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1 Warm-up

1. (Bondy 1.5.9.) There are n points in the plane such that every pair of points has distance ≥ 1. Show
that there are at most 3n (unordered) pairs of points that span distance exactly 1 each.

Solution: The unit-distance graph is planar. If there are 2 crossing unit-distance edges, then the
triangle inequality implies that some pair of points is at distance strictly less than 1.

2 Matching

Consider a bipartite graph G = (V,E) with partition V = A ∪B. A matching is a collection of edges which
have no endpoints in common. We say that A has a perfect matching to B if there is a matching which hits
every vertex in A.

Theorem. (Hall’s Marriage Theorem) For any set S ⊂ A, let N(S) denote the set of vertices (necessarily
in B) which are adjacent to at least one vertex in S. Then, A has a perfect matching to B if and only if
|N(S)| ≥ |S| for every S ⊂ A.

This has traditionally been called the “marriage” theorem because of the possible interpretation of edges
as “acceptable” pairings, with the objective of maximizing the number of pairings. In real life, however,
perhaps there may be varying degrees of “acceptability.” This may be formalized by giving each vertex (in
both parts) an ordering of its incident edges. Then, a matching M is called unstable if there is an edge
e = ab 6∈M for which both a and b both prefer the edge e to their current partner (according to M).

Theorem. (Stable Marriage Theorem) A stable matching always exists, for every bipartite graph and every
collection of preference orderings.

2.1 Problems

1. (Classical.) Show that every k-regular bipartite graph can have its edges partitioned into k edge-disjoint
perfect matchings.

Solution: Suffices to find one perfect matching. Every set S expands because it has k edges out,
and each vertex on the other side can only absorb up to k of them in.

2. (Petersen, 1891.) A 2-factor of a graph is a 2-regular spanning subgraph (i.e., containing all vertices,
and having all degrees equal to 2). For every positive integer k, show that every 2k-regular graph can
be partitioned into k edge-disjoint 2-factors.

Solution: Suffices to find one 2-factor. Take an Eulerian orientation. Split each vertex v into
v+, v−. This gives a bipartite graph with twice as many vertices. If there was an edge −→vw, now put
it from v− to w+. It is a k-regular bipartite graph, so it has a perfect matching by above. Collapsing
back the v+, v−, we get a 2-factor.
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3. (Canada 2006/3.) In a rectangular array of nonnegative reals with m rows and n columns, each row
and each column contains at least one positive element. Moreover, if a row and a column intersect in
a positive element, then the sums of their elements are the same. Prove that m = n.

Solution: Create bipartite graph, LHS is rows, RHS is columns. Edge if row and column intersect
at positive entry. Suppose some set S of rows only has a total set |T | < |S| of columns in which positive
entries appear. Let the sums of the |S| rows be s1, . . . , sk. By the property, each of the |T | columns
has sum equal to one of the si. So the total sum of the elements in the S rows, when calculated from
the column point of view (since entries outside are all nonnegative) is at most a sum of a subset of the
si. Yet from the row point of view, it is the full sum. As all si > 0, this is a contradiction.

Hall’s theorem therefore says that there is a matching from the rows to the columns, implying that the
number of columns is at least the number of rows. By symmetry, the reverse inequality is true, and
we have equality.

4. (Iran 1998/2.) Suppose an n× n table is filled with the numbers 0, 1,−1 in such a way that every row
and column contains exactly one 1 and one −1. Prove that the rows and columns can be reordered so
that in the resulting table each number has been replaced by its negative.

Solution: This is the adjacency matrix of a directed bipartite graph. Two sides of the graph, A and
B, each have n vertices. We write +1 in position (i, j) if there is an edge

−−→
aibj , and −1 if there is an

edge
←−−
aibj . Since every row has exactly one of each ±1, every ai has out-degree and in-degree exactly

1. Similarly, the column condition implies that every bj has this property.

Therefore, the directed graph decomposes into disjoint directed cycles, which we may consider in-
dependently since they use disjoint sets of rows/columns. Consider just one directed cycle, WLOG
(a1b1a2b2 . . . akbk). Note that permuting the rows/columns is equivalent to relabeling the vertices, and
redrawing the incidence matrix. Getting the negative matrix means that all edges now need to be in
opposite direction. But this is easy on a cycle; go backwards: a′1 = a1, b′1 = bk, a′2 = ak, b′2 = bk−1,
. . . . Now the unsigned incidence matrix is still the same because we have edges between consecutive
a’s and b’s, but all directions are reversed, as desired.

5. (IMO Shortlist 2006/C6.) A holey triangle is an upward equilateral triangle of side length n with n
upward unit triangular holes cut (in the standard lattice positions). A diamond is a 60◦–120◦ unit
rhombus. Prove that a holey triangle T can be tiled with diamonds if and only if the following condition
holds: Every upward equilateral triangle of side length k in T contains at most k holes, for 1 ≤ k ≤ n.

Solution: First show that if it can be tiled by diamonds, then there are at most k holes in every k-
triangle. Each downward triangle requires exactly one upward triangle, and there is a bijection upward
and downward triangles by taking an upward triangle and looking at the downward triangle sharing
its bottom edge. (This gives a bijection except for the k upward triangles across the bottom.) So there
are exactly k more upward than downward triangles, implying that we cannot have more than k holes.

The converse uses Hall’s theorem to match downward triangles with adjacent upward triangles. Suppose
for contradiction that the Hall condition is false, i.e., there is a set S of downward triangles such that
there are strictly fewer non-hole neighbors N(S). Highlight those S downward triangles, along with all
upward triangles directly adjacent to them. We will make the highlighted region into a disjoint union
of large upward triangles.

Indeed, note that if we have a large upward triangle of side length 3, and exactly 2 of the downward
triangles are in S, then we can add the third downward triangle to S (increasing |S| by 1), and only
increase |N(S)| by at most 1, thus maintaining |N(S)| < |S|. Repeating this procedure eventually
grows the set S such that N(S) is a disjoint union of large upward triangles. So, one of these large
upward triangles, say of side length k, has its set S′ of all downward triangles satisfying |N(S′)| < |S′|.
Yet N(S′) is the whole set of upward triangles in that part, so this means that there are more than k
holes, contradiction.
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3 Planarity

When we represent graphs by drawing them in the plane, we draw edges as curves, permitting intersections.
If a graph has the property that it can be drawn in the plane without any intersecting edges, then it is called
planar. Here is the tip of the iceberg. One of the most famous results on planar graphs is the Four-Color
Theorem, which says that every planar graph can be properly colored using only four colors. But perhaps
the most useful planarity theorem in Olympiad problems is the Euler Formula:

Theorem. Every connected planar graph satisfies V − E + F = 2, where V is the number of vertices, E is
the number of edges, and F is the number of faces.

Solution: Actually prove that V −E + F = 1 + C, where C is the number of connected components.
Each connecting curve is piecewise-linear, and if we add vertices at the corners, this will keep V −E invariant.
Now we have a planar graph where all connecting curves are straight line segments.

Then induction on E + V . True when E = 0, because F = 1 and V = C. If there is a leaf (vertex of
degree 1), delete both the vertex and its single incident edge, and V − E remains invariant. If there are no
leaves, then every edge is part of a cycle. Delete an arbitrary edge, and that will drop E by 1, but also drop
F by 1 because the edge was part of a cycle boundary, and now that has merged two previously distinct
faces.

3.1 Problems

1. Every planar graph satisfies E ≤ 3V .

Solution: Break into connected components. Special case is the components with only 1 or 2
vertices, but still true in those cases. Otherwise, for each face, calculate its perimeter, and add all of
these up. This double-counts each edge. Each face has perimeter ≥ 3, so we get 2E ≥ 3F . Plugging
in, we have

2 = V − E + F ≤ V − E +
2
3
E = V − 1

3
E.

2. Prove that every planar graph is 6-colorable.

Solution: Every planar graph contains a vertex of degree at most 5. To see this, use the bound
E ≤ 3V − 6 for V ≥ 3, and if V ≤ 2 it is trivial. Keep pulling out the vertex of this degree, and then
greedily color the graph in the reverse order.

3. Prove that every planar graph is 5-colorable.

4. Open: Prove that every planar graph is 4-colorable, without using a computer.

5. Show that K5 is not planar.

Solution: V = 5, E = 10, so we must have F = 2− V + E = 7. But as in the previous solution, we
need to have 2E ≥ 3F , which is not the case.

6. Show that K3,3 is not planar.

Solution: V = 6, E = 9, so we must have F = 2− V + E = 5. But as in the previous solution, we
need to have 2E ≥ 3F . Actually, we need 2E ≥ 4F , because K3,3 has no triangles. But this stronger
inequality is false.

7. Show that K4,4 is not planar.

Solution: K4,4 contains K3,3.
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8. (AoPS.) Prove that every convex polyhedron which has no quadrilateral or pentagonal faces must have
at least 4 triangular faces.

Solution: First note that at every vertex, at least 3 faces meet, so the degree of each vertex (in the
edge graph) is at least 3. Therefore, 3V ≤

∑
dv = 2E, i.e., V ≤ 2

3E. Also, by summing over faces, if
fk is the number of faces with k sides, then

2E = 3f3 + 6f6 + 7f7 + · · ·
E

3
=

1
2
f3 + f6 +

7
6
f7 + · · · .

From Euler’s formula,

2 = V − E + F ≤ F − E

3
=

1
2
f3 −

1
6
f7 −

2
6
f8 − · · · ≤

1
2
f3,

giving the result.

9. (IMO Shortlist 2006/C7.) Consider a convex polyhedron without parallel edges and without an edge
parallel to any face other than the two faces adjacent to it. Call a pair of points of the polyhedron
antipodal if there exist two parallel planes passing through these points and such that the polyhedron
is contained between these planes.

Let A be the number of antipodal pairs of vertices, and let B be the number of antipodal pairs of
midpoints of edges. Determine the difference A − B in terms of the numbers of vertices, edges, and
faces.

Solution: Use the following map to S2, together with Euler’s V −E + F = 2. Send each face of the
polyhedron to its normal vector. Send each edge of the polyhedron to the set of normal vectors of its
supporting planes, which is a (shorter) great circle arc between the images of the faces under this map.
Send each vertex of the polyhedron to the set of normal vectors of supporting planes, which is a region
between the great circle arcs drawn in the previous step. This produces a “spherical polyhedron,” to
which we translate the conditions of the problem and apply Euler’s Formula.

10. (St. Petersburg 1997/13.) The sides of a convex polyhedron are all triangles. At least 5 edges meet at
each vertex, and no two vertices of degree 5 are connected by an edge. Prove that this polyhedron has
a face whose vertices have degree 5, 6, 6, respectively.

Solution: By Euler, E ≤ 3V − 6, so in particular the sum of degrees is less than 6V . We will use
this for a contradiction. Suppose there are no 5,6,6 faces. We will count the number of edges which
connect vertices of degree 5 to vertices of degree ≥ 7.

Let xi be the number of vertices of degree i for each i. No 5,6,6 implies that each 5-vertex has at most
2 neighbors of degree 6, thus it contributes 3 edges which cross from degree 5 to degree ≥ 7. On the
other hand, any vertex of degree d has at most bd/2c neighbors of degree 5 because no two degree-5
guys are adjacent. Thus, double-counting gives:

3x5 ≤
∑
d=7

xd ·
⌊

d

2

⌋
x5 ≤

∑
d=7

xd ·
1
3

⌊
d

2

⌋
.

Note that for d ≥ 7, the cumbersome expression satisfies bd/2c/3 ≥ d− 6. Adding to the LHS so that
it becomes 6 times the number of vertices:

x5 ≤
∑
d=7

xd · (d− 6)

6x5 + 6x6 +
∑
d=7

6xd ≤ 5x5 + 6x6 +
∑
d=7

xd · d.
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Recognize the LHS as 6V and the RHS as sum of degrees, and this contradicts our opening observation.

11. (Conway.) A thrackle is a drawing of a graph in the plane, in such a way that every pair of edges
crosses exactly once.

Open: Prove that every thrackle has E ≤ V .

Note: It has been shown that every minimal counterexample is a pair of even cycles intersecting at a
single vertex. Hence it suffices to prove that such graphs cannot be drawn as thrackles.
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