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1 Linear Algebra review

1.1 Matrix multiplication, and why we care

Suppose we have a system of equations over some field F, e.g.

3x1 + x2 − 8x3 = 1

9x1 − x2 − x3 = 2

The set of ordered triples (x1, x2, x3) that solve the system is precisely the set of 3-element vectors x ∈ F3 that
solve the matrix equation

Ax =

[
1
2

]
, where A =

[
3 1 −8
9 −1 −1

]
.

Suppose that A is a square matrix. The equation Ax = 0 always has a solution (all zeros). An interesting
question is to study when there are no more solutions.

Definition 1 A square matrix A is nonsingular if Ax = 0 has only one solution: the all-zeros vector.

Often, nonsingular matrices are also called invertible, for the following reason.

Theorem 1 The following are equivalent:

(i) The square matrix A is nonsingular.

(ii) There exists another matrix, denoted A−1 such that A−1A = I = AA−1.

Solution:

• (i) to (ii) row-reduction, find that A always has RREF = identity

• then can always solve Ax = (anything)

• so can for example solve Ax = I, by doing it column by column.

• now we know there is some B such that AB = I.

• also, the row operations themselves were some left multiplication of matrices

• so we also have some C so that CA = I.

• Then B = IB = CAB = CI = C, so they are the same.

• (ii) to (i): just multiply by inverse.

For non-square matrices, the most important fact is the following:

Theorem 2 If A has more columns than rows, then the equation Ax = 0 has more solutions than just the
all-zeros vector.

Solution: RREF, run out of rows before columns, so we don’t have the sentinel 1 in every column. This
enables us to choose arbitrary nonzero values for all non-sentinel columns, and then still read off a valid solution
by backtracking the sentinel columns.
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1.2 Vectors

A vector is typically represented as an arrow, and this notion is widely used in Physics, e.g., for force, velocity,
acceleration, etc. In Mathematics, vectors are treated more abstractly. In this lecture, we will mostly use
concrete vectors, which one can think of as columns of numbers (the coordinates). The fundamental operation
in Linear Algebra is the linear combination. It is called “linear” because vectors are not multiplied against each
other.

Definition 2 Given vectors v1, . . . ,vk, and real coefficients c1, . . . , ck, the sum c1v1 + · · · + ckvk is called a
linear combination.

It’s intuitive that two vectors “usually” do not point in the same direction, and that three vectors “usually”
do not all lie in the same plane. One can express both of the previous situations as follows:

Definition 3 Let {v1, . . . ,vk} be a collection of vectors. One says that they are linearly dependent if:

• One of the vectors can be expressed as a linear combination of the others.

• There is a solution to c1v1 + · · · + ckvk = 0, using real numbers c1, . . . , ck, where not all of the ci’s are
zero.

Solution:

• (i) to (ii): swap signs on the linear combination.

• (ii) to (i): pick a nonzero, then shift all others to other side, and divide by the nonzero coefficient.

A fundamental theorem in Linear Algebra establishes that it is impossible to have “too many” linearly
independent vectors. This is at the core of many Combinatorial applications.

Theorem 3 The maximum possible number of linearly independent vectors in Rn is n.

Solution: Suppose we have more than n, say v1, . . . ,vn+1. Try to solve for the coefficients. This sets up
a matrix equation with more columns than rows, which by previous we know to have a nontrivial solution.

2 Combinatorics of sets

We begin with a technical lemma.

Lemma 1 Let A be a square matrix over R, for which all non-diagonal entries are all equal to some t ≥ 0, and
all diagonal entries are strictly greater than t. Then A is nonsingular.

Proof. If t = 0, this is trivial. Now suppose t > 0. Let J be the all-ones square matrix, and let D = A−tJ. Note
that D is nonzero only on the diagonal, and in fact strictly positive there. We would like to solve (tJ+D)x = 0,
which is equivalent to Dx = −tJx. Let s be the sum of all elements in x, and let the diagonal entries of D
be d1, . . . , dn, in order. Then, we have dixi = −ts ⇒ xi = −(t/di)s. But since t and di are both strictly
postive, this forces every xi to have opposite sign from s, which is impossible unless all xi = 0. Therefore, A is
nonsingular.

Solution: ALTERNATE:
Let J be the all-ones square matrix, and let D = A− tJ. Note that D is nonzero only on the diagonal, and

in fact strictly positive there, so it is a positive definite matrix. Also, J is well-known to be positive semidefinite
(easy to verify by hand), so A is positive definite. In particular, this means that xTAx = 0 only if x = 0,
implying that Ax = 0 only for x = 0. This is equivalent to A being nonsingular. �

Now try the following problems. The last two come from 102 Combinatorial Problems, by T. Andreescu
and Z. Feng.
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1. (A result of Bourbaki on finite geometries; also appeared in St. Petersburg Olympiad.) Let X be a finite
set, and let F be a family of distinct proper subsets of X. Suppose that for every pair of distinct elements
in X, there is a unique member of F which contains both elements. Prove that |F| ≥ |X|.
Solution: Let X = [n] and F = {A1, . . . , Am}. We need to show that n ≤ m. Define the m × n
incidence matrix A over R by putting 1 in the i-th row and j-th column if j ∈ Ai. Consider the product
ATA, which is an n× n matrix. For i 6= j, its entry at (i, j) is precisely 1.

Also, the diagonal entries are strictly larger than 1, because if some element j ∈ X belongs to only one
set Ak ∈ F , then the condition implies that every element i ∈ X is also in Ak, contradicting requirement
that Ak be proper.

Therefore, ATA is nonsingular by Lemma 1. But if A has more rows than columns, then it would have
some x 6= 0 such that Ax = 0, hence ATAx = 0. Therefore, A doesn’t have more rows than columns,
i.e., n ≤ m.

2. (Fisher’s inequality) Let C = {A1, . . . , Ar} be a collection of distinct subsets of {1, . . . , n} such that every
pairwise intersection Ai ∩ Aj (i 6= j) has size t, where t is some fixed integer between 1 and n inclusive.
Prove that |C| ≤ n.

Solution: Consider the n× r matrix A, where the i-th column of A is the characteristic vector of Ai.
Then, ATA is a r × r matrix, all of whose off-diagonal entries are t. We claim that the diagonal entries
are all > t. Indeed, if there were some |Ai| which were exactly t, then the structure of C must look like
a “flower,” with one set Aj of size t, and all other sets fully containing Aj and disjointly partitioning the
elements of [n] \ Aj among them. Any such construction has size at most 1 + (n − t) ≤ n, so we would
already be done.

Therefore, ATA is nonsingular by Lemma 1, and the previous argument again gives r ≤ n.

3. Let A1, . . . , Ar be a collection of distinct subsets of {1, . . . , n} such that all |Ai| are even, and also all
|Ai ∩Aj | are even for i 6= j. How big can r be, in terms of n?

Solution: Arbitrarily cluster [n] into pairs, possibly with one element left over. Then take all possible
subsets where we never separate the pairs; this gives r up to 2bn/2c.

But this is also best possible. Suppose that S is the set of characteristic vectors of the sets in the extremal
example. The condition translates into S being self-orthogonal. But S ⊥ S ⇒ 〈S〉 ⊥ 〈S〉, so extremality
implies that S is in fact an entire linear subspace, which is self-orthogonal (i.e., S ⊂ S⊥).

We have the general fact that for any linear subspace, dimS⊥ = n− dimS. This is because if d = dimS,
we can pick a basis v1, . . . , vd of S, and write them as the rows of a matrix A. Then, the kernel of A is
precisely S⊥, but any kernel has dimension equal to n minus the dimension of the row space (d).

Therefore, S ⊂ S⊥ implies that dimS ≤ dimS⊥ = n − dimS, which forces dimS ≤ bn/2c, so we are
done.

4. What happens in the previous problem if we instead require that all |Ai| are odd? We still maintain that
all |Ai ∩Aj | are even for i 6= j.

Solution: Answer: r ≤ n. Work over F2. The characteristic vectors vi of the Ai are orthonormal1, so
they are linearly independent: given any dependence relation of the form

∑
civi = 0, we can dot product

both sides with vk and conclude that ck = 0. Thus, there can only be ≤ n of them.

ALTERNATE: Let A be the n × r matrix where the columns are the characteristic vectors of the Ai.
Then ATA equals the r × r identity matrix, which is of course of full rank r. Thus r = rank(ATA) ≤
rank(A) ≤ n.

5. Prove that if all codegrees2 in a graph on n vertices are odd, then n is also odd.

1Strictly speaking, this is not true, because there is no positive definite inner product over F2. However, if one carries out the
typical proof that orthonormality implies linear independence, it still works with the mod-2 dot product.

2The codegree of a pair of vertices is the number of vertices that are adjacent to both of them.
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Solution: First we show that all degrees are even. Let v be an arbitrary vertex. All vertices w ∈ N(v)
have odd codegree with v, which means they all have odd degree in the graph induced by N(v). Since
the number of odd-degree vertices in any graph must always be even, we immediately find that |N(v)| is
even, as desired.

Let A be the adjacency matrix. Then ATA = J − I. But consider right-multiplying by 1. A1 = 0 ⇒
ATA1 = 0 and I1 = 1, so we need to have J1 = 1, which implies that n is odd.

ALTERNATE ENDING: Now, let S = {1, v1, . . . , vn} be the set of n + 1 vectors in Fn
2 where 1 is the

all-ones vector and vi is the characteristic vector of the neighborhood of the i-th vertex. There must be
some nontrivial linear dependence b1 +

∑
i aivi = 0. But note that if we take the inner product of this

equation with vk, we obtain
∑

i 6=k ai = 0 because 1 · vk = 0 = vk · vk and vi · vk = 1 for i 6= k. Hence all
the ai are equal. Yet if they are all zero, then b is also forced to be zero, contradicting the nontriviality
of this linear combination. Therefore, all ai are 1, and the equation

∑
i 6=k ai = 0 forces n− 1 to be even,

and n to be odd.

6. (Introductory Problem 38) There are 2n people at a party. Each person has an even number of friends at
the party. (Here, friendship is a mutual relationship.) Prove that there are two people who have an even
number of common friends at the party.

Solution: Let A be adjacency matrix. Suppose for contradiction that every pair of people has an odd
number of common friends. Then over F2, we have ATA = J − I, where J is the all-ones matrix and I
is the identity. Since all degrees even, A1 = 0. Hence ATA1 = 0. But J1 = 0 because J is a 2n × 2n
matrix, and I1 = 1. Thus we have 0 = ATA1 = (J − I)1 = 1, contradiction.

7. (Advanced Problem 49) A set T is called even if it has an even number of elements. Let n be a positive
even integer, and let S1, . . . , Sn be even subsets of the set {1, . . . , n}. Prove that there exist some i 6= j
such that Si ∩ Sj is even.

Solution: Let A be n×n matrix over F2 with columns that are the characteristic vectors of the Si. Then
ATA = J−I, but A is singular because AT1 = 0. Square the equation. We have (J−I)(J−I) = J2−2J+I
since I, J commute. But n is even, and we are in F2, so it is just I, and we get ATAATA = I. Contradicts
singularity of A.

(Uses A nonsingular implies AT nonsingular. Indeed, we need (AB)T = BTAT . So, in particular, if A
had inverse B, then we have a matrix BT such that it is left inverse of AT . In particular, whenever we go
to solve ATx = 0, we can left-multiply by BT , and get x = BT 0 = 0, so no nontrivial solutions.)

ALTERNATE: Singularity implies detATA = (detA)2 = 0. However, det(J − I) is precisely the parity of
Dn, the number of derangements of [n]. It remains to prove that for even n, Dn is odd. But this follows
from the well-known recursion Dn = (n − 1)(Dn−1 + Dn−2), which can be verified by looking at where
the element n is permuted to.

3 Bonus problems (not all linear algebra)

1. (Caratheodory.) A convex combination of points xi is defined as a linear combination of the form
∑

i αixi,
where the αi are non-negative coefficients which sum to 1.

Let X be a finite set of points in Rd, and let cvx(X) denote the set of points in the convex hull of X, i.e.,
all points expressible as convex combinations of the xi ∈ X. Show that each point x ∈ cvx(X) can in fact
be expressed as a convex combination of only d+ 1 points of X.

Solution: Given a convex combination with d+ 2 or more nonzero coefficients, find a new vector with
which to perturb the nonzero coefficients. Specifically, seek

∑
i βixi = 0 and

∑
i βi = 0, which is d + 1

equations, but with d + 2 variables βi. So there is a non-trivial solution, and we can use it to reduce
another αi coefficient to zero.

2. (Radon.) Let A be a set of at least d + 2 points in Rd. Show that A can be split into two disjoint sets
A1 ∪A2 such that cvx(A1) and cvx(A2) intersect.
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Solution: For each point, create an Rd+1-vector vi by adding a “1” as the last coordinate. We have a
non-trivial dependence because we have at least d+2 vectors in Rd+1, say

∑
i αivi = 0. Split A = A1∪A2

by taking A1 to be the set of indices i with αi ≥ 0, and A2 to be the rest.

By the last coordinate, we have ∑
i∈A1

αi =
∑
i∈A2

(−αi) .

Let Z be that sum. Then if we use αi/Z as the coefficients, we get a convex combination from A1 via
the first d coordinates, which equals the convex combination from A2 we get by using (−αi)/Z as the
coefficients.

3. (Helly.) Let C1, C2, . . . , Cn be convex sets of points in Rd, with n ≥ d + 1. Suppose that every d + 1 of
the sets have a non-empty intersection. Show that all n of the sets have a non-empty intersection.

Solution: Induction on n. Clearly true for n = d+ 1, so now consider n ≥ d+ 2, and assume true for
n− 1. Then by induction, we can define points ai to be in the intersection of all Cj , j 6= i. Apply Radon’s
Lemma to these ai, to get a split of indices A ∪B.

Crucially, note that for each i ∈ A and j ∈ B, the point ai is in Cj . So, each i ∈ A gives ai ∈
⋂

j∈B Cj ,
and hence the convex hull of points in A is entirely contained in all Cj , j ∈ B.

Similarly, the convex hull of points in B is entirely contained in all Cj , j ∈ A. Yet Radon’s Lemma gave
intersecting convex hulls, so there is a point in both hulls, i.e., in all Cj , j ∈ A ∪B = [n].

4. (From Peter Winkler.) The 60 MOPpers were divided into 8 teams for Team Contest 1. They were then
divided into 7 teams for Team Contest 2. Prove that there must be a MOPper for whom the size of her
team in Contest 2 was strictly larger than the size of her team in Contest 1.

Solution: In Contest 1, suppose the team breakdown was s1 + · · · + s8 = 60. Then in the i-th team,
with si people, say that each person did 1

si
of the work. Similarly, in Contest 2, account equally for the

work within each team, giving scores of 1
s′i

.

However, the total amount of work done by all people in Contest 1 was then exactly 8, and the total
amount of work done by all people in Contest 2 was exactly 7. So somebody must have done strictly less
work in Contest 2. That person saw

1

s′i
<

1

si
,

i.e., the size of that person’s team on Contest 2 was strictly larger than her team size on Contest 1.

5. (MOP 2007/4/K2.) Let S be a set of 106 points in 3-dimensional space. Show that at least 79 distinct
distances are formed between pairs of points of S.

Solution: Zarankiewicz counting for the excluded K3,3 in the unit distance graph. This upper-bounds
the number of edges in each constant-distance graph, and therefore lower-bounds the number of distinct
distances.

6. (MOP 2007/10/K4.) Let S be a set of 2n points in space, such that no 4 lie in the same plane. Pick any
n2+1 segments determined by the points. Show that they form at least n (possibly overlapping) triangles.

Solution: In fact, every 2n-vertex graph with at least n2 +1 edges already contains at least n triangles.
No geometry is needed.

7. (Sperner capacity of cyclic triangle, also Iran 2006.) Let A be a collection of vectors of length n from Z3

with the property that for any two distinct vectors a, b ∈ A there is some coordinate i such that bi = ai+1,
where addition is defined modulo 3. Prove that |A| ≤ 2n.

Solution: For each a ∈ A, define the Z3-polynomial fa(x) :=
∏n

i=1(xi − ai − 1). Observe that this is
multilinear. Clearly, for all a 6= b ∈ A, fa(b) = 0, and fa(a) 6= 0; therefore, the fa are linearly independent,
and bounded in cardinality by the dimension of the space of multilinear polynomials in n variables, which
is 2n.
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