y)| ≤ C‖∇f‖Lp(Hn) for all f ∈W 1,p(Hn) and for allx, y ∈ Hn Consequently, dp(x, y) ≤ C
for all x, y ∈ Hn.

In the next example, we consider a space that is not a smooth Riemannian manifold, since the
Riemannian metric is degenerate. However, one can easily smooth out this example to obtain the
featured behavior asymptotically for a sequence of smooth Riemannian manifolds approximating it.
The key feature of this example is its illustration of the role of the parameter p and its relationship to
the order of singularity of a metric. While dp defines a distance metric on any smooth Riemannian
manifold (M, g), it may only define a pseudometric if the metric g is degenerate—depending on the
relationship between the value of p and the order of degeneracy. In the following example, for p
large, the dp distance (as well as the geodesic distance) will reflect the degeneracy of the metric,
while for p > n small enough, the degeneracy will be “smeared out” by the dp distance.

Example 1.4. Fix α > 0 and consider (R2, gα), where gα = dx2 + |x|2αdy2 is a degenerate
Riemannian metric. Fix any x0, y0 ∈ {(x, y) : x = 0}. For any p large enough such that αp ≥ 1,
one can show that dp,gα(x0, y0) = 0. In particular, dp,gα is only a pseudometric on R2 for such p.
On the other hand, if αp < 1, we can see that dp,gα(x0, y0) > 0 by plugging in a test function that
agrees with f(x, y) = y nearby these two points. For this range of p, the dp,gα defines a metric on
R2 and does not see the degeneracy of gα

Let us now move toward the statement of our ε regularity theorem. We begin by defining the
noncollapsing condition. The PerelmanW-functional, introduced in [Per02], is defined for a function
f ∈ C∞(M) and real number τ > 0 by

W(g, f, τ) =
1

(4πτ)n/2

ˆ
M

{
τ(|∇f |2 +R) + f − n

}
e−f dvolg . (1.2)

The Perelman entropy µ(g, τ), which can be viewed as the optimal constant in a log-Sobolev in-
equality at scale τ1/2, is given by

µ(g, τ) = inf

{
W(g, f, τ) :

1

(4πτ)n/2

ˆ
M
e−f dvolg = 1, e−f/2 ∈W 1,2(M)

}
. (1.3)

Finally, Perelman’s ν-functional is given by

ν(g, τ) = inf{µ(g, τ ′) : τ ′ ∈ (0, τ)} ,
and just guarantees that we are measuring the entropy at all scales below some point. The Perelman
entropy on Euclidean space is equal to zero for any τ > 0, a fact that is equivalent to the Euclidean
log-Sobolev inequality. The Perelman entropy µ(g, τ) of a complete Riemannian manifold (M, g)
with bounded curvature is nonpositive for all τ > 0. Moreover, if the entropy is equal to zero for
some τ > 0, then (M, g) is isometric to Euclidean space.
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In the context of Riemannian manifolds with lower bounds on scalar curvature, the appropriate
noncollapsing assumption is that ν(g, 1) ≥ −δ, that is, that the Perelman entropy is close to that of
Euclidean space on all scales up to 1. In connection to the volume noncollapsing typically assumed
in the context of Ricci curvature lower bounds, it is not hard to show that for a Riemannian manifold
with bounded curvature, the assumptions ν(g, 1) ≥ −δ and Rg ≥ −δ imply that all balls below
scale one satisfy the almost-Euclidean volume lower bound volg(Bg(x, r)) ≥ (1− ε)ωnrn.

The following ε regularity theorem is one of the main results of [LNN]. This theorem shows that
if a Riemannian manifold has almost Euclidean lower bound on scalar curvature and entropy, then
a p-ball is close to a p-ball in Euclidean space in the measured Gromov-Hausdorff sense of their dp
metric spaces.

Theorem 1.5 (ε-Regularity Theorem). Let (Mn, g) be a complete Riemannian manifold with
bounded curvature and fix ε > 0 and p ≥ n+ 1. There exists δ = δ(n, ε, p) such that if

R ≥ −δ, ν(g, 2) ≥ −δ , (1.4)

then for all x ∈M , we have

dGH ((Bp,g(x, 1), dp,g), (Bp,geuc(0, 1), dp,geuc)) ≤ ε (1.5)

and for any 0 < r ≤ 1

(1− ε)|Bp,geuc(0, r)| ≤ volg(Bp,g(x0, r)) ≤ (1 + ε)|Bp,geuc(0, r)|. (1.6)

Here | · | denotes the Euclidean volume. In particular, the measure dvolg on the metric measure
space (M,dp,g, dvolg) is a doubling measure for all scales r ≤ 1.

Remark 1.6. The assumption of (nonuniformly) bounded curvature is simply to control degener-
ation at infinity of M , a local version of these statements would drop this condition.

Remark 1.7 (L1 Sobolev constant). We may replace the entropy lower bound in Theorems 1.5 by
a rigid bound on the L1-Sobolev constant. Namely, we may replace the assumption ν(g, 2) ≥ −δ in
(1.4) with the assumption that for all compactly supported f : Bg(x, 1)→ R with x ∈M we have(ˆ

M
|f |

n
n−1

)n−1
n

≤ (1 + δ)cn

ˆ
M
|∇f | , (1.7)

where cn is the sharp Sobolev constant on Euclidean space. However, we avoid focusing on this
because, as we will see, metric balls are badly behaved objects, and thus any condition which used
a metric ball may be more restrictive than it appears. The µ-entropy intrinsically understands the
correct dp distance, and thus µ(g, 1) becomes a condition on the unit dp-scale, as opposed to the
d = d∞ scale.

Remark 1.8 (Scaling). For any Riemannian manifold (M, g), the rescaled metric g̃ = r−2g satisfies
Bp,g̃(x0, ρ) = Bg,p(x0, ρr

1−n/p), Rg̃ = r−2Rg, ν(g, 2r2) = ν(g̃, 2). If (M, g) is closed or is well
behaved at infinity (see [Zha12] for instance), then limτ→0 µ(g, τ) = 0. In particular, for any such
Riemannian manifold (M, g), the hypotheses of Theorem 1.5 hold at some scale.

The main tool used to establish the proof of Theorem 1.5 is Theorem 1.9 below. This theorem
establishes, under the same hypotheses as Theorem 1.5, the existence of W 1,p charts on an ε-
regularity ball. Moreover, it shows that the W 1,p norms of functions on this ε-regularity ball can be
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controlled—not quite by the W 1,p norm of their pullback to Euclidean space, but by W 1,q norms
for q close to p.

Theorem 1.9 (Lp estimates for the metric coefficients). Let (Mn, g) be a complete Riemannian
manifold with bounded curvature. Fix, ε > 0, κ > 1 and p ∈ [κ,∞). There exists δ = δ(n, p, κ, ε) > 0
such that if

R ≥ −δ, ν(g, 2) ≥ −δ , (1.8)

then for any x ∈ M there exist an open set Ω ⊂ M containing x and a smooth diffeomorphism
ψ : Ω→ B(0, 1) ⊂ Rn with ψ(x) = 0 satisfying 

B(0,1)
|(ψ−1)∗g − geuc|p dy ≤ ε,

 
Ω
|ψ∗geuc − g|p dvolg ≤ ε . (1.9)

Furthermore, for any f ∈W 1,p(B(0, 1)), we have

(1− ε)‖ψ∗f‖Lp/κ(Ω) ≤ ‖f‖Lp(B(0,1)) ≤ (1 + ε)‖ψ∗f‖Lκp(Ω), (1.10)

(1− ε)‖∇ψ∗f‖Lp/κ(Ω) ≤ ‖∇f‖Lp(B(0,1)) ≤ (1 + ε)‖∇ψ∗f‖Lκp(Ω). (1.11)

The notation
ffl

Ω u dvolg is used to denote volg(Ω)−1 ´
Ω u dvolg. In (1.9), the notation | · | indicates

the tensor norm with respect to geuc and g respectively.

2. Structure of Limit Spaces

Thus far, we have only discussed the dp distance on smooth Riemannian manifolds and conver-
gence in the dp sense to p-balls in Euclidean space. More generally, rectifiable Riemannian spaces
are the objects that arise naturally as limits in the dp sense of Riemannian manifolds with uni-
form lower bounds on scalar curvature and entropy. Rectifiable Riemannian spaces are introduced
precisely in Section 2.1 below.

Heuristically speaking, a rectifiable Riemannian space (X, g) is a topological space X with a
rectifiable structure, defined via an atlas of charts, and a possibly degenerate metric g, also defined
via charts. A rectifiable Riemannian space may not have a meaningfully defined distance function
or metric space structure. Nonetheless, these spaces have sufficient structure to make sense of
W 1,p Sobolev spaces. We will see in Section 2.2 that the classical approach (see [Haj03]) to defining
Sobolev spaces on a metric measure space can be modified to the setting of a rectifiable Riemannian
space, despite the lack of metric space structure. In particular, the dp distance can be defined on a
rectifiable Riemannian space.

Generally speaking, rectifiable Riemannian spaces and their Sobolev spaces may be rather poorly
behaved. Those rectifiable Riemannian spaces arising as dp limits of spaces with lower bounds on
entropy and scalar curvature, however, have quite a bit more structure— in Section 2.4 we will see
that the underlying topological space is a smooth manifold and the Sobolev spaces are “big” and
“well behaved” in a sense to be made precise later.
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2.1. Rectifiable Riemannian spaces. Let us rigorously define a rectifiable Riemannian space.
Let X be a Hausdorff topological space equipped with a measurem on X. We will refer to (X,m) as
a topological measure space. As the name suggests, a rectifiable Riemannian space is a topological
measure space equipped with a rectifiable structure and a Riemannian structure that is compatible
with the measure and the rectifiable structure.

We first address the notion of rectifiability of topological measure space. A topological measure
space is not equipped with a distance function, and thus one cannot discuss Lipschitz charts.
Instead, the appropriate notion of rectifiability is provided via an atlas of charts with bi-Lipschitz
transition maps that cover X up to a set of m-measure zero.

Definition 2.1 (Rectifiable atlas). Let (X,m) be a topological measure space, and consider a col-
lection of charts {(Ua, φa)}a∈I , where Ua ⊆ Rn, φa : Ua → X is one-to-one and continuous with
continuous inverse on its image, and I is a countable index set. For each a, b ∈ I, let us denote
Ua,b ≡ Ua ∩ φ−1

a (φb(Ub)) ⊆ Rn. We say that {(Ua, φa)}a∈I is a rectifiable atlas for (X,m) if:

(1) For each a, b ∈ I such that Ua,b is nonempty, every point in Ua,b has Lebesgue density one.
(2) For each a, b ∈ I such that Ua,b is nonempty, the transition map

φba ≡ φ−1
b ◦ φa : Ua,b → Ub,a

is bi-Lipschitz.
(3) We have m

(
X \

⋃
a∈I φa(Ua)

)
= 0.

(4) For each Ua, the measure (φ−1
a )∗m is absolutely continuous with respect to the Lebesgue

measure.

Now, if (X,m) is a topological measure space equipped with a rectifiable atlas {(Ua, φa)}, we
may define a Riemannian structure on X by defining a (possibly degenerate) Riemannian metric in
the charts Ua. Naturally, we must ask that this metric is suitably compatible with the rectifiable
atlas and the measure m. We call the resulting space a rectifiable Riemannian space.

Definition 2.2 (Rectifiable Riemannian space). Let (X,m) be a topological measure space. We
say that (X,m) has a rectifiable Riemannian structure if there is a rectifiable atlas {(Ua, φa)}a∈I
on (X,m) and collection of matrix-valued functions ga : Ua → Rn×n satisfying

(1) For each x ∈ Ua, ga(x) a positive definite symmetric matrix such that

sup
x∈Ua

‖ga‖+ ‖g−1
a ‖ ≤ Ca.

and ga is continuous on Ua.
(2) For each nonempty Uab, we have gb = φ∗baga.
(3) The measure φ∗am on Ua is given by φ∗am =

√
det ga dx.

We say that {ga}a∈I is the coordinate expression of a rectifiable Riemannian metric g on X and
call (X, g) a rectifiable Riemannian space.

One can imagine a variety of ways in which a rectifiable Riemannian space can degenerate. We
will first work our way through some basic examples which explore this. This will give some first
intuition on what kind of structure is needed to avoid this. The Limit Structure Theorem 2.35
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will show that certain degeneracies highlighted in these examples cannot occur in a rectifiable Rie-
mannian space arising as a limit of Riemannian manifolds with lower bounds on entropy and scalar
curvature, while the examples of Section 3 show that other types of degeneracies cannot be avoided.

Example 2.3. Any smooth Riemannian manifold (M, g) is a rectifiable Riemannian space.

With regard to Example 2.3, observe that even for a smooth Riemannian manifold (M, g) a given
rectifiable atlas may only cover M up to a set of measure zero:

Example 2.4. Let X = Rn with geuc the Euclidean metric, and let m = dx be the Lebesgue
measure. Consider the rectifiable atlas {(U1, φ1), (U2, φ2)} where U1 = {(x1, . . . , xn) : x1 > 0}
and U2 = {(x1, . . . , xn) : x1 < 0} are complementary open half spaces and φi is the identity chart
restricted to Ui for i = 1, 2. Then (Rn, geuc) is a rectifiable Riemannian space with respect to this
rectifiable atlas.

Example 2.5. Any stratified Riemannian manifold X is a rectifiable Riemannian space.

Example 2.6. As a concrete case of Example 2.5, let X ⊂ R2 be a countable union of lines
{`i}i∈N passing through the origin and let m be defined by m|`i = H1|`i . Define g|`i = gR2 |`i and
let {(R \ {0}, φi)}i∈N be the rectifiable atlas with φi : R \ {0} → `i \ {0} defined via the obvious
isometric embedding. Then (X, g) is a one dimensional rectifiable Riemannian space.

Due to the flexibility of the definition, the metric tensor of a rectifiable Riemannian space may
be mildly singular. Let us consider some examples of this.

Example 2.7. Let X = Rn and consider the metric defined by g =
∑n

i=1 fi(x)2(dxi)2, where each
fi is a smooth non-negative function on Rn such that the set Σ = ∪ni=1{x : fi(x) = 0} has Lebesgue
measure zero. Let m =

√
det g dx be the induced measure. Consider the the rectifiable atlas on the

topological measure space (Rn,m) given by {(Ua, φa)}a∈N where Ua = ∩ni=1{x ∈ Rn : a−1 ≤ fi ≤ a}
and φa is the identity chart on Rn restricted to Ua. Then, with respect to this rectifiable atlas,
(Rn, g) is a rectifiable Riemannian space.

An important feature of Example 2.7 is that, while the geodesic distance gives rise to a metric
space structure (X, d), the metric space may not even be topologically equivalent to Rn. We see
this more concretely in the following example.

Example 2.8. Recall Example 1.4 in the previous section, in which we fixed α > 0 and considered
(R2, g), where g = dx2 + |x|2αdy2. This is a special case of Example 2.7 above and so in particular
is a rectifiable Riemannian space. Let dg denote the distance function with respect to g, i.e.
dg(x, y) = infγ

´ 1
0 |γ̇(t)|dt, where the infimum is taken among all curves γ with γ(0) = x, γ(1) = y.

Then, for any two points p1, p2 ∈ ` where ` = {(x, y) : x = 0}, we see that dg(p1, p2) = 0. In
particular, the metric space (R2, dg) collapses ` to a point and is not topologically equivalent to R2.

In Section 3, we construct rectifiable Riemannian metrics that are qualitatively similar to Exam-
ple 2.8 that arise as limits of smooth Riemannian manifolds with uniform lower bounds on scalar
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curvature and entropy. These examples share the feature with Example 2.8 that the distance func-
tion with respect to g give rise to a different topology than the underlying space. It will also be the
case that the dp distance gives rise to a different topology than the underlying space for p >> 1.
Importantly, for p ≤ p0(g), the dp distance will reflect the “smeared out” behavior the metric as
discussed in the previous section and will generate the expected topology.

2.2. W 1,p spaces and dp distance on rectifiable Riemannian spaces. In order to do analysis
on rectifiable Riemannian spaces, and in particular to understand dp limits, we need to make sense
of W 1,p functions in this context. This means being able to take gradients of functions and look at
their norms. In particular, understandingW 1,p functions on a rectifiable Riemannian space provides
a natural extension of this definition of dp to these singular spaces.

Ideally, we would want to use the rectifiable charts in order understand W 1,p functions in co-
ordinates. Realistically, one has to be quite careful about this. A function might be perfectly
differentiable in every coordinate chart, but not really be a W 1,p function as its gradient may have
a distributional component, as we see in the following example.

Example 2.9. Consider (Rn, geuc) with the rectifiable atlas {(U1, φ1), (U2, φ2)} comprising two
open half spaces as in Example 2.4. The function f : Rn → R defined by f(x) = 0 if x1 < 0
and f(x) = 1 if x1 ≥ 0 clearly does not have gradient in Lp(Rn), since its distributional gradient
is a singular measure supported on {x1 = 0}. However, letting fa = φ∗af for a = 1, 2, we have
gij∂ifa∂jfa ≡ 0 for all x ∈ Ua for a = 1, 2.

To deal with this subtlety, we follow a classical approach from metric measure spaces (see for
instance [Haj03, Sections 5-7]) to build the Sobolev space theory by considering the behavior of
functions along curves. Roughly speaking, the approach in the metric measure space context goes
as follows: (1) consider the collection of rectifiable curves on (X,m, d) and the notion of sets of
rectifiable curves of p-measure zero; (2) define a p-weak upper gradient of a function u by way of the
fundamental theorem of calculus on p-a.e. curve; (3) understand W 1,p Sobolev spaces on (X,m, d)
as the collection of Lp functions with p-weak upper gradient in Lp.

On the surface, this approach appears to fundamentally rely on the metric space structure of
(X,m, d), since the notion of a rectifiable curve requires a distance function. In reality, however,
after some basic modifications, this approach adapts very well to the context of rectifiable Rie-
mannian spaces. Indeed, on a metric measure space (or Riemannian manifold), every rectifiable
curve admits an absolutely continuous (in fact, Lipschitz) parametrization, namely the arc length
parametrization. In practice, it is this absolutely continuous parametrization that is used in the
Sobolev space theory. The key point is that even when no distance function is available, the notion
of an absolutely continuous curve is available and the behavior of a function along it can be studied.

So, when determining the appropriate class of curves along which to study the behavior of
functions in the context of rectifiable Riemannian spaces, two major factors that must be taken
into account: (a) curves must be suitably compatible with the rectifiable atlas on the space in order
to deal with the difficulty illustrated in Example 2.9; and (b) the absence of a distance function
prohibits us considering rectifiable curves and instead, we must restrict our attention to absolutely
continuous parametrizations of curves.
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Let (X, g) be a rectifiable Riemannian space with rectifiable atlas {(Ua, φa)}a∈I . Denote the
singular part of X by Xs = X \∪aUa, which may or may not correspond to topological singularities
of the space.

Definition 2.10 (Absolutely Continuous Curves). Let γ : [α, β]→ X be a continuous curve and set
Ia ≡ γ∗(φa(Ua)) for each a ∈ I. We say that γ is absolutely continuous if the following properties
hold.

(a) γ∗(Xs) ⊂ [α, β] is a countable set;
(b) For every ε > 0, there exists δ > 0 such that if {(si, ti)}∞i=1 is a collection of disjoint intervals

in [α, β] such that for each i, we have si, ti ∈ Iai for some ai ∈ I and
∑∞

i=1 |si − ti| < δ,
then

∞∑
i=1

|γai(si)− γai(ti)|ga(γ(si)) < ε. (2.1)

Part (a) of the definition guarantees that the behavior of an absolutely continuous curve γ can
be entirely reflected in the charts of its rectifiable atlas, even though the rectifiable charts may only
cover (X, g) up to a set of measure zero, by ensuring that there is no contribution to the singular
part of the distributional derivative of γ on the set γ∗(Xs). In particular, this eliminates the issue
illustrated in Example 2.9:

Example 2.11. In Example 2.9, the curve γ(t) = (t, 0, . . . , 0) is not an absolutely continuous curve
in the sense of Definition 2.10 because it violates condition (a).

Part (b) of Definition 2.10 replaces the classical notion of a curve with finite length, as one
does not have a notion of a distance function with which to measure the length. The following
lemma shows how condition (b) guarantees that the curve is absolutely continuous in each chart
in a suitably uniform sense and further clarifies how this notion of absolutely continuous curve fits
into the classical notion on smooth spaces.

Lemma 2.12. Let γ : [α, β]→ X be an absolutely continuous curve in the sense of Definition 2.10
above. Then the following properties hold.

(1) For each a ∈ I, the function γa = φ−1
a ◦ γ : Ia → Ua is differentiable for a.e. s ∈ Ia. Here

we again let Ia = γ∗(φa(Ua)) ⊂ [α, β].
(2) For all ε > 0, there exists δ > 0 such that if S ⊂ [α, β] with |S| < δ, then

´
S |γ̇|g < ε.

(3) If (X, g) is a smooth Riemannian manifold, then the length of γ is given by L(γ) =
´ β
α |γ̇|g dt.

Remark 2.13. In Lemma 2.12 (2) and (3) and in the sequel, we let |γ̇|g ≡
√
g(γ̇, γ̇), which is

well-defined for a.e. t ∈ [α, β] by Lemma 2.12(1) and via the rectifiable atlas {(Ua, φa)}a∈I .

Remark 2.14. Having in mind Lemma 2.12(3), we define the length of an absolutely continuous
curve γ : [α, β]→ X in a rectifiable Riemannian space by L(γ) =

´ β
α |γ̇|g. One can check that this

notion is independent of Lipschitz reparametrizations. More generally, we will use the notation
´
γ f

to mean
´
γ f :=

´ β
α f(γ(t)) |γ̇|g dt for a function f : X → R.

Remark 2.15. Definition 2.10 is parametrization dependent, as it requires an absolutely continuous
parametrization. This is not restrictive, as on a smooth Riemannian manifold with a classical atlas



dp-CONVERGENCE WITH ENTROPY AND SCALAR LOWER BOUNDS 11

of charts, every rectifiable curve in the classical sense admits a reparametrization, namely its arc
length parametrization, that is an absolutely continuous curve in the sense of Definition 2.10.

Having in hand the appropriate class of curves along which to study the behavior of functions,
we follow the classical approach in metric measure spaces to use our absolutely continuous curves
to define the notion of a p-weak upper gradient of a function. Most of the Sobolev theory is built
up in an identical fashion to the metric measure space setting.

Let M denote the collection of all absolutely continuous curves on (X, g). For 1 ≤ p < ∞, we
say that a family of curves Γ ⊂M has Modp(Γ) = 0 if there exists a nonnegative Borel measurable
function f ∈ Lp(X) such that

´
γ f = +∞ for every γ ∈ Γ. A property is said to hold for p-a.e

absolutely continuous curve if it holds for every curve in M \ Γ where Modp(Γ) = 0.1 It follows
directly from the definition that for any nonnegative Borel measurable function f ∈ Lp(X), then´
γ f <∞ for p-a.e. absolutely continuous curve.

Next, we define upper gradients and p-weak upper gradients of functions u : X → R.2

Definition 2.16 (Upper gradients and p-weak upper gradients). Let u : X → R and G : X → [0,∞]
be Borel measurable functions. We say that G is an upper gradient for u if

|u(γ(a))− u(γ(b))| ≤
ˆ
γ
G (2.2)

for every absolutely continuous curve γ : [a, b] → X. For 1 ≤ p < ∞, we say that G is a p-weak
upper gradient for u if the upper gradient condition (2.2) holds for p-a.e. absolutely continuous
curve γ : [a, b]→ X.

The following example shows that this is a natural notion of gradient.

Example 2.17. Consider Euclidean space as a rectifiable Riemannian space with the rectifiable
atlas comprising only the identity chart. For a smooth function u : Rn → R, the classical gradient
|∇u| is an upper gradient for u.

Furthermore, we note that the potential issues highlighted by Example 2.9 are eliminated with
respect to this definition.

Example 2.18. Consider the rectifiable Riemannian space and the function f defined in Exam-
ple 2.9. We see clearly that G = 0 is not a p-weak upper gradient for f , since the upper gradient
condition 2.2 fails for any curve that crosses the hyperplane {x1 = 0}. In fact, considering the
family Γ of absolutely continuous curves of the form γ(t) = (0, x′) + te1 for t ∈ (−ε, ε), we easily
see that f has no p-weak upper gradient in Lp(X).

1The notion of Modp measure on families of curves was first introduced by Ahlfors and Beurling in [AB50] and
further developed by Fuglede in [Fug57] in the Euclidean and Riemannian settings; for the corresponding definition
of families of curves with Modp(Γ) = 0 in the metric measure space context, see [Haj03, Definition 5.1] and the
equivalent formulation of the definition given in [Haj03, Theorem 5.5].

2The notion of weak upper gradient was first introduced by Heinonen and Koskela in [HK98], and the definition
we give here is analogous to [Haj03, Definition 6.1].



12 MAN-CHUN LEE, AARON NABER, AND ROBIN NEUMAYER

Now, let W̃ 1,p(X) be the collection of all Borel measurable functions u : X → R such that u is
Lp integrable and u has a p-weak upper gradient G ∈ Lp(X). The Sobolev space W 1,p(X) on a
rectifiable Riemannian space is defined in the following way.3

Definition 2.19. For any u ∈ W̃ 1,p(X), we define

‖u‖W 1,p(X) = ‖u‖Lp(X) + inf
G
‖G‖Lp(X), (2.3)

where the infimum is taken over all p-weak upper gradients G of u. We define the space W 1,p(X) =

W̃ 1,p(X)/ ∼, where u ∼ v for u, v ∈ W̃ 1,p(X) if ‖u− v‖W 1,p(X) = 0.

From this point, we can establish a number of basic properties of the spaceW 1,p(X) showing that
this space possesses many of the important features of Sobolev spaces in smooth settings, which we
collect in the following proposition. The analogous properties are established in the metric measure
space setting in [Haj03, Section 7]. In fact, the proofs there can be carried over almost verbatim,
with only the modification being the distinction between the use of absolutely continuous curves in
our setting as opposed to rectifiable curves in the setting of metric measure spaces.4

Proposition 2.20 (Basic properties of the Sobolev space W 1,p(X)). Let (X, g) be a rectifiable
Riemannian space and fix 1 ≤ p <∞. Then the following properties hold.

(1) (Closedness) Suppose {ui}∞i=1, {Gi}∞i=1 are sequences in Lp(X) such that ui and Gi converge
weakly to u ∈ Lp(X) and G ∈ Lp(X) respectively. If Gi is a p-weak upper gradient of ui for
each i ∈ N, then there is a representative of u in Lp such that G is a p-weak upper gradient
of u.

(2) (Lower semi-continuity) Let p ∈ (1,∞) and let ui ∈W 1,p be a bounded sequence converging
weakly in Lp(X) to u. Then there is a representative of u such that u ∈W 1,p(X) and

‖u‖W 1,p(X) ≤ lim inf
i→∞

‖ui‖W 1,p(X). (2.4)

(3) (Banach space) The space W 1,p(X) is a Banach space.
(4) (Minimal p-weak upper gradient) There exists a minimal p-weak upper gradient Gu ∈ Lp(X)

in the sense that Gu ≤ G m-a.e. for every p-weak upper gradient G ∈ Lp(X).
(5) (Smooth spaces) Suppose (X, g) is a smooth Riemannian manifold, then W 1,p(X) coincides

with the standard Sobolev space of X. Moreover, the norm of gradient vector |∇u|g is the
least p-weak upper gradient for u ∈W 1,p(X).

Thanks to Proposition 2.20, for any u ∈W 1,p(X) we may write

‖u‖W 1,p(X) = ‖u‖Lp(X) + ‖Gu‖Lp(X), (2.5)

where Gu is the least p-weak upper gradient of u.

3We follow the definition first introduced by Shanmugalingam in [Sha00] in the context of metric measure spaces
and presented in Definition 7.1 of [Haj03]. We note that a closely related definition of Sobolev spaces on a metric
measure space was given by Cheeger in [Che99].

4In the metric measure space setting, properties (1)-(3), (5) were originally proven by Shanmugalingam [Sha00],
and property (4) was established by Cheeger in [Che99] for p > 1 and Hajłasz [Haj03] for p = 1.
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Given the definition of W 1,p spaces on a rectifiable Riemannian space, the notion of the dp
distance extends naturally to this setting. That is, for a rectifiable Riemannian space (X, g), a real
number p ∈ (n,∞) and two points x, y ∈ X, the dp distance dp,g,X(x, y) between x and y is defined
to be

dp,g,X(x, y) = sup

{
|f(x)− f(y)| :

ˆ
X
|∇f |p dm ≤ 1, f ∈W 1,p

loc (X) ∩ C0
loc(X)

}
. (2.6)

As we have seen in the examples above, rectifiable Riemannian spaces, along with their Sobolev
spaces and dp distances, can exhibit various types of degenerate behavior. To close this section, we
introduce two definitions formalizing when certain degenerate behaviors do not occur. These are
W 1,p-rectifiable completeness and dp-rectifiable completeness of a rectifiable Riemannian space.

We begin with W 1,p-rectifiable completeness. Without imposing any additional structure, the
space W 1,p on a rectifiable Riemannian space may be trivial. Moreover, as we saw in Example 2.9,
the usual coordinate expression for the norm of the gradient may not be meaningful. For this
reason, we introduce the notion of rectifiable Riemannian spaces that are W 1,p-rectifiably complete
as spaces for which the space W 1,p is sufficiently large and the minimal p-weak upper gradient
coincides with the derivative in charts almost everywhere.

Definition 2.21 (W 1,p-rectifiable completeness). Fix p > n. We say that (X, g) is W 1,p-rectifiably
complete if the following holds:

(a) W 1,p(X) is dense in Lp(X);
(b) For all u ∈W 1,p(X) and a ∈ I, the function ua = φ∗au : Ua → R is differentiable a.e. and

Gu(φa(x)) = |∇u|g ≡
√
g−1
a (∂ua(x), ∂ua(x))

for φ∗am-a.e. x ∈ Ua. Here, ∂ua denotes the Euclidean gradient of ua.

Example 2.22. A smooth Riemannian manifold is W 1,p-rectifiably complete for any p ∈ (n,∞).

Example 2.23. It is easy to check that the rectifiable Riemannian space of Example 2.6 is W 1,p-
rectifiably complete for any p ∈ (n,∞).

Example 2.24. Once more, for α > 0 consider the rectifiable Riemannian space (R2, gα), where
gα = dx2 + |x|2αdy2 introduced in Examples 1.4 and 2.8. Fix p > 2. There exists α = α(p) ∈
(0, 1/2p) such that (R2, gα) is W 1,p-rectifiably complete.

Example 2.25. We will see in Theorem 2.35 below that dp limits of sequences of smooth Riemann-
ian manifolds satisfying uniform lower bounds on scalar curvature and entropy are W 1,p-rectifiably
complete for suitably chosen p.

Next, we introduce the notion of dp-rectifiable completeness. In Example 1.4, we saw an example
of a degenerate metric on a rectifiable Riemannian space for which dp only defined a pseudometric
(for p large), and so the topology generated by dp was not the same as the topology as the underlying
space. A dp-rectifiably complete rectifiable Riemannian space is one for which this does not happen:
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Definition 2.26 (dp-rectifiable completeness). Given a rectifiable Riemannian space (X, g), we say
that (X, g) is dp-rectifiably complete if dp defines a metric on X and the topology induced by dp
coincides with the topology of X.

Example 2.27. A smooth Riemannian manifold is dp-rectifiably complete for any p ∈ (n,∞).

Example 2.28. Once more, for α > 0 consider the rectifiable Riemannian space (R2, gα), where
gα = dx2 + |x|2αdy2 introduced in Examples 1.4 and 2.8. Fix p > 2. There exists α = α(p) ∈
(0, 1/2p) such that (R2, gα) is dp-rectifiably complete.

Example 2.29. We will see in Theorem 2.35 below that dp limits of sequences of smooth Riemann-
ian manifolds satisfying uniform lower bounds on scalar curvature and entropy are dp-rectifiably
complete for suitably chosen p.

2.3. dp convergence. Our primary interest in the dp distance is to give rise to a notion of conver-
gence which captures the convergence of W 1,p Sobolev spaces. Now that we have the dp distance
defined and the correct category of spaces to consider it on, namely rectifiable Riemannian spaces
(X, g), we may precisely define this convergence.

We begin with dp convergence of compact sequences. Observe that a compact rectifiable Rie-
mannian space (X, g) that is dp-complete can be viewed as a metric measure space (X, dp,g, dvolg).
For such spaces, we say that (Xi, gi) converges to (X, g) in the dp sense if the corresponding met-
ric measure spaces (Xi, dp,gi , dvolgi) converge to the metric measure space (X, dp,g, dvolg) in the
measured Gromov-Hausdorff sense.

Definition 2.30 (dp convergence). Let (X, g) and (Y, h) be compact dp complete rectifiable Rie-
mannian spaces. Given ε > 0, we say that

dp((X, g), (Y, h)) ≤ ε (2.7)

if there exist collections of points {xi}Ni=1 ⊂ X and {yi}Ni=1 ⊂ Y such that each collection is ε-dense
with respect to dp and

|dp,g,X(xi, xj)− dp,h,Y (yi, yj)| ≤ ε (2.8)
and for all r ∈ [ε, 1], we have

1− ε ≤ volg(Bp(xi, r))
volh(Bp(yi, r))

≤ 1 + ε. (2.9)

In other words, two compact spaces are ε close in the dp sense if their dp metric spaces are ε
Gromov-Hausdorff close and the volumes of balls above scale ε are close. With this definition, we
may rephrase the conclusion of Theorem 1.5 by saying that dp((Bp,g(x, 1), (Bp,geuc , 1)) ≤ ε for every
x ∈M .

Remark 2.31. In (2.9), we require volumes of balls to be ε-close up to scale 1. Up to scaling, we
may replace 1 with any other fixed number.
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Remark 2.32. One could easily replace mGH with Intrinsic Flat distance in the above and the
results of this paper are the same. The main key for us is the weakening of the usual distance with
p =∞ to p <∞.

We now move toward defining pointed dp convergence for noncompact spaces. This notion is
defined in a similar spirit as in the Gromov-Hausdorff case, but there is a subtle point due to the
behavior of dp at large distances. Recall that a sequence of pointed proper metric spaces (Xi, di, xi)
is said to converge to a pointed proper metric (X, d, x) in the pointed Gromov-Hausdorff topology
if (Bdi(xi, R), di)→ (Bd(x,R), d) in the Gromov-Hausdorff topology for every R > 0.

One is initially tempted to define pointed dp convergence in direct analogue of this definition
by asking for dp convergence on the closures of p-balls of increasingly large radius. However, in
view of Example 1.3, we see that this cannot be the correct notion. Indeed, we have seen that the
hyperbolic space equipped with the dp metric is not a proper metric space for p > n, since balls of
sufficiently large radius have noncompact closure.

Instead, we make use of dp completeness to construct an exhaustion {Cov(x,N)}N∈N that plays
the role of balls of large radius. Roughly speaking, Cov(x,N) is the set of points that are linked
to x by a sequence of N precompact p-balls of radius at most 1, and, importantly, has compact
closure. More specifically, let (X, g, x) be a dp-complete pointed rectifiable Riemannian space. By
dp completeness, for any y ∈ X, there is some radius r ≤ 1 sufficiently small such that Bp(y, 4r) b X
has compact closure. Define Cov(x,N) be to the collection of points y such that there is {(zi, ri)}Ni=1
satisfying

(1) ri ≤ 1;
(2) x, y ∈ ∪Ni=1Bp(zi, ri);
(3) Bp(zi, ri) ∩ Bp(zi+1, ri+1) 6= ∅ for all i = 1, ..., N − 1;
(4) Bp(zi, 4ri) is pre-compact.

Note that Cov(x,N) is an open set, and that by the triangle inequality, we always have the con-
tainment Cov(x,N) ⊆ Bp(x, 2N). To get an intuitive idea for how the sets Cov(x,N) behave, if we
define the analogue of Cov(x,N) with respect to the geodesic distance instead of the dp distance,
then on any Riemannian manifold (or more generally, on any proper length space), this set is simply
a geodesic ball of radius 2N .

The important advantage of working with the sets Cov(x,N) instead of p-balls of increasing
radius is that the set Cov(x,N) has compact closure for any N ∈ N, and {Cov(x,N)}N∈N exhausts
X in the sense that for any compact connected set Ω ⊂ X containing x, there exists N ∈ N such
that Ω ⊂ Cov(x,N). We can now define pointed dp convergence.

Definition 2.33. Let (Xi, gi, xi) and (X, g, x) be dp-complete pointed rectifiable Riemannian spaces.
We say that

(Xi, gi, xi)→ (X, g, x) (2.10)
in the pointed dp sense if the following holds. For all N ∈ N, there exists N ′ ≥ N and compact sets
Ω ⊂ X and Ωi ⊂ Xi such that

(1) Cov(x,N) ⊂ Ω ⊂ Cov(x,N ′),
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(2) Covi(xi, N) ⊂ Ωi ⊂ Covi(xi, N ′) for i sufficiently large,
(3) dp((Ωi, gi), (Ω, g))→ 0.

Remark 2.34. Observe that in part (3) of Definition 2.33 above, the dp convergence on the compact
sets Ωi,Ω corresponds to the relative dp distances dp,gi,Ωi and dp,g,Ω. This is necessary as dp is not
a local object.

2.4. Compactness and Structure of Limit Spaces. We have introduced rectifiable Riemannian
spaces and their W 1,p spaces because these are the objects that arise naturally as (pointed) dp
limits of spaces with lower bounds on scalar curvature and entropy, as we see in the following
theorem. Indeed, a sequence of Riemannian manifolds satisfying small uniform lower bounds on
scalar curvature is precompact with respect to pointed dp convergence and subsequentially converges
to a rectifiable Riemannian space. This limiting rectifiable Riemannian space, having arisen as the
limit of “nice” objects, enjoys additional topological and geometric structure.

Theorem 2.35 (Structure of limit spaces). Let {(Mi, gi, xi)} be a sequence of complete pointed
Riemannian manifolds with bounded curvature and let p ≥ n+ 1. Then there exists δ = δ(n, p) > 0
such that if

Rgi ≥ −δ, ν(gi, 2) ≥ −δ , (2.11)
then there exists a pointed rectifiable Riemannian space (X, g, x), with X topologically but not nec-
essarily metrically a smooth manifold, such that the following holds.

(1) We have dp((Mi, gi, xi), (X, g, x))→ 0 in the pointed sense of Definition 2.33.
(2) The space (X, g, x) is W 1,p-rectifiably complete in the sense of Definition 2.21.
(3) The space (X, g, x) is dp-rectifiably complete in the sense of Definitions 2.26.

The first part of the theorem tells us that there exists a rectifiable space X to which the Mi

converge, and the underlying topological space X is a smooth topological manifold. The second
part of the theorem tells us that limit space isW 1,p complete, which in particular guarantees that the
gradient of a function is indeed the coordinate gradient that one would compute in rectifiable charts.
The third part tells us that the underlying topological space is a smooth topological manifold, and
the metric dp generates the topology of X.

As we have emphasized, it may be that X does not have a well behaved metric structure and this
convergence may not be in the Gromov-Hausdorff or Intrinsic Flat sense. Even if the sequence does
have a (geodesic) Gromov-Hausdorff limit (Y, d), the spaces X and Y need not even be topologically
equivalent. In fact, it may be the case that for q >> p, the space has a dq limit that is not dq-
rectifiably complete and thus may not be topologically equivalent to the smooth topological space
X. We see these points explicitly demonstrated in the examples of the next section.

3. Examples

The concepts of the dp distance and corresponding dp convergence were introduced as necessary
relaxations of the notions of the geodesic distance and corresponding distance function-based notions
of convergence in the context of sequences of spaces with lower scalar curvature and entropy bounds.
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In particular, we have discussed how the distance function itself is almost entirely uncontrollable
for such sequences. Let us now make this precise, and in the process see that the dp convergence in
Theorem 1.5 cannot be replaced with Gromov-Hausdorff convergence or Intrinsic Flat convergence.

In this section, we will collect and outline various examples of sequences of complete Riemannian
manifolds (Mi, gi) with bounded curvature that satisfy the almost non-negative entropy and scalar
curvature assumptions of our main theorems. In each example, the dp limits of our spaces will be
either Euclidean space or a flat torus, and these limits do not agree with their Gromov-Hausdorff
and Intrinsic Flat limits. Constructing examples with almost non-negative scalar curvature is not
too challenging, but showing that the entropies are well behaved takes quite a bit more work.
Philosophically, this example will be similar to situations studied very recently by Allen-Sormani
[AS20], without the lower scalar curvature and entropy requirements, see also [AS19].

For instances, we will construct a sequence of metric gi on torus Tn, n ≥ 4 such that Rgi ≥ −i−1,
ν(gi, 2) ≥ −ε and gi converges to a point in Gromov-Hausdorff topology or to a zero current in the
Intrinsic Flat topology while its dp limit is the flat torus for all p ≥ n+1. This example will be given
precisely in Example 3.7. In fact, we will construct both compact or complete noncompact examples
with almost non-negative scalar curvature and entropy and at the same time the the Gromov-
Hausdorff and Intrinsic Flat limits are not locally Euclidean. For example, we are able to construct
sequence of Riemannian metric gi on Rn, n ≥ 4 with bounded curvature such that the scalar
curvature Rgi and entropy ν(gi, 2) both converging to 0 so that pointed Gromov-Hausdorff limit is
the taxicab metric on Euclidean space while the dp limit is the Euclidean space for all p ≥ n + 1.
This example will be given more precisely in Example 3.5. These examples demonstrate that
one cannot replace dp closeness with Gromov-Hausdorff or Intrinsic Flat closeness in Theorem 1.5.
Furthermore, in Example 3.4, we will show that the value of p for which we establish dp convergence
in Theorem 1.5 cannot be taken arbitrarily large for fixed δ.

3.1. The basic building block: a two-parameter family of metrics. We begin by outlining
the construction of a two-parameter family of metrics on Rn+1 for n ≥ 3 that serve as the basic
building block for constructing all of our examples. Let h denote the standard metric on Sn−1. We
define the two-parameter family of metrics gδ,ε on M = R+ × Sn−1 × R by

gδ,ε = dr2 + f2
δ,ε(r)h+ ϕ2

δ,ε(r)dx
2 . (3.1)

The warping factor fδ,ε is used to identify R+× Sn−1 topologically with Rn, however geometrically
this will be done in a way to add a large amount of positive curvature to the space. The warping
factor ϕδ,ε is constructed so that it will slowly degenerate as r → 0. If this degeneration is suffi-
ciently slow, we can preserve the lower bound on scalar curvature, and, much more challenging, the
lower bound on entropy as well. If ϕ(0) = 0, then this would imply that the line {0n} × R has a
fully degenerate metric g along it, in particular dg((0n, s), (0n, t)) = 0 for any two points along the
line {0n} × R. The parameters ε, δ > 0 are built so that we may approach such a degenerate limit
smoothly and in different ways, depending on our end goal.

Crucially, this two-parameter family of metrics satisfies a lower bound on entropy and scalar
curvature that is uniform for all ε and δ sufficiently small. Geometrically, what is happening is
that the warping factor is changing so slowly that even though the actual metric geometry may be
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behaving very poorly, in some weaker sense the geometry looks very Euclidean at all points and
scales. This sense of closeness to Euclidean space will be good enough to force the small lower
entropy bound on the example.

Theorem 3.1. Fix n ≥ 3, η > 0 and L > 0. There exist ε0 > 0 and δ0 > 0 depending on n, η and
L such that the following holds. For all ε ≤ ε0 and δ ≤ δ0, the metric gδ,ε defined in (3.1) satisfies

Rgδ,ε ≥ −η, ν(gδ,ε, L) ≥ −η. (3.2)

Remark 3.2. Note that the metrics gδ,ε are defined on an n+ 1 dimensional space, so fixing n ≥ 3
means that our examples are of dimension 4 or higher.

Let us again discuss the examples geometrically, this time with more of a focus on how each
parameter behaves in the construction. One can think of the metric gδ,ε defined in (3.1) in the
following way. The portion dr2 + f2

δ,ε(r)h of the metric gδ,ε agrees with the Euclidean metric on Rn
far from 0 ∈ Rn, while in a neighborhood of 0 ∈ Rn, it is a smoothed-out cone metric on Rn with cone
angle proportional to δ. The parameter ε governs the scale at which this cone metric is smoothed
out. This component can roughly be thought of as Euclidean Rn, although taking the smoothed
cone in place of Rn provides a crucial positive scalar curvature contribution in order to guarantee
that the scalar curvature lower bound (3.2) holds as long as n ≥ 3. We let ϕδ,ε : R+ → R+ be the
function which is roughly defined as ϕδ,ε(r) ≈ min{rδ, 1} in the interval (ε,∞) but has ϕδ,ε(0) = εδ

and is smoothed out at scale ε. In this way, the component ϕ2
δ,ε(r)dx

2 adds a fiber at each point
on (Rn, dr2 + f2

δ,ε(r)h). Away from 0 ∈ Rn, these fibers are Euclidean, but for r small, the fibers
become increasingly degenerate.

Due to the prescribed behavior, the sequence of metric will converge to the Euclidean metric
away from the ray ` = {x : xi = 0 for i = 1, . . . , n} in Rn+1 if we pass ε, δ → 0. Since ϕδ,ε(r) = εδ

nearby r = 0, by choosing the parameters ε and δ to be coupled in different ways and sending one or
both parameters to zero, we obtain different limiting rectifiable Riemannian spaces. For instances,
if we choose ε ≈ δ and let ε → 0, then the metric tensors converge smoothly to the Euclidean
metric g∞ = limε→0 gε,ε =

∑n+1
i=1 (dxi)2. While if we choose ε << δ, then the limiting metric will

be degenerating along `. In both of these two examples, the constructed sequence converges to the
Euclidean metric in Lploc for all p > 1, while in the latter case the Gromov-Hausdorff limit is very
different; see Example 3.3 below. This will correspond to our general dp ε-regularity theorem when
the entropy and scalar curvature have lower bound converging to 0.

3.2. Examples constructed from the main building block. In the following, we will make
use of the metrics gδ,ε with the parameters ε and δ coupled appropriately to produce sequences of
metrics whose dp limits and Gromov-Hausdorff limits are entirely different.

Example 3.3 (Collapsing along a line in Euclidean space). Let n ≥ 3. By choosing δ = δ(ε)→ 0
so that εδ → 0 in (3.1), we obtain a sequence of metrics which degenerate along a ray in Rn+1

and remain the flat metric away from it. In the Gromov-Hausdorff limit, the ray collapses to a
point. On the other hand gε converges to the Euclidean metric in Lploc(R

n+1) for all p > 1 and one
can show that the pointed dp limit is the flat Euclidean space. In particular, volgε (Bp,gε(0, 1)) →
volgeuc(Bp,euc(0, 1)) as ε→ 0, while the volumes of metric balls are tending to infinity:

volgε (Bgε(0, 1))→ +∞ . (3.3)
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Indeed, for ε sufficiently small, Bgε(0, 1) contains the Euclidean strip {(x, y) ∈ Rn × R : 1
4 ≤ |x| ≤

1
2 , |y| ≤

1
2ε}. Since gε converges smoothly uniformly to the Euclidean metric away from |x| = 0, we

see that (3.3) holds.

We see from the above example that the metric degeneration which causes the metric collapse
occurs along a line in R4.

Example 3.4 (dp convergence does not hold for all p). In contrast to Example 3.3, in this example
we only pass the smoothing parameter ε → 0 but fix δ > 0 small in the construction of (3.1).
The corresponding sequence of metrics converges pointwise, and in Lploc for p less than some p1(δ),
to g∞ = gcone + rδdx2, which degenerates at r = 0. One can prove that the sequence converges
in the pointed dp sense to (Rn+1, g∞, 0

n) for p ∈ [n + 2, p0(δ)]. However, this dp convergence to
(Rn+1, g∞, 0

n) does not hold for all p ∈ [n+ 2,∞). Indeed, for p sufficiently large, the metric space
(Rn+1, dp,g∞ , 0

n) is topologically distinct from the underlying topology on Rn+1, and in particular is
not dp-complete. This illustrates that δ must be taken to depend on p in our ε-regularity theorems,
and if we only assume a lower bound on the entropy lower bound and scalar curvature along the
sequence, then the limiting rectifiable Riemannian metric g∞ may have an inverse that is only
bounded in Lp0loc for some p0(δ) > 1 but not all p > 1.

Example 3.5 (Collapsing lines in Euclidean space). In this example, we use the building block
of Example 3.3 to construct a sequence of metrics on Rn+1 for n ≥ 3 whose Gromov-Hausdorff
limit is the taxicab metric, while the dp limit is the flat metric on Rn+1. The basic idea of the
construction is to cut off the building block of Example 3.3 to obtain a degenerating metric on a
tubular neighborhood of a line in Euclidean space, and to glue this metric into tubular neighbor-
hoods of an increasing dense collection of lines in Rn+1. In this way, the same argument in the proof
of Theorem 3.1 will infer that the sequence have Rg̃r0 ≥ −r0 and ν(g̃r0 , 2) ≥ −r0 as r0 → 0 by
relabeling the indices. Direct computation shows that g̃r0 converges to gRn+1 in Lploc(R

n+1) for all
p ≥ 1. In particular, this implies that volg̃r0 (Ω) → voleuc(Ω) for any compact set Ω ⊂ Rn+1. One
can show that the sequence converges to (Rn, geuc, 0n) in the pointed dp sense for all p ∈ [n+ 1,∞).

However, in the pointed Gromov-Hausdorff topology, this sequence converges to the taxicab
metric. To roughly explain this, consider the metrics (Rn+1, ĝε) ≡ (Rn+1, ε−2g̃r0). Here, ε = ε(r)
is the parameter chosen above. Clearly the metrics (Rn+1, ĝε) are isometric to (Rn+1, g̃r0) by a
Euclidean dilation. Let `ij ≡ π−1

j (zij) denote the lines we have glued around. Then, roughly,
we have on each such line `ij that ĝε = 1 in the direction of this line, and that ĝε ≈ ε−2 in all
other directions and at all other points. We also have, in coordinates, that these lines are o(ε)
dense. Clearly, a path of minimal length from x to y is now one which stays on these lines as
long as possible, and moving from one line to another now causes an error which is approximately
ε−1o(ε) = o(1). In particular, we see that dĝε(x, y) =

∑
|xi − yi| + o(1). Further, as ε → 0 we see

a minimal path is any path which is always moving in coordinate directions (specifically, along our
increasing dense collection of lines `ij). Hence, (Rn, ĝε) is limiting to the taxi-cab metric.

Next, we construct some examples in the compact setting by taking quotient on Rn.
Example 3.6 (Collapsing circle in torus). By taking a quotient of the sequence constructed in
Example 3.3, we construct a sequence of metrics {gi}i∈N on the torus Tn+1 for n ≥ 3 such that each
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gi coincides with the flat metric away from a shrinking tubular neighborhood of a fixed S1 ⊂ Tn+1.
This sequence has a scalar curvature lower bound tending to zero, and the entropy lower bound −δ
can be made arbitrarily small, uniformly along the sequence. The sequence gi becomes degenerate
along this S1, and in the Gromov-Hausdorff limit, the S1 collapses to a point. In particular, the
metric space arising as the Gromov-Hausdorff limit is not topologically a torus. The dp limit will
be the flat torus for any p ≥ n+ 2.

By replicating the construction of the degeneracy, we can construct examples so that the sequence
of metrics on the torus Tn+1 converges to a metric space Y k with k < n+1 or even k = 0 (a point) in
the Gromov-Hausdorff topology. The following is an example showing that the Gromov-Hausdorff
limit can be fully degenerated to a single point.

Example 3.7 (Collapsing Tn+1 to a point). By taking a quotient in Example 3.5, it produces a
sequence of metrics on Tn+1 such that the sequence collapses to a point in the Gromov-Hausdorff
and Intrinsic Flat topologies. The basic idea of the construction is to choose an increasingly dense
collection of strips around copies of S1 ⊂ Tn+1 with all different orientations, in a similar fashion to
Example 3.5, and then to paste the degenerating metrics of Examples 3.6.This sequence has a scalar
curvature lower bound tending to zero, and the entropy lower bound −δ can be made arbitrarily
small, uniformly along the sequence.

Due to the existence of increasing dense fibre in all different orientations, the metrics will converge
in the Gromov-Hausdorff topology to a point. Furthermore by [SW11, Corollary 3.21], we have
(Tn+1, g̃r0) converging to the zero current in the Intrinsic Flat sense. However, (Tn+1, g̃r0) converges
to the flat n+ 1-dimensional torus in the dp sense for each p ∈ [n+ 2,∞). In fact, by implementing
the above gluing except for certain orientation, it is not difficult to construct examples such that
the Gromov-Hausdorff limit has Hausdorff dimension in between n+ 1 and 0.

4. Applications and Open Problems

Let us conclude by discussing some applications of the results discussed here to the underlying
structure of spaces with lower scalar curvature and entropy bounds, as well as some conjectures and
open problems. First, as an application of the proof of Theorem 1.5, we prove that Riemannian
manifolds satisfying a uniform lower bound on entropy and scalar curvature satisfy a Morrey-Sobolev
embedding with a uniform constant.

Theorem 4.1 (L∞ Sobolev Embedding). Let (Mn, g) be a complete Riemannian manifold with
bounded curvature and let p ≥ n + 1 and q > n. There exists δ = δ(n, p, q) > 0 and Cn,q > 0 such
that if

R ≥ −δ, ν(g, 2) ≥ −δ , (4.1)

then for all f ∈W 1,q(M), we have

‖f‖L∞(M) ≤ Cn,q
(
‖∇f‖Lq(M) + ‖f‖Lq(M)

)
. (4.2)

More locally, for all x0 ∈M and f ∈W 1,q
0 (Bp,g(x0, 1)), we have

‖f‖L∞(Bp,g(x0,1)) ≤ Cn,q‖∇f‖Lq(Bp,g(x0,1)) . (4.3)
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In terms of the dp distance we can upgrade this to a Hölder embedding: there exists α = α(n, q) ∈
(0, 1)

|f(x)− f(y)| ≤ Cn,q,pdp(x, y)α‖∇f‖Lq(Bp,g(x0,1)) (4.4)

for all x, y ∈ Bp,g(x0, 1).

Remark 4.2. The examples of Section 3 demonstrate that the Hölder embedding of (4.3) cannot
hold with the geodesic distance in place of the dp-distance.

The proof of Theorem 1.5 can also be applied to obtain an an a priori Lq bound for the scalar
curvature of closed Riemannian manifolds with lower bounds on scalar curvature and entropy, for
q < 1:

Theorem 4.3 (Lq scalar curvature estimates). Let (Mn, g) be a closed Riemannian manifold and
let ε > 0 and q ∈ (0, 1) be fixed. There exists δ = δ(n, q, ε) > 0 such that if

R ≥ −δ, ν(g, 2) ≥ −δ , (4.5)

then we have  
M
|R|q dvolg ≤ ε . (4.6)

Motivated by Theorem 4.3, we expect that the scalar curvature satisfies a priori bounds in L1.

Conjecture 4.4. Let (Mn, g) be a closed Riemannian manifold with R, ν(g, 2) ≥ −A, then there
exists B(n,A) > 0 such that  

M
|R| dvolg ≤ B . (4.7)

More generally one should expect a full structure theory to hold for spaces with lower bounds
on scalar curvature and entropy, not just small lower bounds. The ε-regularity of this paper should
play the usual role of controlling the regular set.

The examples of Section 3 show that, in dimension n ≥ 4, the distance functions of Riemannian
manifolds with lower bounds on scalar curvature and entropy cannot be controlled in any meaningful
way. It remains an open question whether similar examples exist in dimension 3, or alternatively,
whether one strengthen the ε-regularity results of Theorem 1.5, known to be sharp for n ≥ 4, in
the case n = 3.

Open Problem 4.5. Show one of the two following hold:

(1) Build a sequence of metrics gi on R3 with Ri ≥ −1/i and ν(gi, 2) ≥ −1/i such that the
metric space structures do not converge to Euclidean space in the Gromov-Hausdorff or
Intrinsic Flat sense.

(2) Strengthen Theorem 1.5 in the case n = 3 so that the conclusion holds with respect to
Gromov-Hausdorff or Intrinsic Flat convergence.
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