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Extremal graph theory, in its strictest sense, is a branch of graph theory developed and loved by
Hungarians.

(The opening sentence in Extremal Graph Theory, by Béla Bollobás.)

1 Warm-up

1. What is the smallest possible number of edges in a connected n-vertex graph?

Solution: By breadth-first exploration, we always can find a spanning tree in every connected
graph. This process starts with 1 vertex and 0 edges, but adds 1 vertex and edge at each iteration. So
we end up with n− 1 edges in our spanning tree.

2. (Reid Barton, 2005.) There are n pieces of candy in a pile. One is allowed to separate a pile into two
piles, and add the product of the sizes of the two new piles to a running total. The process terminates
when each piece of candy is in its own pile. Show that the final sum is independent of the order of the
operations performed.

Solution: This will be the number of edges in the complete graph Kn, i.e.,
(
n
2

)
. To see this, run the

process in reverse. We start with n independent vertices (each in their own cluster). Note that each
cluster is a complete graph. Each round, we pick two disjoint clusters and merge them, adding the
edges of the complete bipartite graph between the clusters. The number of added edges is precisely
the product of the cluster sizes. But we preserve the fact that every cluster is a complete graph, so at
the end we have a single Kn.

2 Extremal graph theory

This very interesting field happens to be the subject of my own research, as well as one of the most common
sources of advanced graph theory problems in Olympiads. The most famous theorems concern what sub-
structures can be forced to exist in a graph simply by controlling the total number of edges. The classical
starting point is Turán’s theorem, which proves the extremality of the following graph: let Tr(n) be the
complete r-partite graph with its n vertices distributed among its r parts as evenly as possible (because
rounding errors may occur).

Theorem. (Turán) For r ≥ 3, the Turán graph Tr−1(n) is the unique n-vertex graph with the maximum
number of edges subject to having no Kr subgraphs.

An excellent proof of Turán’s theorem can be found on page 167 of the book Graph Theory, by Reinhard
Diestel. This is a well-written book which has an electronic edition freely available on the author’s website!
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2.1 More subgraph results

1. (Quantitative form of Turán for triangles.) Turán’s Theorem implies that every graph with average
degree greater than n/2 contains a triangle. Show that every graph with average degree at least

(
1
2 +c

)
n

contains at least c
(
n
3

)
triangles.

Solution: We actually show that it contains at least c
3n2d triangles. Note that when d goes up to

n, then c goes to 1
2 , which would give roughly 1

6n3, the maximum possible.

The number of triangles containing a given edge uv is at least du + dv − n, so summing over all edges
gives that the number of triangles is at least

1
3

∑
e

du + dv − n =
1
3

(∑
v

d2
v − nE

)

≥ 1
3

(
nd2 − n

nd

2

)
=

1
3
nd
(
d− n

2

)
≥ 1

3
ndcn

The result follows since d ≥ n
2 .

2. Every graph G with average degree d contains a subgraph H such that all vertices of H have degree
at least d/2 (with respect to H).

Solution: Condition on G is that the number of edges is at least nd/2. If there is a vertex with
degree < d/2, then delete it, and it costs 1 vertex and < d/2 edges, so the condition is preserved. But
it can’t go on forever, because once there is 1 vertex left, average degree is 0.

3. (approximation to Erdős-Sós conjecture) Let T be a tree with t edges. Then every graph with average
degree at least 2t contains T as a subgraph.

Solution: Graph has subgraph with minimum degree at least t. Then embed greedily. Suppose we
already put down v vertices. (v < t + 1 or else we are done.) Pick a current node to which to adjoin
a new leaf. Degree is at least t, and v − 1 vertices are already down (so blocked for embedding), so
t− v + 1 > 0 choices remain. Pick one of them for the new leaf, and continue.

4. We say that a graph G is t-degenerate if every subgraph has a vertex of degree ≤ t. Show that G can
be properly colored with ≤ t + 1 colors.

Solution: Iteratively peel off vertex of degree ≤ t, and put these into an ordering. That is, v1 is
the first vertex pulled off, then v2, etc. Now greedily color from vn to v1.

5. Suppose that a certain country has the property that it is not possible to color a map of its states using
only 3 colors, such that no adjacent states receive the same color. Prove that there exist 4 states, A,
B, C, and D, such that A ∼ B, B ∼ C, and C ∼ D, where the “∼” symbol means that two states are
adjacent.

Solution: This is a special case of the following result: Let T be a tree with t edges. Then
every graph with chromatic number greater than t contains a copy of T . To see this, note that the
contrapositive of previous is that χ ≥ t + 2 implies there is a subgraph with minimum degree ≥ t + 1.
Actually we need it with χ ≥ t + 1 implying subgraph with minimum degree ≥ t. Then embed tree
greedily as in the previous solution.
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2.2 Ramsey theory

Complete disorder is impossible.
— T. S. Motzkin, on the theme of Ramsey Theory.

The Ramsey Number R(s, t) is the minimum integer n for which every red-blue coloring of the edges of
Kn contains a completely red Ks or a completely blue Kt. Ramsey’s Theorem states that R(s, t) is always
finite, and we will prove this in the first exercise below. The interesting question in this field is to find upper
and lower bounds for these numbers, as well as for quantities defined in a similar spirit.

Now try these.

1. Prove by induction that R(s, t) ≤
(
s+t−2
s−1

)
. Note that in particular, R(3, 3) ≤ 6.

Solution: Observe that R(s, t) ≤ R(s−1, t)+R(s, t−1), because if we have that many vertices, then
if we select one vertex, then it cannot simultaneously have < R(s−1, t) red neighbors and < R(s, t−1)
blue neighbors, so we can inductively build either a red Ks or a blue Kt. But(

(s− 1) + t− 2
(s− 2)

)
+
(

s + (t− 1)− 2
s− 1

)
=
(

s + t− 2
s− 1

)
,

because in Pascal’s Triangle the sum of two adjacent guys in a row equals the guy directly below them
in the next row.

2. Show that R(t, t) ≤ 22t. Then show that R(t, t) > 2t/2 for t ≥ 3, i.e., there is a red-blue coloring of the
edges of the complete graph on 2t/2, such that there are no monochromatic Kt.

Solution: The first bound follows immediately from the Erdős-Szekeres bound. The second is an
application of the probabilistic method. Let n = 2t/2, and consider a random coloring of the edges
of Kn, where each edge independently receives its color with equal probabilities. For each set S of t
vertices, define the event ES to be when all

(
t
2

)
edges in S are the same color. It suffices to show that

P [some ES occurs] < 1. But by the union bound, the LHS is(
n

t

)
·
(
2 · 2−(t

2)
)

≤ nt

t!
· 2 · 2− t2

2 + t
2

=

(
2t/2

)t
t!

· 2 · 2− t2
2 + t

2

= 2 · 2t/2

t!
.

This final quantity is less than 1 for all t ≥ 3.

3. (IMO 1964/4) Seventeen people correspond by mail with one another—each one with all the rest. In
their letters only 3 different topics are discussed. Each pair of correspondents deals with only one of
these topics. Prove that there are at least 3 people who write to each other about the same topic.

Solution: This is asking us to prove that the 3-color Ramsey Number R(3, 3, 3) is ≤ 17. By the
same observation as in the previous problem, R(a, b, c) ≤ R(a−1, b, c)+R(a, b−1, c)+R(a, b, c−1)−1.
Then using symmetry, R(3, 3, 3) ≤ 3R(3, 3, 2) − 1. It suffices to show that R(3, 3, 2) ≤ 6. But this is
immediate, because if we have 6 vertices, if we even use the 3rd color on a single edge, we already get
a K2. So we cannot use the 3rd color. But then from above, we know R(3, 3) ≤ 6, so we are done.

3 Problems

1. (Japan 1998/2) A country has 1998 airports connected by some direct flights. For any three airports,
some two are not connected by a direct flight. What is the maximum number of direct flights that can
be offered?
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Solution: By Turán, the largest triangle-free subgraph of K1998 is bipartite with sides of size 999,
so 9992 is the answer.

2. (South Africa 1997/5) Six points are joined pairwise by red or blue segments. Must there exist a closed
path consisting of four of the segments, all of the same color?

Solution: Yes. Proof: assume not. Let the vertices be a, b, c, d, e, f . Use Ramsey to get a monochro-
matic triangle first, and suppose it is a, b, c. WLOG it is blue. Now d cannot have 2 blue edges into
a, b, c, or else we get blue C4. Same for e and f . Also, if, say, a, b both have red edges to each of say,
d, e, then we get C4. Therefore, the only possible configuration is to have a blue matching between
{a, b, c} and {d, e, f}, and all other edges between those sets are red. WLOG the blue matching is ad,
be, cf . But then edges de and ef are both forced red, or else we have blue C4, say abed. And then
there is a red C4: bfed.

3. (Japan 1997/3) Let G be a graph with 9 vertices. Suppose given any five points of G, there exist at
least 2 edges with both endpoints among the five points. What is the minimum possible number of
edges in G?

Solution: The optimal configuration is a union of 3 disjoint triangles. Let an be the minimum
number of edges of a graph on n vertices satisfying the condition. We will need to show that an+1 ≥
n+1
n−1an. Then, since a5 = 2, we will have a6 ≥ 3, a7 ≥ 5, a8 ≥ 7, and a9 ≥ 9.

Now prove the inequality by induction. Consider any (n+1)-vertex graph satisfying the property, with
E edges. Deleting any vertex gives an n-vertex graph with the property, with E − dv edges left, so
by induction E − dv ≥ an. Sum over all n + 1 vertices v, and we get (n + 1)E − 2E ≥ (n + 1)an, so
E ≥ n+1

n−1an as desired.

4 Really harder problems

Determine the exact value of the Ramsey number R(5, 5). Hint: it is known to be one of
{43, 44, 45, 46, 47, 48, 49}. You may use as many supercomputers as you want.

Believe it or not, this is unknown. For a greater challenge, determine R(6, 6). If you succeed, Paul Erdős
would have been proud.

Imagine an alien force, vastly more powerful than us landing on Earth and demanding the value
of R(5, 5) or they will destroy our planet. In that case, we should marshal all our computers and
all our mathematicians and attempt to find the value. But suppose, instead, that they asked for
R(6, 6), we should attempt to destroy the aliens.

-Paul Erdős
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