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1 Basic results

We begin by collecting some basic facts which can be proved via “bare-hands” techniques.

1. The sum of all of the degrees is equal to twice the number of edges. Deduce that the number of
odd-degree vertices is always an even number.

Solution: By counting in two ways, we see that the sum of all degrees equals twice the number of
edges.

2. A graph is called bipartite if it is possible to separate the vertices into two groups, such that all of the
graph’s edges only cross between the groups (no edge has both endpoints in the same group). Prove
that this property holds if and only if the graph has no cycles of odd length.

Solution: Separate into connected components. For each, choose a special vertex, and color based
on parity of length of shortest path from that special vertex.

3. Every connected graph with all degrees even has an Eulerian circuit, i.e., a walk that traverses each
edge exactly once.

Solution: Start walking from a vertex v1 without repeating any edges, and observe that by the
parity condition, the walk can only get stuck at v1, so we get one cycle. If we still have more edges left
to hit, connectivity implies that some vertex v2 on our current walk is adjacent to an unused edge, so
start the process again from v2. Splice the two walks together at v2, and repeat until done.

4. Suppose that a graph has at least as many edges as vertices. Show that it contains a cycle.

Solution: As long as there are vertices with degree exactly 1, delete both the vertex and its incident
edge. Also delete all isolated vertices. These operations preserve E ≥ V , but we can never delete
everything because once V = 1, E must be 0, so we can never get down to only 1 vertex or less.

Therefore we end up with a nonempty graph with all degrees ≥ 2, and by taking a walk around and
eventually hitting itself, we get a cycle.

5. Suppose that the graph G has all degrees at most ∆. Prove that it is possible to color the vertices of
G using ≤ ∆ + 1 colors, such that no pair of adjacent vertices receives the same color.

Solution: Consider the greedy algorithm for coloring vertices.

6. Let G1, G2, G3 be three (possibly overlapping) graphs on the same vertex set, and suppose that G1 can
be properly colored with 2 colors, G2 can be properly colored with 3 colors, and G3 can be properly
colored with 4 colors. Let G be the graph on the same vertex set, formed by taking the union of the
edges appearing in G1, G2, G3. Prove that G can be properly colored with 24 colors.

Solution: Product coloring.
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2 Matching

Consider a bipartite graph G = (V,E) with partition V = A ∪B. A matching is a collection of edges which
have no endpoints in common. We say that A has a perfect matching to B if there is a matching which hits
every vertex in A.

Theorem. (Hall’s Marriage Theorem) For any set S ⊂ A, let N(S) denote the set of vertices (necessarily
in B) which are adjacent to at least one vertex in S. Then, A has a perfect matching to B if and only if
|N(S)| ≥ |S| for every S ⊂ A.

This has traditionally been called the “marriage” theorem because of the possible interpretation of edges
as “acceptable” pairings, with the objective of maximizing the number of pairings. In real life, however,
perhaps there may be varying degrees of “acceptability.” This may be formalized by giving each vertex (in
both parts) an ordering of its incident edges. Then, a matching M is called unstable if there is an edge
e = ab 6∈M for which both a and b both prefer the edge e to their current partner (according to M).

Theorem. (Stable Marriage Theorem) A stable matching always exists, for every bipartite graph and every
collection of preference orderings.

1. You are given a 10 × 10 grid, with the property that in every row, exactly 3 squares are shaded, and
in every column, exactly 3 squares are shaded. An example is below.

Prove that there must always be a shaded transversal , i.e., a choice of 10 shaded squares such that no
two selected squares are in the same row or column. An example is below.

Solution: Hall’s theorem.

2. (Hall with deficiency.) In a bipartite graph, every subset S of the left side has |N(S)| ≥ |S| − 1. Prove
that there is an almost-perfect matching, in the sense that there is a matching which involves all but
at most one vertex of the left side.

3. (Multi-Hall.) In a bipartite graph, every subset S of the left side has |N(S)| ≥ 2|S|. Prove that there
is a perfect 1-to-2 matching, in the sense that each vertex of the left is matched to a pair of vertices
on the right, and all of the pairs on the right are disjoint.
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4. Every k-regular bipartite graph contains a perfect matching.

5. (Diestel 2.11.) Suppose that a bipartite graph has bipartition A∪B, and for every edge ab with a ∈ A
and b ∈ B, we have deg(a) ≥ deg(b). Prove that there is a perfect matching from A to B.

3 Planarity

When we represent graphs by drawing them in the plane, we draw edges as curves, permitting intersections.
If a graph has the property that it can be drawn in the plane without any intersecting edges, then it is called
planar. Here is the tip of the iceberg. One of the most famous results on planar graphs is the Four-Color
Theorem, which says that every planar graph can be properly colored using only four colors. But perhaps
the most useful planarity theorem in Olympiad problems is the Euler Formula:

Theorem. Every connected planar graph satisfies V − E + F = 2, where V is the number of vertices, E is
the number of edges, and F is the number of faces.

Solution: Actually prove that V −E + F = 1 + C, where C is the number of connected components.
Each connecting curve is piecewise-linear, and if we add vertices at the corners, this will keep V −E invariant.
Now we have a planar graph where all connecting curves are straight line segments.

Then induction on E + V . True when E = 0, because F = 1 and V = C. If there is a leaf (vertex of
degree 1), delete both the vertex and its single incident edge, and V − E remains invariant. If there are no
leaves, then every edge is part of a cycle. Delete an arbitrary edge, and that will drop E by 1, but also drop
F by 1 because the edge was part of a cycle boundary, and now that has merged two previously distinct
faces.

Now, use the theorem to solve the following problems:

1. Prove that K5 is not planar.

2. Prove that K3,3 is not planar.

3. Prove that K4,4 is not planar.

4. Prove that every planar graph can be properly colored using at most 6 colors.

The Euler criterion immediately implies that every connected graph has at least E − (3V − 6) crossings.
As it turns out, one can do much better:

Theorem. (Ajtai, Chvátal, Newborn, Szemeredi; Leighton.) Every connected graph with E ≥ 4V has at

least E3

64V 2 crossings.

4 Ramsey theory

Complete disorder is impossible.
— T. S. Motzkin, on the theme of Ramsey Theory.

The Ramsey Number R(s, t) is the minimum integer n for which every red-blue coloring of the edges of
Kn contains a completely red Ks or a completely blue Kt. Ramsey’s Theorem states that R(s, t) is always
finite, and we will prove this in the first exercise below. The interesting question in this field is to find upper
and lower bounds for these numbers, as well as for quantities defined in a similar spirit.

1. Prove by induction that R(s, t) ≤
(
s+t−2
s−1

)
. Note that in particular, R(3, 3) ≤ 6.
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Solution: Observe that R(s, t) ≤ R(s−1, t)+R(s, t−1), because if we have that many vertices, then
if we select one vertex, then it cannot simultaneously have < R(s−1, t) red neighbors and < R(s, t−1)
blue neighbors, so we can inductively build either a red Ks or a blue Kt. But(

(s− 1) + t− 2

(s− 2)

)
+

(
s + (t− 1)− 2

s− 1

)
=

(
s + t− 2

s− 1

)
,

because in Pascal’s Triangle the sum of two adjacent guys in a row equals the guy directly below them
in the next row.

2. Show that R(t, t) ≤ 22t. Then show that R(t, t) > 2t/2 for t ≥ 3, i.e., there is a red-blue coloring of the
edges of the complete graph on 2t/2, such that there are no monochromatic Kt.

Solution: The first bound follows immediately from the Erdős-Szekeres bound. The second is an
application of the probabilistic method. Let n = 2t/2, and consider a random coloring of the edges
of Kn, where each edge independently receives its color with equal probabilities. For each set S of t
vertices, define the event ES to be when all

(
t
2

)
edges in S are the same color. It suffices to show that

P [some ES occurs] < 1. But by the union bound, the LHS is(
n

t

)
·
(

2 · 2−(t
2)
)
≤ nt

t!
· 2 · 2− t2

2 + t
2

=

(
2t/2

)t
t!

· 2 · 2− t2

2 + t
2

= 2 · 2t/2

t!
.

This final quantity is less than 1 for all t ≥ 3.

3. (IMO 1964/4.) Seventeen people correspond by mail with one another—each one with all the rest. In
their letters only 3 different topics are discussed. Each pair of correspondents deals with only one of
these topics. Prove that there are at least 3 people who write to each other about the same topic.

Solution: This is asking us to prove that the 3-color Ramsey Number R(3, 3, 3) is ≤ 17. By the
same observation as in the previous problem, R(a, b, c) ≤ R(a−1, b, c)+R(a, b−1, c)+R(a, b, c−1)−1.
Then using symmetry, R(3, 3, 3) ≤ 3R(3, 3, 2) − 1. It suffices to show that R(3, 3, 2) ≤ 6. But this is
immediate, because if we have 6 vertices, if we even use the 3rd color on a single edge, we already get
a K2. So we cannot use the 3rd color. But then from above, we know R(3, 3) ≤ 6, so we are done.

5 Blue

1. (Putnam 1957/A5.) Let S be a set of n points in the plane such that the greatest distance between
two points of S is 1. Show that at most n pairs of points of S are at distance 1 apart.

Solution: Show that if there is any vertex of degree ≥ 3 in the unit distance graph, then it has
a neighbor of degree 1 in the unit distance graph. Pulling off that neighbor by induction solves the
problem, or else all degrees are ≤ 2, at which point the edge bound follows.

2. Every tournament (complete graph with each edge oriented in some direction) contains a Hamiltonian
directed path (hitting every vertex exactly once).

3. (Romania 2006.) Each edge of a polyhedron is oriented with an arrow such that every vertex has at
least one edge directed toward it, and at least one edge directed away from it. Show that some face of
the polyhedron has its boundary edges coherently oriented in a circular direction.

Solution: A directed cycle in the graph exists by simply following out-edges until we repeat vertices.
If it has stuff inside it, then one can cut the cycle with a directed path, and then there is a shorter
directed cycle. Compare the sizes of cycles by the number of faces they contain.
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4. (Monotone paths.) Show that for every even n, it is possible to label the edges of Kn with the distinct
integers 1, 2, . . . ,

(
n
2

)
, in such a way that no increasing walk contains more than n − 1 edges. An

increasing walk is a sequence of vertices v0, v1, . . . , vt such that the labels of the edges vivi+1 increase
with i. The vertices v0, . . . , vt are not required to be distinct—that is the difference between the
definitions of walks and paths.

5. (Sweden 2010.) A town has 3n citizens. Any two persons in the town have at least one common friend
in this same town. Show that one can choose a group consisting of n citizens such that every person
of the remaining 2n citizens has at least one friend in this group of n.

Solution: The codegree condition implies that the diameter of the graph is at most 2. We prove
that every n-vertex graph with diameter ≤ 2 has a dominating set (a subset S of vertices such that
every other vertex is either in, or has a neighbor in S) of size only ≤

√
n log n + 1. To see this, let

p =
√

logn
n .

Observe that since the diameter is at most 2, if any vertex has degree ≤ np, then its neighborhood
already is a dominating set of suitable size. Therefore, we may assume that all vertices have degree
strictly greater than np. It feels “easy” to find a small dominating set in this graph because all degrees
are high. Consider a random sample of np vertices (selected uniformly at random, with replacement),
and let S be their union. Note that |S| ≤ np. Now the probability that a particular fixed vertex v fails
to have a neighbor in S is strictly less than (1− p)np, because we need each of np independent samples

to miss the neighborhood of v. This is at most e−np2 ≤ e− logn = n−1. Therefore, a union bound over
the n choices of v produces the result.

6. (Bondy 1.5.9.) There are n points in the plane such that every pair of points has distance ≥ 1. Show
that there are at most 3n (unordered) pairs of points that span distance exactly 1 each.

Solution: The unit distance graph is planar.

7. (Prüfer.) A graph with vertex set {1, . . . , n} is a spanning tree if it is a tree which includes all of those
n vertices. It turns out that there is a surprisingly beautiful formula for the number of spanning trees
on {1, . . . , n}: it is just nn−2.

8. Let n be an even integer. It is possible to partition the edges of Kn into exactly n−1 perfect matchings.
(In this context of non-bipartite graphs, a perfect matching is a collection of n/2 edges that touch every
vertex exactly once.) We can interpret that as a way to run a round-robin sports tournament among
n teams: on each of n− 1 days, the n teams pair up according to the day’s perfect matching, and each
of the n/2 edges tells who plays who that day. There are n/2 simultaneous games on each of the n− 1
days.

On each of the n−1 days, there are n/2 winning teams from the n/2 games. So, there are n/2 winners
of Day 1, n/2 winners of Day 2, . . . , and n/2 winners of Day (n − 1). Prove that no matter how the(
n
2

)
individual games turned out, it is always possible (after all of the games) to select one team who

was a winner of Day 1, one team who was a winner of Day 2, . . . , and one team who was a winner of
Day (n− 1), such that we don’t pick the same team twice. Note that since there are n teams in total,
this selection will always leave exactly one team out.
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