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Abstract. For n ≥ 2, p ∈ (1, n), the “best p-Sobolev inequality” on an open set Ω ⊂ Rn

is identified with a family ΦΩ of variational problems with critical volume and trace
constraints. When Ω is bounded we prove: (i) for every n and p, the existence of
generalized minimizers that have at most one boundary concentration point, and: (ii)
for n > 2 p, the existence of (classical) minimizers. We then establish rigidity results
for the comparison theorem “balls have the worst best Sobolev inequalities” by the first
named author and Villani, thus giving the first affirmative answers to a question raised
in [MV05].
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1. Introduction

1.1. Overview. The goal of this paper is to answer some basic open questions concerning
a “doubly critical” family {ΦΩ(T )}T≥0 of minimization problems on Sobolev functions,
which, in a precise sense to be clarified below, can be interpreted as collectively defining
the best Sobolev inequality on an open set Ω ⊂ Rn with C1-boundary. Given an integer
n ≥ 2 and p ∈ (1, n), these problems are defined as

ΦΩ(T ) = inf
!" ˆ

Ω
|∇u|p

#1/p
:

ˆ

Ω
|u|p! = 1 ,

ˆ

∂Ω
|u|p# = T p#

$
, (1.1)

and their minimizers, whenever they exist, satisfy the Euler–Lagrange equation

%
&

'

−∆pu = λup
!−1 , on Ω ,

|∇u|p−2 ∂u

∂νΩ
= σ up

#−1 , on ∂Ω ,
(1.2)

for suitable Lagrange multipliers λ,σ ∈ R. We call
´

Ω |u|p! = 1 and
´

∂Ω |u|p# = T p# the
“volume” and “trace” constraints of ΦΩ(T ). The critical Sobolev exponents associated to
n and p, p" and p#, are defined by

p" =
np

n− p
, p# =

(n− 1)p

n− p
=

n− 1

n
p" .
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Figure 1.1. The state of the art about ΦΩ. The “exclusion zone” for the values
of ‖∇u‖Lp(Ω) (under the constraint ‖u‖Lp! (Ω) = 1) is depicted in gray. It always

contains the subgraph of ΦB(T ) on T ∈ [0, ISO(B)1/p
#

], see (1.12), but is always
smaller than the one of a half-space H, see (1.19). The Sobolev inequality on Rn is
equivalent to ΦΩ(0) = S(n, p), the Euclidean isoperimetric inequality to the fact

that the only zero of ΦΩ (i.e. T = ISO(Ω)1/p
#

) is achieved to the right of the
only zero of ΦB , and the Escobar inequality (1.6) is equivalent to the linear bound

ΦH(T ) ≥ E T . Both {(T,ΦB(T )) : T ∈ [0, ISO(B)1/p
#

]} and {(T,ΦH(T )) : T ≥
0} can be implicitly parametrized by looking at the explicit families of minimizers
given in (1.11), (1.15), (1.16) and (1.17).

Their precise values guarantee that ΦΩ is invariant under dilations, as well as clearly being
invariant under translations:

Φx+rΩ(T ) = ΦΩ(T ) ∀x ∈ Rn , r > 0 , T ≥ 0 .

When Ω is bounded, the C1-regularity of ∂Ω guarantees that every u ∈ L1
loc(Ω) with

∇u ∈ Lp(Ω;Rn) lies in the competition class of ΦΩ(T ) (i.e. class of admissible competitors
for the minimization problem)

Epi(ΦΩ) =
(
(T,G) ∈ R2 : T ≥ 0 , G ≥ ΦΩ(T )

)
,

(the epigraph of ΦΩ) collects the best possible information on the range of values achievable
by ‖∇u‖Lp(Ω) when ‖u‖Lp! (Ω) is fixed: from this peculiar viewpoint, which is reminiscent of

the one adopted in the study of Blaschke–Santaló diagrams, Epi(ΦΩ) is “the best Sobolev
inequality on Ω”. The following list of results, summarized in Figure 1.1, aims to provide
a hopefully complete state of the art on ΦΩ, and illustrates the wealth of information
stored in this family of variational problems. As a disclaimer: here we are definitely not
attempting to exhaustively frame the study of ΦΩ into the incredibly vast and layered
context of the theory of Sobolev-type inequalities (see e.g. [Maz85]), as that would be a
long and delicate exercise, lying well beyond the scope of this introduction.

(1) Sobolev inequality on Rn: A scaling and localization argument shows that, for
every open set Ω, one has

ΦΩ(0) = S(n, p) := inf
!" ˆ

Rn

|∇u|p
#1/p

:

ˆ

Rn

|u|p! = 1
$
, (1.3)

that is, ΦΩ(0) is the best constant in the Lp-Sobolev inequality on Rn. Minimizers of (1.3)

are exactly given by the family {τx0 [U
(α)
S ]}x0∈Rn ,α>0 generated by

US(x) =
*
1 + |x|p/(p−1)

+1−(n/p)
, x ∈ Rn , (1.4)
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see [Aub76, Tal76, CENV04], we see that ΦΩ(0) is attained if and only if Ω = Rn. Here
and in the following, we set

τx0 [v](x) = v(x− x0) , v(α)(x) = α−n/p! v(x/α) (1.5)

whenever x0 ∈ Rn and α > 0.

(2) Escobar inequality: The Escobar inequality ([Esc88, for p = 2], [Naz06, for p ∈
(1, n)]) states that if H is an (open) half-space in Rn with outer unit normal νH , then

" ˆ

H
|∇u|p

#1/p
≥ E(n, p)

" ˆ

∂H
|u|p#

#1/p#

(1.6)

with equality if and only if1 u = τx0 [U
(α)
E ] for some x0 ∈ Rn \H, and where

UE(x) = |x|−(n−p)/(p−1) , x ∈ Rn \ {0} , (1.7)

is a multiple of the fundamental solution of the p -Laplacian. The quantity

TE = ‖τx0 [U
(α)
E ]‖

Lp# (∂H)

,
‖τx0 [U

(α)
E ]‖Lp! (H) (1.8)

is independent of x0 ∈ Rn \H, and is such that

ΦH(TE) = E(n, p)TE . (1.9)

The Escobar inequality (1.6) can be equivalently reformulated in the “Φ-setting” as a
linear lower bound for ΦH , i.e.

ΦH(T ) ≥ E(n, p)T , ∀T ≥ 0 .

This bound is sharp only if T = TE , and is nearly optimal only if T is close to TE ; but it
largely suboptimal away from TE , see Figure 1.1.

(3) Euclidean isoperimetry: It is easily seen that ΦΩ(T ) = 0 for some T > 0 if and

only if |Ω| < ∞ and T = ISO(Ω)1/p
#
, where ISO(Ω) = Hn−1(∂Ω)/|Ω|(n−1)/n stands for

the isoperimetric ratio of Ω. Since the Euclidean isoperimetric inequality states that

ISO(Ω) ≥ ISO(B) , (1.10)

(with equality if and only if Ω is a ball), in the Φ-setting, (1.10) is equivalent to saying
that ΦB has the left-most zero among all ΦΩ.

(4) Balls have the worst best Sobolev inequalities: In [CL90, CL94, p = 2] (by
symmetrization methods and conformal invariance) and in [MV05, p ∈ (1, n)] (via the
mass transportation method pioneered in [Kno57, MS86, CENV04]) it is shown that if B

is a ball, then for every T ∈ (0, ISO(B)1/p
#
) there is a unique α > 0 such that

ΦB(T ) = ‖∇U
(α)
S ‖Lp(B)

,
‖U (α)

S ‖Lp! (B) , (1.11)

with US defined in (1.4). Further elaborating on the proof of this partial characterization
of ΦB, again in [MV05] the comparison theorem that balls have the worst best Sobolev
inequalities

ΦΩ(T ) ≥ ΦB(T ) , ∀T ∈ [0, ISO(B)1/p
#
] (1.12)

is proved. This sharp lower bound, combined with (1.11), allows one to infer some sharp
and more traditional-looking Sobolev-type inequalities, like the following sharp interpola-
tion between (1.3) and (1.10)

‖∇u‖Lp(Ω)

S(n, p)
+

‖u‖
Lp# (∂Ω)

ISO(B)1/p#
≥ ‖u‖Lp! (Ω) , (1.13)

1The “only if” statement for p ∕= 2 was left open in [Naz06], but was proven in [MN17, Theorem 2.3].
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and the following sharp Sobolev inequality, additive in the domain of the p-Dirichlet energy,

‖∇u‖pLp(Ω)

S(n, p)p
+

‖u‖p
Lp# (∂Ω)

C(n, p)
≥ ‖u‖p

Lp! (Ω)
, (1.14)

which was first conjectured by Brezis and Lieb in [BL85].

(5) Full characterization of ΦH : In [CL90, CL94, for p = 2] and, again by optimal
mass transport arguments, in [MN17, for p ∈ (1, n)], it is proven that if H is half-space in
Rn, then: for each T ∈ (0, TE) (Sobolev range) there is a unique tT ∈ R such that

ΦH(T ) = ‖∇(τtT νHUS)‖Lp(H)

,
‖τtT νHUS‖Lp! (H) ; (1.15)

if T = TE (Escobar point), then

ΦH(TE) = E(n, p)TE = ‖∇(τνHUE)‖Lp(H)

,
‖τνHUE‖Lp! (H) ; (1.16)

for each T > TE (beyond Escobar range), there is a unique sT > 1 s.t.

ΦH(T ) = ‖∇(τsT νHUBE)‖Lp(H)

,
‖τsT νHUBE‖Lp! (H) , (1.17)

where UBE(x) = (|x|p/(p−1) − 1)1−(n/p) , |x| > 1 . (1.18)

Up to the natural dilation and translation invariances, these functions are the unique
minimizers of ΦH(T ). Moreover, again by [MN17]: (a): infT≥0ΦH(T ) is achieved at

T = T0 ∈ (0, TE), where tT0 = 0 and ΦH(T0) = S(n, p)/21/n; (b): by the divergence

theorem, ΦH(T ) > T p#/p# for every T > 0, and this lower bound is sharp as T → ∞;
(c): finally, ΦH has the best best Sobolev inequality, i.e.

ΦΩ(T ) ≤ ΦH(T ) , ∀T ≥ 0 . (1.19)

1.2. Statements of the main results. With this summary on the state of the art for
ΦΩ in mind, there are two fundamental open questions that form the subject of our paper:

Question 1: When does ΦΩ(T ) (T > 0) admit minimizers?

Question 2: Does rigidity hold in the comparison theorem (1.12)?

The main idea of this paper is attacking these two closely related questions by systemati-
cally exploiting the complete characterization of ΦH obtained in [MN17].

Concerning Question 1, a classical concentration-compactness argument characterizes
the limit behavior of minimizing sequences of ΦΩ(T ) as the superposition of a standard
weak limit plus at most countably many concentration points, located either in the interior
of Ω, or on its boundary. By exploiting properties of ΦH we are able to (i): exclude all
interior concentrations and all but at most one boundary concentration, thus proving
existence of minimizers for a suitable “relaxed problem” Φ∗

Ω(T ); and (ii): completely
exclude concentrations, and thus establish the existence of minimizers of ΦΩ(T ), as soon
as ∂Ω is of class C2 and n > 2p . To give precise statements, it is convenient to let XΩ(T )
denote the competition class of ΦΩ(T ), and let YΩ(T ) denote the set of triples (u, v, t) with
either u ∈ XΩ(T ) and v = t = 0, or u ∈ W 1,p(Ω), v ∈ (0, 1], t ∈ (0, T ], and

vp
!
+

ˆ

Ω
up

!
= 1 , tp

#
+

ˆ

∂Ω
up

#
= T p# . (1.20)

The relaxed problem associated to ΦΩ(T ) is then given by

Φ∗
Ω(T ) = inf

YΩ(T )
E , where E(u, v, t)p =

ˆ

Ω
|∇u|p + vpΦH

" t

v

#p
, (1.21)

with the convention that vpΦH(t/v)p = 0 if (v, t) = (0, 0).
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Theorem 1.1 (Existence of minimizers of ΦΩ). If n ≥ 2, p ∈ (1, n), and Ω is a bounded
open set with C1-boundary in Rn, then:

(i): for every T > 0, there is a minimizer (u, v, t) of Φ∗
Ω(T ), and

ΦΩ(T ) = Φ∗
Ω(T ) ; (1.22)

moreover, if
´

Ω up
!
> 0, then u/‖u‖Lp! (Ω) is a minimizer of ΦΩ(‖u‖Lp# (∂Ω)

/‖u‖Lp! (Ω));

(ii): if Ω has boundary of class C2, n > 2p, T > 0, and (u, v, t) is a minimizer of Φ∗
Ω(T ),

then v = t = 0, and thus u is a minimizer of ΦΩ(T ).

Remark 1.2. Minimizers of ΦΩ(T ) solve the Euler–Lagrange equation (1.2). For the
Euler–Lagrange equation satisfied by minimizers (u, v, t) of the relaxed problem Φ∗

Ω(T ),
see Theorem 4.1 below.

Question 2 is motivated by the various rigidity statements associated to comparison
theorems in Riemannian geometry (see, e.g. [CE08]). In that setting, a certain model space
provides a universal bound on a certain global geometric quantity (comparison theorem),
which is then shown to be saturated by the model space alone (rigidity statement). With
this analogy in mind, we can reformulate more precisely Question 2 as follows:

Question 2, weak form: Does ΦΩ = ΦB on (0, ISO(B)1/p
#
) imply that Ω is a ball?

Question 2, strong form: Does ΦΩ(T ) = ΦB(T ) at just one value of T ∈ (0, ISO(B)1/p
#
)

imply that Ω is a ball?

Concerning the weak form of Question 2, through a careful use of the properties of ΦH we
answer affirmatively whenever Ω is bounded and connected. These conditions are optimal,
as shown by unbounded or disconnected non-rigidity examples presented in [MV05]. In
fact, the argument we propose gives rigidity under the mere assumption that ΦΩ = ΦB

holds on an open neighborhood of T = 0. Concerning the strong form of Question 2,
which was originally formulated in [MV05, Section 1.9], we can answer in the affirmative
as a direct by-product of our existence result for minimizers of ΦΩ(T ) (thus, when Ω has
C2-boundary and n > 2p) thanks to the following “conditional rigidity” statement, which
is proved in [MV05] as a direct by-product of the proof of (1.12):

if Ω is connected (possibly unbounded) ,

if ΦΩ(T ) = ΦB(T ) for a value of T ∈ (0, ISO(B)1/p
#
) , (1.23)

and if ΦΩ(T ) is known to admit minimizers (possibly just for that T ) ,

then Ω is a ball .

(We notice for future use an important consequence of (1.23), namely, we have

ΦB(T ) < ΦH(T ) , ∀T ∈
*
0, ISO(B)1/p

#+
; (1.24)

indeed, by [MN17], ΦH(T ) admits minimizers for every T > 0.) With these premises, we
now state our main results concerning Question 2.

Theorem 1.3 (Rigidity of “Balls have the worst best Sobolev inequalities”). Let n ≥ 2,
p ∈ (1, n), Ω an open, bounded, connected set with C1-boundary in Rn, and assume that
one of the following two conditions holds:

(i): there is T∗ > 0 such that ΦΩ(T ) = ΦB(T ) for every T ∈ (0, T∗); or

(ii): n > 2p, the boundary of Ω is of class C2, and there is T ∈ (0, ISO(B)1/p
#
) such that

ΦΩ(T ) = ΦB(T ).

Then, Ω is a ball.
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1.3. Strategy of proof. Concentration-compactness arguments and the use of sharp
Sobolev-type inequalities (like the Sobolev and Escobar inequalities (1.3) and (1.6)) are
the standard tools of the trade in the analysis of variational problems with critical growth.
As seen, if interpreted as assertions about ΦH , (1.3) and (1.6) contain only very partial
information (respectively, “ΦH(0) = S(n, p)” and “ΦH(T ) ≥ E(n, p)T for every T > 0”).
From this viewpoint, our arguments provide an interesting example of the potential utility,
in the familiar context of concentration-compactness, of the full characterization of ΦH

obtained in [CL94, MN17]. We now explain how this characterization is used in this paper.

We have already mentioned how the mere knowledge of the existence of minimizers in
ΦH(T ) for every T > 0 allows one to reduce the analysis of concentrations to the simplest
possible case of a single boundary concentration (thus leading to Theorem 1.1-(i)). Finer
properties of ΦH are exploited in the proof of Theorem 1.1-(ii), which goes as follows.
We consider the existence of a minimizer (u, v, t) of Φ∗

Ω(T ) with v > 0, and, keeping in
mind that ΦΩ(T ) = Φ∗

Ω(T ), we aim to obtain a contradiction to v > 0 by constructing a
competitor v of ΦΩ(T ) with

ˆ

Ω
|∇v|p <

ˆ

Ω
|∇u|p + vpΦH

" t

v

#p
.

We seek v in the form v = uε, for the Ansatz given by

uε(x) = (1− ϕε(x))u(x) + ϕε(x)
*
U (ε) ◦ g

+
(x) , x ∈ Ω . (1.25)

Here x0 ∈ ∂Ω is a boundary point of Ω with positive mean curvature2, i.e. H∂Ω(x0) > 0; ϕε

is a cut-off function between Bεβ (x0) and B2 εβ (x0) for β = β(n, p) ∈ (0, 1) to be suitably
chosen (the condition n > 2 p enters in this choice); g is a boundary flattening diffeomor-
phism near x0; and, finally, U = Uτ + b εVτ for τ = t/v, Vτ a standard perturbation of Uτ ,
and b a constant suitably chosen depending on n, p, H∂Ω(x0) and τ . The energy, volume
and trace expansions for uε as ε → 0+ are computed to be

ˆ

Ω
|∇uε|p ≤

ˆ

Ω
|∇u|p + vpΦH

" t

v

#p
(1.26)

−
!
L(Uτ )−

(n− p)

n
λH(τ)M(Uτ )

$
H∂Ω(x0) v

pε+ o(ε) ,
ˆ

Ω
up

!

ε = 1 + o(ε) ,

ˆ

∂Ω
up

#

ε = T p# + o(ε) , (1.27)

where λH(T ) is the volume Lagrange multiplier of UT (see (3.7) below), and where L and
M are functionals defined on U : H → R by

L(U) =

ˆ

H
xn |∇U |p − p xn (∂1U)2 |∇U |p−2 , (1.28)

M(U) =

ˆ

H
xn U

p! . (1.29)

Modulo o(ε)-perturbations of uε aimed at correcting the volume and trace constraints to
the exact values needed for inclusion in XΩ(T ), we have constructed the required com-
petitors, and proved Theorem 1.1-(ii), if we can show the existence of c(n, p, T ) > 0 such
that

L(UT )−
(n− p)

n
λH(T )M(UT ) ≥ c(n, p, T ) , ∀T > 0 . (1.30)

Of course, the full characterization of ΦH plays a crucial role in our proof of (1.30), see
Lemma 3.1 below.

2Our convention is that the scalar mean curvature of ∂Ω is computed with respect to the outer unit
normal to Ω, so that every bounded open set with C2-boundary has at least one boundary point of positive
mean curvature.
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While Theorem 1.3-(ii) is immediate from Theorem 1.1-(ii) thanks to the rigidity crite-
rion (1.23), the proof of Theorem 1.3-(i) requires an additional argument, which once more
exploits several fine properties of ΦB and ΦH : these include (1.23), (1.24), and information
on the signs of the Lagrange multipliers λH(T ) and σH(T ) for minimizers UT of ΦH(T )
(see (3.12) and (3.11) below).

1.4. Organization of the paper. After collecting a few preliminary results in section 2,
in section 3 we study in detail various properties of ΦH and of its minimizers: in particular,
we prove the key inequality (1.30) (see Lemma 3.1), and discuss in detail the Ansatz (1.25)
(see Lemma 3.4). Sections 4 and 5 contain, respectively, the proofs of Theorem 1.1 and
Theorem 1.3. Finally, we collect some auxiliary, routine proofs in an appendix.

Acknowledgements: FM was supported by NSF-DMS RTG 1840314, NSF-DMS FRG
1854344, and NSF-DMS 2000034. RN was supported by NSF-DMS 2200886.

2. Notation and preparations

Some basic notation is presented in section 2.1. We then discuss, in separate subsec-
tions, four useful technical lemmas: a concentration-compactness lemma with boundary
terms (Lemma 2.1); a second order expansion for the boundary flattening diffeomorphisms
used in the Ansatz (1.25) (Lemma 2.3); some basic regularity information on minimizers
of ΦΩ(T ) (Lemma 2.5); and the basic technique of “volume/trace correcting variations”
(Lemma 2.6). Some proofs are postponed to the appendix.

2.1. Notation. Throughout the paper we always assume that n ≥ 2 and p ∈ (1, n). We
denote by Ln and Hk the Lebesgue measure and the k-dimensional Hausdorff measure of
Rn, although we simply set |E| in place of Ln(E). We denote by Br(x) the open ball of
center x ∈ Rn and radius r > 0, and set Br = Br(0), while B denotes a ball of unspecified
center and radius.

Following a standard shorthand notation, by “f(x) = g(x) + Oa,b(|x|) for |x| > R” we
mean that |f(x) − g(x)| ≤ C(a, b) |x| if |x| > R; by “f(x) = g(x) + oa,b(|x|) as |x| → 0”
we mean that lim|x|→0 |f(x) − g(x)|/|x| = 0 at a rate that is uniform with respect to the
parameters a and b.

In general, we will use capital letters (e.g. U, V,Ψ) to denote functions defined on the
half space H and lowercase letters (e.g. u, v,ϕ) to denote functions defined on an open
bounded domain Ω.

2.2. Concentration-compactness. The following lemma is a version of Lions’ cele-
brated concentration-compactness lemma and provides a natural starting point to study
minimizing sequences of ΦΩ(T ).

Lemma 2.1 (Concentration-compactness). Let n ≥ 2, p ∈ (1, n), and let Ω ⊂ Rn be open
and bounded with C1-boundary. If {uj}j is a sequence in L1

loc(Ω), {∇uj}j is bounded in
Lp(Ω;Rn) and uj ⇀ u as distributions in Ω, then the Radon measures on Rn defined by

µj = |∇uj |p Ln└Ω , νj = |uj |p
! Ln└Ω , τj = |uj |p

# Hn−1└∂Ω , (2.1)

have subsequential weak-star limits µ, ν and τ which satisfy

ν = |u|p!Ln└Ω+
-

i∈I
vp

!

i δxi , (2.2)

τ = |u|p#Hn−1└∂Ω+
-

i∈I
tp

#

i δxi , (2.3)

µ ≥ |∇u|pLn└Ω+
-

i∈I
gpi δxi , (2.4)
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where {xi}i∈I ⊂ Ω is at most countable set, vi > 0 and ti ≥ 0 for every i ∈ I, ti > 0 only
if xi ∈ ∂Ω, and

gi ≥ viΦH

" ti
vi

#
, ∀i ∈ I . (2.5)

In particular, gi ≥ S vi whenever xi ∈ Ω.

Proof. See appendix A. □
2.3. Near-boundary coordinates. In this section, we introduce two types of coordi-
nates for a neighborhood of a boundary point of a domain Ω: one that requires minimal
regularity of the boundary of Ω and will suffice in the proofs of Theorem 1.1(i) and The-
orem 1.3(i), and a second that requires C2 regularity of the boundary of Ω and will be
used in the proof of Theorem 1.1(ii) and Theorem 1.3(ii).

Given an open set Ω with C1-boundary, we denote by νΩ its outer unit normal and by
Tx(∂Ω) the tangent space to x ∈ ∂Ω. When Ω has C2-boundary, we denote by A∂Ω and
H∂Ω the second fundamental form and the scalar mean curvature of ∂Ω defined by νΩ.
To define coordinates near boundary points of Ω, for x ∈ Rn we set p(x) = x − xn en,
Dr = {x : xn = 0 , |px| < r}, and Cr =

(
x : |xn| < r , |p(x)| < r

)
. In particular, if Ω is an

open set with C1-boundary such that

0 ∈ ∂Ω , T0 (∂Ω) = {xn = 0} , νΩ(0) = −en , (2.6)

then we can find r0 > 0 and ℓ : Dr0 → (−r0, r0) such that ℓ(0) = 0, ∇ℓ(0) = 0, and

Ω ∩Cr0 =
(
x+ t en : x ∈ Dr0 , r0 > t > ℓ(x)

)
,

(∂Ω) ∩Cr0 =
(
x+ ℓ(x) en : x ∈ Dr0

)
.

We then define the maps F : Dr0 → ∂Ω, f : Cr0 → Rn and f̂ : Cr0 → Rn by setting

F (x) = x+ ℓ(x) en , x ∈ Dr0 , (2.7)

f̂(x) = F (px) + xnen , x ∈ Cr0 . (2.8)

f(x) = F (px)− xn νΩ(F (px)) , x ∈ Cr0 . (2.9)

In this way, for every y ∈ (∂Ω) ∩Cr0 , if we set y = F (px), then

νΩ(y) =
∇ℓ(x)− en.
1 + |∇ℓ(x)|2

, H∂Ω(y) = div
" ∇ℓ.

1 + |∇ℓ|2
#
(x) .

Notice that the map f need not be of class C1 if the boundary of Ω is only of class C1,
while the map f̂ will be as regular as the boundary of Ω. The following lemma summarizes
basic properties about the map f̂ .

Lemma 2.2 (Near-boundary coordinates, one). If H = {xn > 0}, Ω is an open set with

C1-boundary and (2.6) holds, then there exist r0 and C0 positive such that the map f̂ in
(2.8) defines a C1-diffeomorphism from Cr0 to its image, taking Dr0 into ∂Ω and with

f̂(Cr/C0
∩H) ⊂ Ω ∩Br ⊂ f̂(CC0 r ∩H) ∀r < r0/C0 . (2.10)

Moreover, letting ĝ = f̂−1 denote the inverse of f̂ , we have

∇f̂ = Id Rn + o(1) , (∇ĝ)∗ ◦ f̂ = Id Rn + o(1) , (2.11)

Jf̂ = 1 + o(1) , 1 ≤ J∂H f̂ ≤ 1 + o(1) , for x ∈ Cr0. (2.12)

The orders in (2.11) and (2.12) depend on ∂Ω and on 0 ∈ ∂Ω.

Proof. See appendix B. □
The map f defined in (2.9) has the advantage that, when the boundary of Ω is at least

of class C2, curvature quantities appear in expansions of the metric coefficients and the
volume form in these coordinates. These properties are the content of the following lemma.
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Lemma 2.3 (Near-boundary coordinates, two). If H = {xn > 0}, Ω is an open set with
C2-boundary and (2.6) holds, then there exist r0 and C0 positive such that the map f in
(2.9) defines a C1-diffeomorphism from Cr0 to its image, taking Dr0 into ∂Ω and with

f(Cr/C0
∩H) ⊂ Ω ∩Br ⊂ f(CC0 r ∩H) ∀r < r0/C0 . (2.13)

Moreover, for x ∈ Cr0 and x ∈ Dr0 respectively, we have

Jf(x) = 1− xnH∂Ω(0) + O(|x|2) , 1 ≤ J∂Hf(x) ≤ 1 + O(|x|2) , (2.14)

and if {ei}n−1
i=1 is an orthonormal basis of Rn−1 ⊂ Rn of eigenvectors of ∇2ℓ(0) and {κi}n−1

i=1
denote the corresponding eigenvalues (so that, by (2.6), they are the principal curvatures

of ∂Ω with respect to νΩ computed at 0 ∈ ∂Ω, and in particular H∂Ω(0) =
/n−1

i=1 κi), then,
letting g = f−1 denote the inverse of f , we have

(∇g)∗ ◦ f = Id Rn+
*
∇ℓ⊗ en−en ⊗∇ℓ) + xn

n−1-

i=1

κiei ⊗ ei +O(|x|2) . (2.15)

The orders in (2.14) and (2.15) depend on ∂Ω and on 0 ∈ ∂Ω.

Proof. See appendix B. □

Remark 2.4. Given x0 ∈ ∂Ω, we denote by πx0 the rigid motion of Rn that maps x0 to

0 such that (2.6) holds with πx0(Ω) in place of Ω. Then we set, for f̂ and f defined as in
(2.8) and (2.9) respectively but with πx0(Ω) in place of Ω,

f̂x0 = π−1
x0

◦ f̂ , fx0 = π−1
x0

◦ f .

Clearly these maps are diffeomorphisms on Cr0 , mapping H ∩ Cr0 into a neighborhood
of x0 in Ω and Dr0 = (∂H) ∩ Cr0 into a neighborhood of x0 in ∂Ω, and satisfies proper
reformulations of the estimates in Lemmas 2.2 and 2.3. Here r0 and C0 depend also on
the choice of x0, and can of course be assumed uniform across x0 ∈ ∂Ω if ∂Ω is bounded.

2.4. Properties of minimizers. The following lemma gathers some fundamental prop-
erties of minimizers of ΦΩ that will be needed in the sequel.

Lemma 2.5. If n ≥ 2, p ∈ (1, n), T > 0, Ω is a bounded open set with C2-boundary,
and u is a minimizer of ΦΩ(T ), then u is bounded and Lipschitz continuous in Ω, there
are λ and σ such that the Euler–Lagrange equation (1.2) holds in the weak sense, and the
balance condition

λ

ˆ

Ω
up

!−1 + σ

ˆ

∂Ω
up

#−1 = 0 , (2.16)

holds.

Proof. By a standard argument, based on similar considerations to the one presented in
Lemma 2.6 below, one sees that a minimizer u of ΦΩ(T ) is aW

1,p(Ω)-distributional solution
of the Euler-Lagrange equation (1.2) for some λ,σ ∈ R. As soon as Ω is bounded and has
Lipschitz boundary, one can exploit (1.2) in conjunction with a Moser iteration argument
to prove that u ∈ L∞(Ω) (see, e.g. [MW19, Theorem 3.1]; their result applies to (1.2) by
taking, in the notation of their paper, A(x, u,∇u) = |∇u|p−2∇u, B(x, u,∇u) = λup

!−1,

and C(x, u) = σup
#−1). On further assuming that ∂Ω is of class C2, then the classical

result [Lie92, Theorem 1.7] can be applied to deduce that u ∈ C1,β(Ω) for a suitable
β = β(n, p) ∈ (0, 1) (for more details, see [MW19, Theorem 3.9]). In particular, u is
bounded and Lipschitz continuous on Ω, as claimed. □
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2.5. Volume/trace correcting variations. At various stages in our arguments we will
need to slightly modify certain competitors so to restore the volume and trace constraints
defining XΩ(T ). The following lemma describes the basic mechanism used to this end.

Lemma 2.6 (Volume/trace correcting variations). If n ≥ 2, p ∈ (1, n), M > 0, Ω is an
open set with C1-boundary, v ∈ L1

loc(Ω) with ∇v ∈ Lp(Ω;Rn), and if x0 ∈ Rn and r > 0
are such that

´

Ω\Br(x0)
vp

!
and
´

(∂Ω)\Br(x0)
vp

#
are positive and finite , (2.17)

then there exist positive constants η and C, and functions ϕ ∈ C∞
c (Rn \ Br(x0)) and

ψ ∈ C∞
c (Ω\Br(x0)), all depending on n, p, v and M only, and with the following property.

If {vε}ε<ε0 ⊂ L1
loc(Ω) is such that, for every ε < ε0,

vε = v on Ω \Br(x0) ,

ˆ

Ω
|∇vε|p ≤ M , (2.18)

then for every (a, b) with |a|, |b| < η/C, we can find (s, t) with |s|, |t| < η such that

wε = vε + sϕ+ tψ

satisfies
ˆ

∂Ω
|wε|p

#
= a+

ˆ

∂Ω
|vε|p

#
,

ˆ

Ω
|wε|p

!
= b+

ˆ

Ω
|vε|p

!
, (2.19)

000
ˆ

Ω
|∇wε|p −

ˆ

Ω
|∇vε|p

000 ≤ C
*
|a|+ |b|

+
. (2.20)

Proof. By (2.17) there are ξ ∈ C∞
c (Rn \Br(x0)) and ψ ∈ C∞

c (Ω \Br(x0)) such that
ˆ

∂Ω
vp

#−1 ξ = 1 ,

ˆ

Ω
vp

!−1 ψ = 1 . (2.21)

Setting ϕ = ξ − (
´

Ω vp
!−1ξ)ψ, we have ϕ ∈ C∞

c (Rn \Br(x0)) with
ˆ

Ω
vp

!−1 ϕ = 0 ,

ˆ

∂Ω
vp

#−1 ϕ = 1 . (2.22)

We now define hε : R2 → R2 by

hε(s, t)=
" ˆ

∂Ω
|vε + sϕ+ tψ|p# −

ˆ

∂Ω
|vε|p

#
,

ˆ

Ω
|vε + sϕ+ tψ|p! −

ˆ

Ω
|vε|p

!
#
.

By (2.18) we have hε ∈ C1,α(R2;R2) for some α = α(n, p) ∈ (0, 1), with

sup
ε<ε0

‖hε‖C1,α(R2;R2) < ∞ ;

moreover, hε(0, 0) = 0 and, by (2.21) and (2.22),

∇hε(0, 0) =

1

2
p#
´

∂Ω |vε|p
#−1 ϕ p#

´

∂Ω |vε|p
#−1 ψ

p"
´

Ω |vε|p
!−1 ϕ p"

´

Ω |vε|p
!−1 ψ

3

4 =
"

p# 0
0 p"

#
.

We can thus apply the inverse function theorem uniformly in ε, to find positive constants
η and C1 depending on n, p, and v so that each hε is invertible on E = {(s, t) : |s|, |t| < η},
with {(a, b) : |a|, |b| < η/C1} ⊂ hε(E), and ∇h−1

ε (a, b) ≥ Id 2×2/C1 (in the sense of positive
definite matrices) for every (a, b) ∈ hε(E). In particular, if we let (s, t) = h−1

ε (a, b) for a
pair (a, b) with |a|, |b| < η/C1, then the function wε = vε + sϕ + tψ satisfies (2.19) and
|(a, b)| = |h−1

ε (s, t)| ≥ |(s, t)|/C1. Moreover, by the elementary inequality
00|X + Y |p − |X|p

00 ≤ p max
(
|X|, |Y |

)p−1 |Y | ∀X,Y ∈ Rn ,
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we see that, setting γ = max
(
|∇vε|, |∇ϕ|, |∇ψ|

)p
,

000
ˆ

Ω
|∇wε|p −

ˆ

Ω
|∇vε|p

000 ≤ p

ˆ

Ω
γ(p−1)/p

*
|s| |∇ϕ|+ |t| |∇ψ|

+

≤ C
" ˆ

Ω
γ
#(p−1)/p " ˆ

Ω

*
|s|p |∇ϕ|p + |t|p |∇ψ|p

+#1/p

≤ C |(s, t)| ≤ C2 |(a, b)| ,

(2.23)

for a constant C2 depending on n, p, v, and M . Letting C = max{C1, C2} concludes the
proof of the lemma. □

3. Boundary concentrations

3.1. Properties of ΦH-minimizers. We recall some facts proved in [MN17] about ΦH

and its minimizers. Recall that we denote by T0 the minimum point of ΦH , so that

T0 ∈ (0, TE) , ΦH(T0) = 2−1/n S(n, p) , (3.1)

where TE is the “Escobar trace” defined in (1.8). If we set H = {xn > 0}, the minimizers
of UT of ΦH(T ) for T > 0 are characterized (modulo the obvious scaling and translation
invariance of ΦH) as

UT (x) = cT

%
55&

55'

τtT enUS(x) = (1 + |x− tT en|p
′
)1−(n/p) , T ∈ (0, TE) ,

τenUE(x) = |x+ en|(p−n)/(p−1) , T = TE ,

τsT enUBE(x) = (|x− sT en|p
′ − 1)1−(n/p) , T > TE ,

(3.2)

where the constants cT , tT and sT are chosen in such a way that
ˆ

H
Up!

T = 1 ,

ˆ

∂H
Up$

T = T p$ ,

ˆ

H
|∇UT |p = ΦH(T )p . (3.3)

It is convenient to keep in mind that the various formulas for UT listed in (3.2) all share
the same decay behavior at infinity, that is (see (3.20) below), we have

UT (x) ∼ |x|(p−n)/(p−1), |∇UT | ∼ |x|(1−n)/(p−1) as |x| → ∞. (3.4)

(where the rate depends on the specific value of T under consideration). The constants
tT and sT have the following properties: T ∈ (0, TE) /→ tT is continuous and strictly
decreasing, with tT > 0 if and only if T ∈ (0, T0), and

lim
T→0+

tT = +∞ , lim
t→(TE)−

tT = −∞ , tT0 = 0 , (3.5)

while T ∈ (TE ,∞) /→ sT is continuous, negative, strictly increasing, with

lim
T→(TE)+

sT = −∞ , lim
T→+∞

sT = −1 . (3.6)

Denoting by ∆pv = div (|∇v|p−2∇v) the p -Laplace operator, we have
%
5&

5'

−∆pUT = λH(T )Up!−1
T on H ,

|∇UT |p−2 ∂UT

∂νH
= σH(T )Up$−1

T on ∂H ,
∀T > 0 , (3.7)

where λH ,σH : (0,∞) → R are continuous and satisfy the relations

ΦH(T )p = λH(T ) + σH(T )T p# , σH(T ) =
ΦH(T )p−1Φ′

H(T )

T p#−1
, (3.8)
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(see [MN17, Lemma 3.3]3) as well as

lim
T→0+

σH(T ) = −∞ , lim
T→+∞

σH(T ) = +∞ (3.9)

lim
T→0+

λH(T ) > 0 , lim
T→+∞

λH(T ) = −∞ . (3.10)

The signs of σH and λH can be easily deduced from (3.2), and satisfy

(0, T0) = {σH < 0} , (T0,∞) = {σH > 0} , σH(T0) = 0 , (3.11)

(0, TE) = {λH > 0} , (TE ,∞) = {λH < 0} , λH(TE) = 0 . (3.12)

3.2. A key inequality and further properties of UT . In this section, we prove the
key inequality (3.13) for the functions L and M introduced in (1.28) and (1.29), namely

L(U) =

ˆ

H
xn |∇U |p − p xn (∂1U)2 |∇U |p−2 ,

M(U) =

ˆ

H
xn U

p! .

Whenever U satisfies the decay properties (3.4) (e.g., when U is a compactly supported
perturbation of some UT ), we have that M(U) < ∞; however, L(U) < ∞ under (3.4) if
and only if n > 2 p− 1; see (3.24) and (3.25) below.

Lemma 3.1 (Key inequality). If n ≥ 2, p ∈ (1, n), n > 2p− 1, and T > 0, then there is
a positive constant c(n, p, T ) such that

L(UT )−
n− p

n
λH(T )M(UT ) ≥ c(n, p, T ) . (3.13)

The following lemma will be useful in proving Lemma 3.1.

Lemma 3.2. If H = {xn > 0}, U : H → R is radially symmetric with respect to t en for
some t ∈ R, and

´

H xn|∇U |p is finite, then
ˆ

H
xn |∇U |p−2

(
(∂nU)2 − (∂1U)2

)
> 0 .

Proof of Lemma 3.2. We have U(x) = η(|x − t en|), y = x − t en, r = |y|, and ŷ = y/|y|,
so that

xn |∇U |p−2
(
(∂nU)2 − (∂1U)2

)
= (yn + t) |η′(r)|p

(
(ŷn)

2 − (ŷ1)
2
)
,

and, setting y = r z,
ˆ

H
xn |∇U |p−2

(
(∂nU)2 − (∂1U)2

)
=

ˆ

{yn>−t}
(yn + t) |η′(r)|p

(
(ŷn)

2 − (ŷ1)
2
)

=

ˆ ∞

0
|η′(r)|p dr

ˆ

{yn>−t}∩∂Br

(yn + t)
(
(ŷn)

2 − (ŷ1)
2
)
dHn−1

y

=

ˆ ∞

0
rn |η′(r)|p dr

ˆ

{zn>−t/r}∩∂B1

"
zn +

t

r

#(
z2n − z21

)
dHn−1

z .

3Notice that in [MN17, (3.16)] it is incorrectly stated that σH(T ) = ΦH(T )p−1 Φ′
H(T )/(p# T p#−1),

where the extra 1/p#-factor is wrongly introduced in the penultimate displayed equation in the proof of

Lemma 3.3, where τ ′(0) = T 1−p#/p# should be replaced by τ ′(0) = T 1−p# . This error is inconsequential
for the arguments in [MN17], since this expression for σH(T ) is only used in equation (3.22) and subsequent
displayed equations, and since, in all these subsequent identities, a generic multiplicative factor c(n, p) is
used (in particular, two functions of (n, p) differing by a 1/p#-factor are both c(n, p)). It will instead be
important in the proof of (4.3) to work with correct expression for σH(T ).
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We conclude the proof by showing that
ˆ

{zn>−s}∩∂B1

*
zn + s

+ (
z2n − z21

)
dHn−1

z > 0 for all s ∈ (−1, 1), (3.14)

noting that for each s ∈ [1,∞), this integral vanishes by symmetry while for s ∈ (−∞,−1]
the domain of integration is empty. To see (3.14), let p : Rn → Rn−2 denote the projection
map p(x) = (x2, ..., xn−1) (if n = 2 there is no need to introduce p). The tangential coarea
factor of p along ∂B1 defines a positive function K : ∂B1 → (0,∞] which is Hn−1-a.e.
finite on ∂B1, and which is independent of the variables (x1, xn), i.e. K(x1, w, xn) = K(w)
for every (x1, w, xn) ∈ ∂B1. Therefore, setting for brevity Ms = {zn > −s} ∩ ∂B1,
ˆ

Ms

*
zn + s

+ (
z2n − z21

)
dHn−1

z =

ˆ

p(Ms)

dLn−2
w

K(w)

ˆ

Ms∩p−1(w)

*
zn + s

+ (
z2n − z21

)
dH1

(z1,zn)
,

where

Ms ∩ p−1(w) =
!
(z1, zn) : z

2
1 + z2n = 1− |w|2 , zn > −s

$
, s ∈ (−1, 1) .

As before, the inner integral above vanishes when 1 − |w|2 ≤ s by symmetry and the
domain of integration is empty when −s ≥ 1− |w|2. We are thus left to prove that

ˆ π+α

−α

*
sin θ + sinα

+ (
sin2 θ − cos2 θ

)
dθ > 0

for α ∈ (0,π/2) (corresponding to the case when s ≥ 0) and
ˆ π−α

α

*
sin θ − sinα

+ (
sin2 θ − cos2 θ

)
dθ > 0

for α ∈ (0,π/2) (corresponding to the case when s < 0). Direct computation shows that
both of these integrals are equal to the positive quantity (2/3) (cosα)3. □

We now prove Lemma 3.1.

Proof of Lemma 3.1. Testing (3.7) with xn UT we find

λH(T )

ˆ

H
xn U

p!

T = −
ˆ

H
xn UT ∆pUT =

ˆ

H
|∇UT |p−2∇UT ·∇(xn UT ) .

Here the integration by parts is justified since xn = 0 on ∂H and since by (3.4),

000
ˆ

H∩∂BR

xn UT |∇UT |p−2(νBR
·∇UT )

000 ≤ C
Rn−1R

R(n−p)/(p−1)

" 1

R(n−1)/(p−1)

#p−1
→ 0

like R−(n+1)/(p−1) as R → ∞. We thus find that

L(UT )−
n− p

n
λH(T )M(UT ) =

ˆ

H
xn |∇UT |p − p xn (∂1UT )

2 |∇UT |p−2

−n− p

n

! ˆ

H
xn |∇UT |p +

ˆ

H
UT |∇UT |p−2 ∂nUT

$
.

Now, since |∇UT | is symmetric by reflection with respect to the hyperplanes {xi = 0},
i = 1, ..., n− 1, we see that

ˆ

H
xn |∇UT |p =

n−1-

i=1

ˆ

H
xn (∂iUT )

2|∇UT |p−2 +

ˆ

H
xn (∂nUT )

2|∇UT |p−2

= (n− 1)

ˆ

H
xn (∂1UT )

2|∇UT |p−2 +

ˆ

H
xn (∂nUT )

2|∇UT |p−2
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so that continuing from above we have

L(UT )−
n− p

n
λH(T )M(UT )

=
p

n

ˆ

H
xn |∇UT |p − p

ˆ

H
xn (∂1UT )

2 |∇UT |p−2 − n− p

n

ˆ

H
UT |∇UT |p−2 ∂nUT

=
p

n

ˆ

H
xn |∇UT |p−2

!
(∂nUT )

2 − (∂1UT )
2
$
+

n− p

n

ˆ

H
UT |∇UT |p−2

*
− ∂nUT

+
.

In particular, the lemma is proved by showing that
ˆ

H
xn |∇UT |p−2

(
(∂nUT )

2 − (∂1UT )
2
)
> 0 , (3.15)

ˆ

H
UT |∇UT |p−2

*
− ∂nUT

+
> 0 , (3.16)

where the first inequality, (3.15), is immediate from Lemma 3.2 (recall that n > 2p − 1
and UT is radially symmetric with respect to ten for some t ∈ R).

We are thus left to prove (3.16). This is immediate in the case when T ≥ T0, because
in that case, by (3.5) and (3.6), UT has center of symmetry at t en for some t ≤ 0, and
thus ∂nUT < 0 on H. By (3.5), if T ∈ (0, T0), then UT has center of symmetry at t en for
some t > 0. Correspondingly, UT ∂nUT is odd with respect to {xn = t}, with UT ∂nUT < 0
on {xn > t} and UT ∂nUT > 0 on {0 < xn < t}: in particular, if pt denotes the reflection
with respect to {xn = t}, then

ˆ

2t>xn>t
xn UT (−∂nUT ) =

ˆ

t>xn>0
(pt(x) · en) [UT (−∂nUT )](pt(x)) dx

=

ˆ

t>xn>0
(pt(x) · en) [UT ∂nUT )](x) dx ≥

ˆ

t>xn>0
xn UT ∂nUT ,

so that
ˆ

H
UT |∇UT |p−2

*
− ∂nUT

+
≥
ˆ

{xn>2t}
UT |∇UT |p−2

*
− ∂nUT

+
,

and the latter integral is positive because ∂nUT < 0 on {xn > t}. □

3.3. Standard variations of ΦH-minimizers. We now introduce a “class of standard
variations” of minimizers of ΦH . With H = {xn > 0}, we define ζ = ζ(r, T ) : [0,∞) ×
(0,∞) → [0,∞), so that, setting VT (x) = ζ(|x− en|, T ) for x ∈ Rn, we have

VT ∈ C∞
c (H; [0,∞)) ,

ˆ

H
Up!−1
T VT = 1 ,

ˆ

∂H
Up#−1
T VT = 0 . (3.17)

Given T > 0 we denote by

UT (3.18)

the family of functions U : H → R of the form

U = UT + t VT , |t| ≤ 1 .

The following lemma contains some basic properties of functions in UT . We notice that

every U ∈ UT is symmetric by reflection

with respect to the coordinates x1, ..., xn−1 .
(3.19)

Lemma 3.3 (Standard variations of UT ). If n ≥ 2, p ∈ (1, n), and T > 0, then there
are positive constants R0 and C0 depending on n, p, T , and VT such that the following
properties hold:
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(i): if U ∈ UT , then for every |x| > R0 we have

1

C0|x|(n−p)/(p−1)
≤ U(x) ≤ C0

|x|(n−p)/(p−1)
,

1

C0|x|(n−1)/(p−1)
≤ |∇U(x)| ≤ C0

|x|(n−1)/(p−1)
,

(3.20)

and for every R > R0,
ˆ

H\BR

Up! ≤ C0

Rn/(p−1)
,

ˆ

H\BR

Up!−1 ≤ C0

Rp/(p−1)
, (3.21)

ˆ

H∩(B2R\BR)
Up ≤ C0

R(n−p2)/(p−1)
,

ˆ

H\BR

|∇U |p ≤ C0

R(n−p)/(p−1)
, (3.22)

ˆ

(∂H)\BR

Up# ≤ C0

R(n−1)/(p−1)
,

ˆ

(∂H)\BR

Up#−1 ≤ C0

R
, (3.23)

ˆ

H\BR

|x|Up! ≤ C0

R[1+n−p]/(p−1)
, (3.24)

ˆ

H\BR

|x| |∇U |p ≤ C0

R(n+1−2p)/(p−1)
, if n > 2 p− 1 . (3.25)

(ii): for every U ∈ UT we have
ˆ

H
|∇U |p = ΦH(T )p + pλH(T ) t+ o(t) , (3.26)

ˆ

H
Up! = 1 + p" t+ o(t) , (3.27)

ˆ

∂H
Up# = T p# . (3.28)

Proof of Lemma 3.3. Since VT is assumed to be compactly supported, statement (i) follows
immediately from the corresponding properties for UT . More specifically, we deduce (3.20)
from (3.2), and (3.21)–(3.25) from (3.20). Statement (ii) follows from (3.7). □

3.4. The Ansatz for boundary concentrations. We next use the standard variations
of minimizers of ΦH described in Lemma 3.3 to define certain competitors for ΦΩ that
provide us with a notion of “standard boundary concentration.” Recall the notation U (ε)

for dilations introduced in (1.5).

Lemma 3.4. Fix n ≥ 2, p ∈ (1, n), T > 0, U ∈ UT . Let Ω be an open set with C1-

boundary, x0 ∈ ∂Ω, and let f̂ = f̂x0, ĝ = f̂−1, f = fx0 and g = f−1 be determined as in
Remark 2.4 starting from Ω and x0. Then the following statements hold:

(i): If v ∈ W 1,p(Ω), β ∈ (0, 1), r1 = εβ, r2 = 2 εβ, and ϕε is a cut-off function between
Br1(x0) and Br2(x0) with |∇ϕε| ≤ Cε−β, then

vε(x) = (1− ϕε(x)) v(x) + ϕε(x)
*
U (ε) ◦ ĝ

+
(x) , x ∈ Ω , (3.29)

satisfies

lim
ε→0+

ˆ

Ω
|∇vε|p =

ˆ

H
|∇U |p +

ˆ

Ω
|∇v|p , (3.30)

lim
ε→0+

ˆ

Ω
vp

!

ε =

ˆ

H
Up! +

ˆ

Ω
vp

!
, (3.31)

lim
ε→0+

ˆ

∂Ω
vp

#

ε =

ˆ

∂H
Up# +

ˆ

∂Ω
vp

#
. (3.32)
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(ii): If n > 2p, v ∈ Lip(Ω) and Ω has C2-boundary, then there exists a choice of β =
β(n, p) ∈ (0, 1) (used in the definition of r1 = εβ and r2 = 2 εβ), such that the function

vε(x) = (1− ϕε(x)) v(x) + ϕε(x)
*
U (ε) ◦ g

+
(x) , x ∈ Ω , (3.33)

satisfies (3.30), (3.31), and (3.32) in the more precise form
ˆ

Ω
|∇vε|p =

ˆ

H
|∇U |p +

ˆ

Ω
|∇v|p −H∂Ω(x0)L(U) ε+ o(ε) , (3.34)

ˆ

Ω
vp

!

ε =

ˆ

H
Up! +

ˆ

Ω
vp

! −H∂Ω(x0)M(U) ε+ o(ε) , (3.35)

ˆ

∂Ω
vp

#

ε =

ˆ

∂H
Up# +

ˆ

∂Ω
vp

#
+ o(ε) , (3.36)

as ε → 0+. Here L(U) and M(U) are defined in (1.28) and (1.29) and the orders in
(3.34), (3.35), and (3.36) depend on n, p, T , and v.

Proof. Without loss of generality we assume that x0 = 0 ∈ ∂Ω, T0 (∂Ω) = {xn = 0} and
νΩ(0) = −en. We carry out the proof in several steps.

Step one: We start by noticing the following estimates for the energy, volume and trace
of vε in transition region for the cut-off function ϕε. The estimates in this step hold in
identical form with the same proofs for vε defined from f̂ as in (3.29) and for vε defined
from f as in (3.33); we write the proof for (3.33). First, with v ∈ W 1,p(Ω),

lim
ε→0

max
! ˆ

Ω∩(Br2\Br1 )
|∇vε|p,

ˆ

Ω∩(Br2\Br1 )
vp

!

ε ,

ˆ

(∂Ω)∩(Br2\Br1 )
vp

#

ε

$
= 0 , (3.37)

and, second, under the additional assumption that v ∈ Lip(Ω),
ˆ

Ω∩(Br2\Br1 )
|∇vε|p ≤ C max

!
ε(1−β) (n−p)/(p−1), εβ(n−p)

$
, (3.38)

ˆ

Ω∩(Br2\Br1 )
vp

!

ε ≤ C max
!
ε(1−β)n/(p−1), εβ n

$
(3.39)

ˆ

(∂Ω)∩(Br2\Br1 )
vp

#

ε ≤ C max
!
ε(1−β) (n−1)/(p−1) , εβ(n−1)

$
. (3.40)

Indeed, we have ∇vε = aε + bε for

aε = ϕε (∇g)∗[(∇U (ε)) ◦ g] + (U (ε) ◦ g)∇ϕε , bε = (1− ϕε)∇v − v∇ϕε .

By (2.13), and thanks to |∇g|, Jf ≤ 2 on Cr0 , we find
ˆ

Ω∩(Br2\Br1 )
|aε|p ≤ C

ˆ

Ω∩(Br2\Br1 )
|(∇g)∗[(∇U (ε)) ◦ g]|p + U (ε)(g)p

εβ p

≤ C

ˆ

H∩(BCr2
\Br1/C

)
|∇U (ε)|p + (U (ε))p

εβ p

= C

ˆ

H∩(BCr2/ε
\Br1/Cε)

|∇U |p + εnp/p
! Up

εβ p
εn

≤ C
!
ε(1−β)(n−p)/(p−1) +

εp ε(β−1)(p2−n)/(p−1)

εβ p

$
= C ε(1−β)(n−p)/(p−1) ,

where in the last inequality we have used (3.22). Concerning bε, we notice that if we only
know that v ∈ W 1,p(Ω) then by v ∈ Lp!(Ω) and ∇v ∈ Lp(Ω) we find that

ˆ

Ω∩(Br2\Br1 )
|bε|p ≤

ˆ

Ω∩Br2

|∇v|p +
ˆ

Ω∩Br2

|v|p
εβ p

≤
ˆ

Ω∩Br2

|∇v|p +
" ˆ

Ω∩Br2

|v|p!
#p/p!
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where the latter quantity converges to 0 at an non-quantified rate as ε → 0+ (as stated in
(3.37)); while, if v ∈ Lip(Ω), then

ˆ

Ω∩(Br2\Br1 )
|bε|p ≤ C

ˆ

Ω∩(Br2\Br1 )
|v|p |∇ϕε|p + |∇v|p ≤ C rn2 Lip(ϕε)

p ≤ Cεβ (n−p) ,

and (3.38) is proved. The other two limits in (3.37) follow similarly (with non-quantified
rates), while if v ∈ Lip(Ω), then (3.39) and (3.40) follow from (3.21), (3.23), and
ˆ

Ω∩(Br2\Br1 )
up

!

ε ≤ Cεβn + C

ˆ

H∩(BCr2/ε
\Br1/Cε)

Up! ≤ Cεβn + C ε(1−β)n/(p−1)

ˆ

(∂Ω)∩(Br2\Br1 )
up

#

ε ≤ Cεβ(n−1) + C

ˆ

(∂H)∩(BCr2/ε
\Br1/Cε)

Up# ≤ Cεβ(n−1) + C ε
(1−β)

(n−1)
(p−1) .

Step two: We prove statement (i). By (3.37),
ˆ

Ω
|∇vε|p =

ˆ

Ω∩Br1

|(∇ĝ)∗[(∇U (ε)) ◦ ĝ]|p +
ˆ

Ω\Br2

|∇v|p + o(1) ,

and, similarly,
ˆ

Ω
|∇v|p ≥

ˆ

Ω\Br2

|∇v|p ≥
ˆ

Ω
|∇v|p + o(1) . (3.41)

Moreover, if we set Eε = g(Br1) ⊂ H and Ẽε = Eε/ε ⊂ H, then keeping in mind (2.13),
(2.11), (2.12), and (3.22), we have
ˆ

Ω∩Br1

|(∇ĝ)∗[(∇U (ε)) ◦ ĝ]|p =
ˆ

Eε

|((∇ĝ) ◦ f̂)∗[∇U (ε)]|p Jf̂ = (1 + o(1))

ˆ

Eε

|∇U (ε)|p

= (1 + o(1))
! ˆ

H
|∇U |p −

ˆ

H\Ẽε

|∇U |p
$
= (1 + o(1))

ˆ

H
|∇U |p .

This proves (3.30). Entirely analogous arguments prove (3.31) and (3.32).

Step three: We now start the proof of statement (ii); in particular, from now on, Ω has
C2-boundary, n > 2p, and vε is defined as in (3.33); moreover, for the sake of brevity,
we set h = H∂Ω(0). In this step, we discuss the choice of β = β(n, p) ∈ (0, 1), which is
determined by the rates in (3.38), (3.39) and (3.40), and by the fact that in (3.34), (3.35)
and (3.36) we want errors of size o(ε): therefore, by

β min
!
n, n− 1, n− p

$
> 1 iff β >

1

n− p
,

(1− β) min
!n− p

p− 1
,
n− 1

p− 1
,

n

p− 1

$
> 1 iff β <

n+ 1− 2 p

n− p
,

we are led to choose

β ∈
" 1

n− p
,min

!
1,

n+ 1− 2 p

n− p

$#
, (3.42)

(where the interval appearing in (3.42) is non-empty thanks to n > 2p). With this choice
of β, we have min{β (n − p), (1 − β) n−p

p−1 } > 1 , and thus deduce from (3.38), (3.39) and

(3.40) that

max
! ˆ

Ω∩(Br2\Br1 )
|∇vε|p,

ˆ

Ω∩(Br2\Br1 )
vp

!

ε ,

ˆ

(∂Ω)∩(Br2\Br1 )
vp

#

ε

$
= o(ε) . (3.43)

Step four: We prove (3.34). We first notice that by (3.43) and (3.41) we have
ˆ

Ω
|∇vε|p =

ˆ

Ω∩Br1

|(∇g)∗[(∇U (ε)) ◦ g]|p +
ˆ

Ω
|∇v|p + o(ε) . (3.44)
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Now, by (2.15) we have

∇(U (ε) ◦ g) ◦ f = [(∇g) ◦ f ]∗∇U (ε)

= ∇U (ε) + ∂nU
(ε)∇ℓ− (∇ℓ ·∇U (ε)) en + xn

n−1-

i=1

κi ∂iU
(ε) ei +O(|x|2) |∇U (ε)| ,

so that, recalling that |∇ℓ| = O(|x|),
000∇(U (ε) ◦ g) ◦ f

000
2

= |∇U (ε)|2 + 2
*
(∇ℓ ·∇U (ε)) en − ∂nU

(ε)∇ℓ
+
·∇U (ε)

+2xn

n−1-

i=1

κi (∂iU
(ε))2 +O(|x|2) |∇U (ε)|2

= |∇U (ε)|2 + 2xn

n−1-

i=1

κi (∂iU
(ε))2 +O(|x|2) |∇U (ε)|2 .

Now set a = |∇U (ε)| and b = [2
/n−1

i=1 κi (∂iU
(ε))2]1/2, so that 0 ≤ b ≤ C a for a constant

depending on |A∂Ω(x0)|. Since z /→ (1 + z)p/2 is smooth in a neighborhood of z = 0, we
see that if |x| < 1/C for a constant C depending on |A∂Ω(x0)|, then

*
a2 + xn b

2 +O(|x|2) a2
+p/2

= ap
*
1 + (b/a)2 xn +O(|x|2)

+p/2

= ap
"
1 +

p

2
(b/a)2 xn +O(|x|2)

#
= ap +

p

2
ap−2 b2 xn +O(|x|2)

and thus

000∇(U (ε) ◦ g) ◦ f
000
p
Jf = |∇U (ε)|p

"
1 + p xn

n−1-

i=1

κi
(∂iU

(ε))2

|∇U (ε)|2
+O(|x|2)

#"
1− xn h+O(|x|2)

#

= |∇U (ε)|p − xn

"
h− p

n−1-

i=1

κi
(∂iU

(ε))2

|∇U (ε)|2
#
|∇U (ε)|p +O(|x|2) |∇U (ε)|p .

Then, by (2.13),
ˆ

Ω∩Br1

|(∇g)∗[(∇U (ε)) ◦ g]|p ≤
ˆ

H∩BC r1

00[(∇g) ◦ f ]∗ (∇U (ε))
00p Jf

≤
ˆ

H∩BC r1

|∇U (ε)|p − h

ˆ

H∩BC r1

xn |∇U (ε)|p

+p

n−1-

i=1

κi

ˆ

H∩BC r1

xn (∂iU
(ε))2 |∇U (ε)|p−2 + C

ˆ

H∩BC r1

|x|2 |∇U (ε)|p

=

ˆ

H∩BCr1/ε

|∇U |p − h ε

ˆ

H∩BCr1/ε

xn |∇U |p (3.45)

+p ε

n−1-

i=1

κi

ˆ

H∩BCr1/ε

xn (∂iU)2 |∇U |p−2 + C ε2
ˆ

H∩BCr1/ε

|x|2 |∇U |p .

Now, by the reflection symmetries of U with respect to {xi = 0}, i = 1, ..., n − 1 (recall
(3.19)), we have
ˆ

H∩BR

xn (∂iU)2 |∇U |p−2 =

ˆ

H∩BR

xn (∂1U)2 |∇U |p−2 , ∀i = 1, ..., n− 1 , ∀R > 0 ,
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and therefore
n−1-

i=1

κi

ˆ

H∩BCr1/ε

xn (∂iU)2 |∇U |p−2 = h

ˆ

H∩BCr1/ε

xn
*
∂1U)2 |∇U |p−2 .

Setting

L(U,BR) =

ˆ

H∩BR

xn |∇U |p − p xn (∂1U)2 |∇U |p−2 , (3.46)

we can thus rewrite (3.45) as
ˆ

Ω∩Br1

|(∇g)∗[(∇U (ε)) ◦ g]|p ≤
ˆ

H
|∇U |p − h εL(U,BC r1/ε) + C ε2

ˆ

H∩BC r1/ε

|x|2 |∇U |p .

At the same time, ε2 |x|2 ≤ C ε r1 |x| for any x ∈ BC r1/ε, so

ε2
ˆ

H∩BCr1/ε

|x|2 |∇U |p ≤ C ε r1

ˆ

H∩BCr1/ε

|x| |∇U |p

≤ C ε1+β

ˆ

H
|x| |∇UT |p + C ε1+β

ˆ

H
|x| |∇VT |p ≤ C(n, p, T ) ε1+β ,

where we have used the facts that VT is compactly supported and that n > 2p − 1 to
guarantee the convergence of the integrals in the final line. Hence,

ˆ

Ω∩Br1

|(∇g)∗[(∇U (ε)) ◦ g]|p =
ˆ

H
|∇U |p − hL(U,BC r1/ε) ε+ o(ε)

=

ˆ

H
|∇U |p − hL(U) ε+ o(ε) ,

where the o(ε) term depends on n, p, and T , and in the second line we have applied (3.25).
By (3.44) we deduce (3.34).

Step five: We prove (3.35). We first notice that by (3.43), v ∈ Lip(Ω), rn2 = εβ n = o(ε)
and our choice of β we have

ˆ

Ω
vp

!

ε =

ˆ

Ω∩Br1

(U (ε) ◦ g)p! +
ˆ

Ω
vp

!
+ o(ε) . (3.47)

Let Eε = g(Br1 ∩Ω) ⊂ H and Ẽε = Eε/ε ⊂ E as in step two. Then keeping in mind (2.13)
and (2.14),
ˆ

Ω∩Br1

(U (ε) ◦ g)p! =

ˆ

Eε

(U (ε))p
! − h

ˆ

Eε

xn (U
(ε))p

!
+

ˆ

Eε

O(|x|2) (U (ε))p
!

=

ˆ

Ẽε

Up! − h ε

ˆ

Ẽε

xn U
p! +

ˆ

Eε

O(|x|2) (U (ε))p
!

=

ˆ

H
Up! − h εM(U) +

!
−
ˆ

H\Ẽε

Up! + hε

ˆ

H\Ẽε

xnU
p! +

ˆ

Eε

O(|x|2) (U (ε))p
!
$
.

By (3.21) and (3.24), along with our choice of β, we see that

−
ˆ

H\Ẽε

Up! = o(ε), h ε

ˆ

H\Ẽε

xnU
p! = o(ε) .

Moreover, since U = UT + tVT with VT compactly supported in H and |t| ≤ 1, we have
ˆ

Eε

|x|2 (U (ε))p
! ≤ C r1 ε

ˆ

Ẽε

|x|Up! ≤ ε1+β

ˆ

H
|x|Up!

≤ Cε1+β

ˆ

H
|x|Up!

T + Cε1+β

ˆ

H
|x|V p! = o(ε),
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with o(ε) depending on n, p, and T . So, the entire term in brackets above can be written
as o(ε). Combining this estimate with (3.47), we deduce (3.35).

Step six: We finally prove (3.36). Notice that, by (3.43), v ∈ Lip(Ω), rn−1
2 = εβ (n−1) = o(ε)

(by the choice of β), we have
ˆ

∂Ω
vp

#

ε =

ˆ

(∂Ω)∩Br1

(U (ε) ◦ g)p# +

ˆ

∂Ω
vp

#
+ o(ε) . (3.48)

Now, by J∂Hf ≥ 1, (3.23) and our choice of β we have
ˆ

(∂Ω)∩Br1

(U (ε) ◦ g)p# ≥
ˆ

(∂H)∩Br1/C

(U (ε))p
#
=

ˆ

∂H
Up# −

ˆ

(∂H)\Br1/Cε

Up# ≥
ˆ

∂H
Up# + o(ε) .

At the same time, by J∂Hf ≤ 1 + C |x|2, we have
ˆ

(∂Ω)∩Br1

(U (ε) ◦ g)p# ≤
ˆ

(∂H)∩BC r1

(1 + C |x|2) (U (ε))p
#

≤
ˆ

∂H
Up# + C ε2

ˆ

(∂H)∩BC r1/ε

|x|2 Up#

where

ε2
ˆ

(∂H)∩BC r1/ε

|x|2 Up# ≤ C ε2
ˆ C r1/ε

0

r2 rn−2 dr

(r(n−p)/(p−1))p#

≤ C ε2
*
r1/ε

+1+n−(n−1) [p/(p−1)]

≤ C ε2
*
r1/ε

+(2p−n−1)/(p−1) ≤ C ε2 ε(1−β) (n+1−2p)/(p−1) ≤ C ε2 = o(ε) ,

thanks to n > 2p− 1. This completes the proof. □

4. Existence of minimizers

We first establish the existence of generalized minimizers. Recall that Φ∗
Ω(T ) was defined

in (1.21).

Theorem 4.1. Let n ≥ 2, p ∈ (1, n), and let Ω be a bounded open set with C1-boundary
in Rn. Then:

(i): for every T > 0, ΦΩ(T ) = Φ∗
Ω(T );

(ii): there is a minimizer (u, v, t) of Φ∗
Ω(T );

(iii): if (u, v, t) is a minimizer of Φ∗
Ω(T ) with

´

Ω up
!
> 0, then

´

∂Ω up
#
> 0,

u
,
‖u‖Lp! (Ω) is a minimizer of ΦΩ

"
‖u‖

Lp# (∂Ω)

,
‖u‖Lp! (Ω)

#
, (4.1)

and there exists λ,σ ∈ R such that
%
&

'

−∆pu = λup
!−1 , on Ω ,

|∇u|p−2 ∂u

∂νΩ
= σ up

#−1 , on ∂Ω ,
(4.2)

In particular, u ∈ Lip(Ω). If, in addition, v > 0, then λ and σ are given by

λ = vp−p! λH(t/v) , σ = vp−p# σH(t/v) , (4.3)

and, in particular,
t

v
∈ (0, T0) ∪ (TE ,∞) . (4.4)
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Proof. Step one: Since (u, 0, 0) ∈ YΩ(T ) if u ∈ XΩ(T ), we have Φ∗
Ω(T ) ≤ ΦΩ(T ). To prove

the converse inequality it is enough to show that for every (u, v, t) ∈ YΩ(T ),

∃uj ∈ XΩ(T ) s.t. lim
j→∞

ˆ

Ω
|∇uj |p =

ˆ

Ω
|∇u|p + vpΦH

" t

v

#p
. (4.5)

Looking back at the definition of YΩ(T ) in the paragraph preceding the statement of
Theorem 1.1, we can assume without loss of generality that v > 0 and t > 0. Moreover,
given (u, v, t) ∈ YΩ(T ) with v and t positive we can easily find (uj , vj , tj) ∈ YΩ(T ) with

vj , tj ,
´

Ω up
!

j , and
´

∂Ω up
#

j positive and such that E(uj , vj , tj) → E(u, v, t). By a diagonal

argument, it is thus sufficient proving (4.5) under the assumption that
´

Ω up
!
and
´

∂Ω up
#

are positive. This said, we apply Lemma 3.4(i) with

v =
u

v
, U = Ut/v ,

to find functions vj with vj = v on Ω \B2 εj (x0) for some x0 ∈ ∂Ω and εj → 0+, and with
ˆ

Ω
|∇vj |p =

1

vp

ˆ

Ω
|∇u|p + ΦH(t/v)p +Gj ,

ˆ

Ω
vp

!

j =
1

vp!

ˆ

Ω
up

!
+ 1 + Vj

ˆ

∂Ω
vp

#

j =
1

vp#

ˆ

∂Ω
up

#
+ (t/v)p

#
+ Tj ,

where Gj , Vj , Tj → 0 as j → ∞ at a rate depending on n, p, Ω, t/v and u only. By Lemma
2.6, there exist η and C depending on n, p, Ω, t/v and u, but independent from j, such
that for any (aj , bj) with |aj |+ |bj | < η, we have functions wj such that

ˆ

∂Ω
|wj |p

#
= aj +

ˆ

∂Ω
|vj |p

#
,

ˆ

Ω
|wj |p

!
= bj +

ˆ

Ω
|vj |p

!
, (4.6)

000
ˆ

Ω
|∇wj |p −

ˆ

Ω
|∇vj |p

000 ≤ C
*
|aj |+ |bj |

+
. (4.7)

For j large enough we can apply this statement with aj = −Tj and bj = −Vj to find a
sequence {wj}j with
ˆ

∂Ω
|wj |p

#
=

1

vp#

ˆ

∂Ω
up

#
+ (t/v)p

#
=

T p#

vp#
,

ˆ

Ω
|wj |p

!
=

1

vp!

ˆ

Ω
up

!
+ 1 =

1

vp!
, (4.8)

000
ˆ

Ω
|∇wj |p −

1

vp

ˆ

Ω
|∇u|p − ΦH(t/v)p −Gj

000 ≤ C
*
|Tj |+ |Vj |

+
. (4.9)

Setting uj = vwj , we obtain a sequence in XΩ(T ) that satisfies (4.5).

Step two: We prove that there is a minimizer for the generalized problem Φ∗
Ω(T ). By the

argument in step one we can find a sequence {uj}j in XΩ(T ) such that
´

Ω |∇uj |p → Φ∗
Ω(T )

p.
By Lemma 2.1, the measures µj , νj and τj defined in (2.1) have subsequential weak-star
limits µ, ν and τ satisfying (2.2), (2.3) and (2.4) and (2.5). In particular, there is an at
most countable set {xi}i∈I ⊂ Ω and corresponding vi > 0 and ti ≥ 0 for every i ∈ I, such
that

Φ∗
Ω(T )

p = lim
j→∞

ˆ

Ω
|∇uj |p ≥

ˆ

Ω
|∇u|p + Sp

-

i∈I\Ibd

vpi +
-

i∈Ibd

vpi ΦH(ti/vi)
p , (4.10)

where u is the subsequential weak limit of uj , and

1 =

ˆ

Ω
up

!
+

-

i∈I
vp

!

i , T p# =

ˆ

∂Ω
up

#
+

-

i∈Ibd

tp
#

i . (4.11)
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Now set
vp

!

c =
-

i∈I
vp

!

i , tp
#

c =
-

i∈Ibd

tp
#

i .

By an immediate adaptation of the proof of Lemma 3.4 we can easily construct a sequence
{Wj}j in XH(tc/vc) with the property that

ˆ

H
|∇Wj |p →

-

i∈I

" vi
vc

#p
ΦH(ti/vi)

p .

Since Wj ∈ XH(tc/vc) implies
´

H |∇Wj |p ≥ ΦH(tc/vc)
p, we deduce from (4.10) that

Φ∗
Ω(T )

p ≥
ˆ

Ω
|∇u|p + vpc ΦH(tc/vc)

p ,

while (4.11) gives (u, vc, tc) ∈ YΩ(T ). This proves that (u, vc, tc) is a minimizer of Φ∗
Ω(T ).

Step three: We finally prove statement (iii). If (u, v, t) is a minimizer of Φ∗
Ω(T ) with

´

Ω up
!
> 0, it is immediate to deduce (4.1), and since ΦΩ(0) does not admit minimizers, it

must also be
´

∂Ω up
#
> 0. By Lemma 2.5, the Euler-Lagrange equation (4.2) for u holds

for some λ,σ ∈ R and u ∈ Lip(Ω). Assuming now that v > 0, we can prove (4.3) by
noticing that, given ϕ ∈ C∞

c (Rn), if we define

α(δ) =
"
1−
ˆ

Ω
(u+ δ ϕ)p

!
#1/p!

− v , β(δ) =
"
T p# −

ˆ

∂Ω
(u+ δ ϕ)p

#
#1/p#

− t ,

then there is δ0 > 0 such that (u + δ ϕ, v + α(δ), t + β(δ)) ∈ YΩ(T ) for every |δ| < δ0. In
particular,

0 =
d

dδ

000
δ=0

ˆ

Ω
|∇(u+ δϕ)|p + (v + α(δ))pΦH

" t+ β(δ)

v + α(δ)

#p
,

and exploiting (4.2) as well as

α′(0) = −v1−p!
ˆ

Ω
up

!−1ϕ , β′(0) = −t1−p#
ˆ

∂Ω
up

#−1ϕ ,

and (3.8) (i.e. ΦH(T ) = λH(T ) + σH(T )T p# and σH(T )T p#−1 = ΦH(T )p−1Φ′
H(T ) for

every T > 0), we see that

0 =

ˆ

Ω
|∇u|p−2∇u ·∇ϕ+ vp−1ΦH(t/v)p−1Φ′

H(t/v)β′(0)

+
!
vp−1ΦH(t/v)p − t vp−2ΦH(t/v)p−1Φ′

H(t/v)
$
α′(0)

= λ

ˆ

Ω
up

!−1 ϕ+ σ

ˆ

∂Ω
up

#−1ϕ− vp−1 t1−p# ΦH(t/v)p−1Φ′
H(t/v)

ˆ

∂Ω
up

#−1ϕ

−vp−p!
!
ΦH(t/v)p − (t/v)ΦH(t/v)p−1Φ′

H(t/v)
$ ˆ

Ω
up

!−1ϕ

=
*
σ − vp−p#σH(t/v)

+ ˆ

∂Ω
up

#−1ϕ+
*
λ− vp−p!λH(t/v)

+ ˆ

Ω
up

!−1ϕ .

Testing with ϕ ∈ C∞
c (Ω) we find λ = vp−p!λH(t/v), and testing with ϕ = 1 on Ω then

gives σ = vp−p#σH(t/v). We finally prove (4.4), i.e. t/v ∕∈ [T0, TE ]. Indeed, combining the
balance condition (2.16) with (4.3) we find

vp−p! λH(t/v)

ˆ

Ω
up

!−1 + vp−p# σH(t/v)

ˆ

∂Ω
up

#−1 = 0 , (4.12)

where by (3.11) and (3.12) we have λH > 0 in [T0, TE) and σH > 0 on (T0, TE ] (with
λH(TE) = σH(T0) = 0 by continuity). If t/v ∈ [T0, TE), then (4.12) implies

´

Ω up
!
= 0,

a contradiction; if t/v = TE , then (4.12) gives u = 0 on ∂Ω, so that, by (4.1), u is
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a minimizer of ΦΩ(0), and thus u is optimal in the Sobolev inequality on Rn, so that
Ω = Rn, contradicting the fact that Ω is bounded. □

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. Statement (i) is an immediate consequence of Theorem 4.1. We
thus focus on statement (ii), and assume that Ω is of class C2 and that n > 2p. We want
to prove that if (u, v, t) is a minimizer of Φ∗

Ω(T ), then v = t = 0. We assume by way of
contradiction that either v > 0 or t > 0; recalling the definition of YΩ(T ), this implies
that v > 0 and t > 0. We apply Lemma 3.4 (ii) with the choice (v, T ) = (u/v, τ) at a
point x0 ∈ ∂Ω of positive mean curvature, noting that if v = 1 then v ≡ 0 and that v is
Lipschitz continuous if v ∈ (0, 1) thanks to (4.1) and Lemma 2.5. Then, for every U ∈ Uτ ,
we have

ˆ

Ω
|∇vε|p ≤

ˆ

H
|∇U |p +

ˆ

Ω
|∇v|p −H∂Ω(0)L(U) ε+ o(ε) , (4.13)

ˆ

Ω
vp

!

ε =

ˆ

H
Up! +

ˆ

Ω
vp

!−H∂Ω(0)M(U) ε+ o(ε) , (4.14)

ˆ

∂Ω
vp

#

ε =

ˆ

∂H
Up# +

ˆ

∂Ω
vp

#
+ o(ε) , (4.15)

where L(U) and M(U) are defined in (3.46) and (1.29). We apply this with U ∈ Uτ given
by

U = Uτ + b εVτ , |ε| < 1

|b| , b =
H∂Ω(0)M(Uτ )

p"
,

The reason for the choice of b will become apparent in a moment. Indeed, thanks to (3.26),
(3.27) and (3.28), we have

ˆ

H
|∇U |p = ΦH(τ)p + p bλH(τ)ε+ o

*
ε
+
,

ˆ

H
Up! = 1 + p" b ε+ o

*
ε
+
,

ˆ

∂H
Up# = τp

#
,

which, combined with (4.13), (4.14), (4.15) and

ΦΩ(T )
p

vp
= ΦH(τ)p +

ˆ

Ω
|∇v|p, 1

vp!
= 1 +

ˆ

Ω
vp

!
, (T/v)p

#
= τp

#
+

ˆ

∂Ω
vp

#
,

implies that wε = v vε satisfies
ˆ

Ω
|∇wε|p ≤ ΦΩ(T )

p +
!
p bλH(τ)−H∂Ω(0)L(U)

$
vpε+ o(ε) , (4.16)

ˆ

Ω
wp!

ε = 1+
(
p" b−H∂Ω(0)M(U)

)
vp

!
ε+ o(ε) = 1 + o(ε) (4.17)

ˆ

∂Ω
wp#

ε = T p# + o(ε) , (4.18)

where in (4.16) we have used the choice of b to deduce

M(U) = M(Uτ ) + p"
ˆ

H
xn U

p!−1
τ Vτ b ε+ o(ε) ,

(
p" b−H∂Ω(0)M(U)

)
ε = o(ε) .

In the same spirit, by

lim
ε→0+

|L(Uτ + b εVτ )− L(Uτ )| = 0 ,
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we deduce from (4.16) that
ˆ

Ω
|∇wε|p ≤ ΦΩ(T )

p −
!
L(Uτ )−

(n− p)

n
M(Uτ )λH(τ)

$
H∂Ω(0) v

pε+ o(ε)

≤ ΦΩ(T )
p − C(n, p, τ)H∂Ω(0) v

pε+ o(ε) ,

(4.19)

where in the second line we apply Lemma 3.1. We thus conclude that
ˆ

Ω
|∇wε|p ≤

ˆ

Ω
|∇u|p + vpΦH(t/v)p −M vp ε+ o(ε) . (4.20)

It remains to modify the functions wε to obtain w∗
ε ∈ XΩ(T ) also satisfying (4.20), allowing

us to conclude the proof of the theorem by choosing ε sufficiently small. We will distinguish
between two cases, applying Lemma 2.6 in different ways in the two cases.

Case one: Suppose first that v < 1 and thus
´

Ω up
!
> 0. This also implies that

´

∂Ω up
#
> 0

by Theorem 4.1-(iii). Taking into account (4.17) and (4.18), we can thus apply Lemma 2.6
in an analogous way to step one of the proof of Theorem 4.1 in order to slightly modify
wε into w∗

ε ∈ XΩ(T ) with

ΦΩ(T )
p ≤
ˆ

Ω
|∇w∗

ε |p =
ˆ

Ω
|∇wε|p + (vp

#
+ vp

!
) o(ε)

≤
ˆ

Ω
|∇u|p + vpΦH(t/v)p − M

2
vp ε = ΦΩ(T )

p − M

2
vp ε < ΦΩ(T )

p ,

thus reaching a contradiction.

Case two: Next, suppose that v = 1. So, ΦΩ(T ) = ΦH(T ), u = v ≡ 0 and vε = ϕε (U
(ε)◦g).

In this case, we will pull the relevant quantities back to the half space H and apply
Lemma 2.6 there to correct the volume and trace constraints. More specifically, for ε < ε0,
the support of ϕε is entirely contained in the domain of the diffeomorphism fx0 , and so
we can define Ψε : H → R by Ψε(y) = ϕε ◦ f(ε y). In this way, we can rewrite

wε = vε = (Ψε U)(ε) ◦ g.
Thanks to (2.13), Ψε is identically equal to one in Bεβ−1/C ∩ H and vanishes outside of

BC εβ−1 ∩H. Using the area formula, we rewrite (4.17), (4.18), and (4.20) as
ˆ

H
(Ψε U)p

!
mε =

ˆ

Ω
wp!

ε dx = 1 + o(ε) ,

ˆ

∂H
(Ψε U)p

$
m̂ε =

ˆ

∂Ω
wp$

ε = T p$ + o(ε).

ˆ

H
|Aε [∇(Ψε U)]|pmε =

ˆ

Ω
|∇wε|p ≤ ΦH(T )−Mε+ o(ε),

where we have set

mε(x) = Jf(εx) , m̂ε(x) = J∂Hf(εx) , Aε(x) = (∇g ◦ f(εx))∗ .
We now repeat the argument used in the proof of Lemma 2.6: exploiting the fact that

Ψε U = UT on (H ∩BR) \ (sptVT ) , R =
εβ−1
0

C
, (4.21)

as well as that both
´

H(Ψε U)p
!
mε and

´

∂H(Ψε U)p
$
m̂ε are positive and finite, we can

easily find ψ ∈ C∞
c ((H ∩BR) \ (sptVT )) and ϕ ∈ C∞

c ((Rn ∩BR) \ (sptVT )) such that
ˆ

H
(Ψε UT )

p!−1mε ψ =

ˆ

∂H
(Ψε UT )

p#−1 m̂εϕ = 1 , (4.22)

ˆ

H
(Ψε UT )

p!−1mε ϕ =

ˆ

∂H
(Ψε UT )

p#−1 m̂ε ψ = 0 .
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Correspondingly, we consider the maps hε : R2 → R2 by

hε(s, t)=
" ˆ

∂H

*
|vε + sϕ+ tψ|p# − |vε|p

#+
m̂ε,

ˆ

H

*
|vε + sϕ+ tψ|p! − |vε|p

!+
mε

#
.

By (4.21), hε ∈ C1,α(R2;R2) for some α = α(n, p) ∈ (0, 1), with

sup
ε<ε0

‖hε‖C1,α(R2;R2) < ∞ ;

moreover, hε(0, 0) = 0 and, by (4.22),

∇hε(0, 0) =
"

p# 0
0 p"

#
.

We can thus apply the inverse function theorem uniformly in ε, to obtain functions W ∗
ε :

H → R with support in BCεβ−1 such that
ˆ

H
(W ∗

ε )
p!mε = 1 ,

ˆ

∂H
(W ∗

ε )
p$m̂ε = T p$ ,

0000
ˆ

H
|Aε[∇(Ψε U)]|pmε −

ˆ

H
|Aε[∇W ∗

ε ]|pmε

0000 = o(ε).

(4.23)

Finally, for ε < ε0, define w
∗
ε : Ω → R by w∗

ε = (W ∗
ε )

(ε) ◦g. Changing variables once again,
(4.23) tells us that wε ∈ XΩ(T ) and that

ΦΩ(T )
p ≤
ˆ

Ω
|∇w∗

ε |p =
ˆ

Ω
|∇wε|p + o(ε)

≤ ΦH(T )p −Mε+ o(ε) ≤ ΦH(T )p − Mε

2
< ΦH(T ) = ΦΩ(T ),

giving us a contradiction in this case as well. This completes the proof of the theorem. □

5. Rigidity theorems for best Sobolev inequalities

In this section, we prove Theorem 1.3.

Proof of Theorem 1.3. Rigidity under assumption (ii) is immediate by combining Theorem
1.1-(ii) with (1.23) and (1.24). Let us now consider assumption (i), namely, there is T∗ > 0
such that

ΦΩ(T ) = ΦB(T ) ∀T ∈ (0, T∗) . (5.1)

Without loss of generality we can assume that T∗ < ISO(B)1/p
#
. We argue by contradic-

tion and assume that Ω is not a ball.

By Theorem 4.1, for every T > 0 there is (uT , vT , tT ) a minimizer of Φ∗
Ω(T ). The basic

idea of the proof will be to show that the trace-to-volume ratio of uT must be, on one
hand, uniformly positive and, on the other hand, tending to zero as T → 0, giving us a
contradiction. Since Ω is connected and is not a ball by assumption, the rigidity criterion
(1.23) together with (1.24) and (5.1) tell us that a classical minimizer for ΦΩ(T ) cannot
exist for T ∈ (0, T∗), and so we immediately deduce that vT < 1 for all such T . In other
words, if we set

νT =
*
1− vp

!

T )1/p
!
= ‖uT ‖Lp! (Ω) , τT = (T p# − tp

#
)1/p

#
= ‖u‖

Lp# (∂Ω)
,

then νT > 0 for all T ∈ (0, T∗). So, Theorem 4.1-(iii) implies that

uT /νT is a minimizer of ΦΩ(τT /νT ) . (5.2)

In particular, this means that
τT
νT

≥ T∗ for all T ∈ (0, T∗) , (5.3)
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since as we noted above, no minimizer of ΦΩ(T̃ ) can exist for T̃ = τT /νT < T∗. Since
T ≥ τT , (5.3) tells us that T/νT ≥ T∗; rearranging this inequality gives us the following
lower bound on vT :

vp
!

T ≥ 1− (T/T∗)
p! ∀T ∈ (0, T∗) . (5.4)

From this, an upper bound on the ratio tT /vT follows immediately:

tT
vT

≤
*
1− (T/T∗)

p!
+−1/p!

T ∀T ∈ (0, T∗) . (5.5)

In particular tT /vT → 0 as T → 0+.

On the other hand, we will now use the Euler-Lagrange equation for uT to show that

lim
T→0+

τT
νT

= 0 , (5.6)

which is a clear contradiction to (5.3). Indeed, by Theorem 4.1-(iii) and (5.2), uT satisfies
the Euler-Lagrange equation

%
5&

5'

−∆puT = vp−p!

T λH(tT /vT )u
p!−1
T on Ω ,

|∇uT |p−2 ∂u

∂νΩ
= vp−p#

T σH(tT /vT )u
p#−1
T on ∂Ω ;

(5.7)

see (4.2), (4.3) and (3.7) (for the definition ofλH(T ) and σH(T )). Testing (5.7) with uT ,
we find that

ˆ

Ω
|∇uT |p = vp−p!

T λH

" tT
vT

# ˆ

Ω
up

!

T + vp−p#

T σH

" tT
vT

# ˆ

∂Ω
up

#

T

= vp−p!

T λH

" tT
vT

#
νp

!

T + vp−p#

T σH

" tT
vT

#
τp

#

T .

After rearranging and multiplying through by vp
$−p

T ν−p$

T > 0, we arrive at the inequality

−σH

" tT
vT

#" τT
νT

#p#

≤ λH

" tT
vT

#"νT
vT

#p!−p#

. (5.8)

By (3.12) and the continuity of T /→ λH(T ), there are C > 0 and T∗∗ > 0 such that
λH(T ) ∈ (1/C,C) for every T ∈ (0, T∗∗). Moreover, thanks to (5.4), we can ask that
vT ≥ 1/C for T ∈ (0, T∗∗). In particular, by (5.5) and up to further increasing C, if
T < 1/C, then tT /vT < T∗∗ and thus (5.8), νT ≤ 1 and vT ≥ 1/C give

−σH

" tT
vT

#" τT
νT

#p#

≤ C . (5.9)

By (3.11) and the fact that tT /vT → 0 as T → 0, we see that σH(T ) → −∞ as T → 0+,
so that (5.9) implies (5.6). We reach a contradiction to (5.3), completing the proof. □

Appendix A. Proof of Lemma 2.1

We will use the Brezis–Lieb lemma (if (X,µ) is a measure space, q ≥ 1, and {fj}j is
bounded in Lq(X), then

ˆ

X
|f |q dµ = lim

j→∞

ˆ

X
|fj |q dµ−

ˆ

X
|fj − f |q dµ , (A.1)

provided f is a µ-a.e. limit of {fj}j on X), and the two Sobolev-type inequalities

‖u‖Lp! (Ω) ≤ C1

"
‖∇u‖Lp(Ω) + ‖u‖Lp(Ω)

#
, (A.2)

‖u‖
Lp# (∂Ω)

≤ C2

"
‖∇u‖Lp(Ω) + ‖u‖Lp(Ω)

#
, (A.3)
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which are valid, with constants C1 and C2 depending on n, p and Ω only, as soon as Ω is
bounded and has Lipschitz boundary.

Proof of Lemma 2.1. Step one: Since Ω is a bounded open set with Lipschitz boundary,
uj ⇀ u as distributions in Ω, and {∇uj}j is bounded in Lp(Ω), standard considerations

show that u ∈ W 1,p(Ω), {uj}j is bounded in Lp!(Ω) and in Lp#(∂Ω), and, up to extracting

subsequences, uj → u in Lq(Ω) for every q ∈ [1, p"), uj → u in Lr(∂Ω) for every r < p#,
uj → u pointwise Ln-a.e. on Ω and Hn−1-a.e. on ∂Ω, and that the sequences of Radon
measures {νj}j , {τj}j and {µj}j defined in (2.1) admits weak-∗ limits ν, τ and µ, with

spt ν and sptµ contained in Ω, and sptτ contained in ∂Ω.

Step two: We let µ̃ denote the weak-∗ limit of |∇(uj − u)|p Ln└Ω (which exists up to
possibly extracting a further subsequence), and claim that µ̃({x}) = µ({x}) for every
x ∈ Rn. Indeed, by the elementary inequality

00|v + w|p − |w|p
00 ≤ ε |v|p + C(p, ε) |w|p , v, w ∈ Rn , ε > 0 ,

given x ∈ Rn and r > 0 we see that
000
ˆ

Br(x)
|∇uj |p −

ˆ

Br(x)
|∇(uj − u)|p

000 ≤ ε

ˆ

Br(x)
|∇(uj − u)|p + C(p, ε)

ˆ

Br(x)
|∇u|p ,

so that letting first j → ∞ (for r > 0 such that µ(∂Br(x)) = µ̃(∂Br(x)) = 0) and then
r → 0+ (along a generic sequence of radii), we find indeed |µ({x}) − µ̃({x})| ≤ ε µ̃({x})
for every ε > 0.

Step three: If now pick η ∈ C∞
c (Rn) and set ν̃ = ν − |u|p! Ln└Ω (notice that, by lower

semicontinuity, ν̃ is a Radon measure), then, by exploiting, in order, νj
∗
⇀ ν, (A.1), (A.2),

and uj → u in Lp(Ω), we find
ˆ

Rn

|η|p! dν̃ ≤ lim inf
j→∞

ˆ

Ω
|η|p! (|uj |p

! − |u|p!) = lim
j→∞

ˆ

Ω
|η (uj − u)|p!

≤ Cp!

1 lim
j→∞

"
‖∇(η(uj − u))‖Lp(Ω) + ‖η(uj − u)‖Lp(Ω)

#p!

= Cp!

1 lim
j→∞

‖∇(η(uj − u))‖p
!

Lp(Ω) = Cp!

1 lim
j→∞

‖η∇(uj − u))‖p
!

Lp(Ω)

≤ Cp!

1

" ˆ

Rn

|η|p dµ̃
#p!/p

.

In particular, for every x ∈ Rn one has

ν̃(Br(x)) ≤ Cp!

1 µ̃(Br(x))
p!/p for a.e. r > 0 . (A.4)

By (A.4), ν̃ is absolutely continuous with respect to µ̃, so that ν̃ = f µ̃ where f is such
that, for µ̃-a.e. x ∈ Rn,

f(x) = lim
r→0+

ν̃(Br(x))

µ̃(Br(x))
;

in particular, again by (A.4), for µ̃-a.e. x ∈ Rn we have

f(x) ≤ Cp!

1 lim
r→0+

µ̃(Br(x))
(p!/p)−1 = Cp!

1 µ({x})(p!/p)−1 .

In particular, as p" > p, if X = {x ∈ Rn : µ({x}) > 0} = {xi}i∈I ⊂ Ω (I at most
countable) denotes the set of atoms of µ, then f(x) = 0 µ-a.e. on Rn \ X, and we have
proved that

sptν̃ ⊂ {xi}i∈I . (A.5)
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An entirely analogous argument, this time based on (A.3) rather than on (A.2), shows

that, if τ̃ = τ − |u|p# Hn−1└∂Ω, then
sptτ̃ ⊂ {xi}i∈I ∩ ∂Ω . (A.6)

We have thus proved the validity of (2.2), (2.3) and (2.4) for suitable vi, ti ≥ 0 and gi > 0:
and of course we can discard possible points xi with vi = 0 from these decompositions, and
directly assume that vi > 0 for every i. The fact that gi ≥ S vi if xi ∈ Ω is immediate by
repeating the above argument with arbitrary η ∈ C∞

c (Ω) (in which case C1 can be replaced
by 1/S). An analogous argument, this time using Lemma 2.2, shows that gi ≥ viΦH(ti/vi)
if xi ∈ ∂Ω. □

Appendix B. Proof of Lemmas 2.2 and 2.3

This section is dedicated to the proof of Lemmas 2.2 and 2.3. We recall the standard
Taylor expansions for the inverse and determinant of a matrix that is a perturbation of
the identity:

(IdRn + tA)−1 = IdRn − tA+O(t2) , (B.1)

det(IdRn + tA) = 1 + t traceA+O(t2); (B.2)

see for instance [Mag12, Lemma 17.4].

Proof of Lemma 2.2. Note that f̂ can equivalently be written as f̂(x) = x + ℓ(p(x))en.

We directly see that f̂ maps C1-diffeomorphically onto its image with inverse ĝ(y) =
y − ℓ(p(y))xn and (2.10) holds because ℓ(0) = |∇ℓ(0)| = 0 and ℓ is C1. We compute, in
the standard basis for Rn, that

∇f̂(p(x), xn) =

6
Id 0

∇ℓ(p(x)) 1

7
= Id+

6
0 0

∇ℓ(p(x)) 0

7
.

Since ℓ is C1 with ∇ℓ(0) = 0, this gives the first estimate in (2.11). The second estimate
in (2.11) follows in the same way using the explicit form of g above. The first estimate in

(2.12) follows from (B.2) and the expression for ∇f̂ above. The second estimate in (2.12)

follows because f̂ = F on Dr0 (compare with (2.7)), and so

J∂H f̂ = J∂HF =
.

1 + |∇ℓ|2 .
This completes the proof of the lemma. □

Proof of Lemma 2.3. Step one: We compute some geometric quantities for ∂Ω using the
graphical coordinates defined by the map F given in (2.7). We start with first order
quantities. For x ∈ Dr0 and i = 1, . . . , n− 1, we set τi := dFx(ei), i.e.,

τi = ∂iF (x) = ei + ∂iℓ(x)en, (B.3)

so that {τ1, . . . , τn−1} forms a basis for TF (x)∂Ω. Since ℓ is C2 and ∇ℓ(x) = 0, we have

gij = 〈τi, τj〉Rn = δij + ∂iℓ ∂jℓ = δij +O(|x|2) . (B.4)

In other words, the metric coefficients in graphical coordinates are Euclidean up to second
order in |x|. The volume measure of ∂Ω is given by

J∂HF =
.

det gij =
.

1 + |∇ℓ|2 ;
this immediately gives the second estimate in (2.14) since f = F for x ∈ Dr0 . The inverse
metric coefficients are

gij = δij +
δia δib ∂aℓ ∂bℓ

1 + |∇ℓ|2 δij +O(|x|2) . (B.5)
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Recall that, without loss of generality, we have chosen an orthonormal basis for Rn−1 ⊂ Rn

that diagonalizes the Hessian of ℓ at x = 0. Let {κ1, . . . ,κn−1} denote the eigenvalues.
The second fundamental form of ∂Ω at x is defined by Ax(v, w) = −〈dνΩ(v), w〉 for tangent
vectors v, w ∈ Tx(∂Ω). Using the shorthand ν := νΩ ◦ F : Dr0 → Sn−1, the coefficients
of the second fundamental form in the coordinates defined by F are given by Aij =
〈∂ijF, ν〉Rn . Differentiating (B.3) above, we have ∂ijF = ∂jτi = ∂ijℓ en, and thus for
i, j ∈ {1, . . . , n− 1} we have

Aij = 〈∂ijF, ν〉 = ∂ijℓ 〈en, ν〉 =
−∂ijℓ.
1 + |∇ℓ|2

= −∂ijℓ+O(|x|2) . (B.6)

We have

∂iν = −Aj
i τj , (B.7)

and from (B.5) and (B.6) we directly compute that Aj
i = gikAkj is given by

Aj
i =

−∂ijℓ.
1 + |∇ℓ|2

+O(|x|2) = −∂ijℓ+O(|x|2)

= −∂ijℓ(0) +O(|x|2) = −κjδ
j
i +O(|x|2).

Step 2: Next, we use the previous step to compute geometric quantities associated to the
coordinates defined by f . For x ∈ Cr0 and i = 1, . . . , n− 1, we note that ∂ip(x) = ei and
thus from (B.7), In what follows we will suppress the composition with p in our notation,
writing for instance τi in place of τi ◦ p(x). For i = 1, . . . , n− 1, we have

∂if(x) = τi − xn∂iν(p(x)) (B.8)

= ei + ∂iℓ en + xnA
j
i τj = ei + ∂iℓ en − xnκiei +O(|x|2),

and ∂nf(x) = −ν =
en −∇ℓ.
1 + |∇ℓ|2

= en −∇ℓ+O(|x|2). (B.9)

Together (B.8) and (B.9) can be expressed in consolidated form as

∇f =

n-

i=1

∂if ⊗ ei =

n-

i=1

ei ⊗ ei + en ⊗∇ℓ−∇ℓ⊗ en − xn

n−1-

i,j=1

κi(0)ei ⊗ ei +O(|x|2)

= IdRn + en ⊗∇ℓ−∇ℓ⊗ en − xn

n−1-

i,j=1

κi(0)ei ⊗ ei +O(|x|2).

In particular, from (B.2) we see that the volume form is given by

Jf =
.

det gij = 1− xnH∂Ω(0) +O(|x|2) ,

giving us the first estimate in (2.14). We see directly from the definition that f is a C1 map,
and since we see from the expression for ∇f above that ∇f(0) = IdRn , we may apply the
inverse function theorem to see that, up to decreasing r0, f defines a C1 diffeomorphism
onto its image. Letting g = f−1 and using the expansion of the inverse (B.1), we find

(∇g) ◦ f = (∇f)−1 = IdRn − en ⊗∇ℓ+∇ℓ⊗ en + xn

n−1-

i,j=1

κi(0)ei ⊗ ei +O(|x|2).

Finally, (2.13) follows from these expressions for ∇f and ∇g, along with the assumptions
that ∇ℓ(0) = 0. This completes the proof of the lemma. □
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