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1 Warm-Ups

1. (Po’s Lemming #2) Prove that there are infinitely many non-primes.

2. Suppose that (a,m) = 1. Prove that ab ≡ ac (mod m) ⇒ b ≡ c (mod m).

3. Let f(x) = anxn + · · ·+ a0 be a polynomial with integer coefficients. Show that if r consecutive values
of f (i.e. values for consecutive integers) are all divisible by r, then r|f(m) for all m ∈ Z.

Solution: Just plug in k + r and you get the same residue (mod r) as if you plugged in k.

2 Theorems

1. Let a, n, m be positive integers with a ≥ 2 and n ≥ m. Prove that

(an − 1, am − 1) = (a(n,m) − 1).

Solution: Use the Euclidean algorithm with the identity:

an − 1 = (am − 1)(an−m + · · ·+ an−km) + an−km − 1

2. (Euler’s Theorem). If (a,m) = 1, then:

aφ(m) ≡ 1 (mod m).

Solution: Draw out complete residue set a1, a2, . . . , ak, where k = φ(m). Now aa1, aa2, . . . , aak is
also a complete residue set by cancellation, so their total products are congruent modulo m. Yet we
can cancel out the common factor of a1a2 · · · ak because that is relatively prime to m. And we are
done.

3. If (a,m) = 1, then ordma|φ(m).

Solution: Use the first Theorem to show:

m|(aφ(m) − 1, aord − 1) = a(φ(m),ord) − 1

so (φ(m), ordma) = ordma which gives us what we want.

4. (Partial Converse of Fermat’s Little Theorem). If there is an a for which am−1 ≡ 1 (mod m), while
none of the congruences a(m−1)/p ≡ 1 (mod m) hold, where p runs over the prime divisors of m− 1,
then m is prime.

Solution: By def of ord, we get that ordma|m − 1 but it doesn’t divide any factors of it; therefore,
ordma = m− 1. But since ordma|φ(m) and φ(m) ≤ m− 1, we must have precisely that φ(m) = m− 1
so m has no divisors other than 1 or itself, and is prime.
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5. (Dirichlet). If (a, d) = 1, then the arithmetic progression {a, a+ d, a+2d, . . .} contains infinitely many
primes.

6. (Chinese Remainder Theorem). If {mk} are pairwise relatively prime, then the solution to the system:

x ≡ r1 (mod m1)
x ≡ r2 (mod m2)

...
x ≡ rn (mod mn)

is precisely one of the residue classes modulo m1m2 · · ·mn.

Solution: Induction on n. Do it for a pair; suffices to show that there is precisely one solution
in {1, 2, . . . ,m2m1}. Since (m1,m2) = 1, the sequence (m1, 2m1, . . . ,m2m1) is a permutation of the
residues modulo m2. Hence translating each of them by +a1, these still uniquely cover the residue
classes. Now they also repeat at (m2 + 1)m1, so we get a2 exactly once every m2m1.

3 Problems

1. (MOP98/1/1). Prove that the sum of the squares of 3, 4, 5, or 6 consecutive integers is not a perfect
square.

Solution: 3: go mod 3; 4, 5, 6: go mod 4

2. (Czech-Slovak97/5). Several integers are given (some of them may be equal) whose sum is equal to
1492. Decide whether the sum of their seventh powers can equal 1998.

Solution: Fermat’s little theorem: x7 ≡ x (mod 7).

3. (MOP97/2/4). Show that 1919 cannot be written as m3 + n4, where m and n are positive integers.

Solution: go mod 13

4. (Russia97/28). Do there exist real numbers b and c such that each of the equations x2 + bx + c = 0
and 2x2 + (b + 1)x + c + 1 = 0 have two integer roots?

Solution: No. Suppose they exist. Then b + 1 and c + 1 are even integers (since −(b + 1)/2 is the
sum of roots of 2nd equation, and (c + 1)/2 is product of roots), so b and c are odd and b2 − 4c ≡ 5
(mod 8), since c is odd, and that cannot be a perfect square.

5. Prove that x2 + y2 + z2 = 7w2 has no solutions in integers.

Solution: Assume on the contrary that (x, y, z, w) is a nonzero solution with |w| + |x| + |y| + |z|
minimal. Modulo 4, we have x2 +y2 +z2 ≡ 7w2, but every perfect square is congruent to 0 or 1 modulo
4. Thus we must have x, y, z, w even, and (x/2, y/2, z/2, w/2) is a smaller solution, contradiction.

6. (MOP97/6/1). Four integers are marked on a regular heptagon. On each step we simultaneously
replace each number by the difference between this number and the next number on the circle (that
is, the numbers a, b, c, d are replaced by a − b, b − c, c − d, and d − a). Is it possible after 1996 such
steps to have numbers a, b, c, d such that the numbers |bc− ad|, |ac− bd|, |ab− cd| are all primes?

Solution: After 4 steps, all even, so then get them all to be multiples of 4, not prime.

7. (USAMO98/1). The sets {a1, a2, . . . , a999} and {b1, b2, . . . , b999} together contain all the integers from
1 to 1998. For each i, |ai − bi| = 1 or 6. For example, we might have a1 = 18, a2 = 1, b1 = 17, b2 = 7.
Show that

∑999
i=1 |ai − bi| = 9 (mod 10).

Solution: If |ai− bi| = 6, then ai and bi have the same parity, so the set of such ai and bi contains an
even number of odd numbers. But if |ai−bi| = 1, then ai and bi have opposite parity, so each such pair
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includes just one odd number. Hence if the number of such pairs is even, then the set of all such ai and
bi also has an even number of odd numbers. But the total number of ai and bi which are odd is 999
which is odd. Hence the number of pairs with |ai− bi| = 1 must be odd, and hence the number of pairs
with |ai−bi| = 6 must be even. Suppose it is 2k. Then

∑
|ai−bi| = (999−2k)1+2k6 = 999+10k ≡ 9

(mod 10).

8. (StP96/22). Prove that there are no positive integers a and b such that for each pair p, q of distinct
primes greater than 1000, the number ap + bq is also prime.

Solution: Suppose a, b are so chosen, and let m be a prime greater than a+b. By Dirichlet’s theorem,
there exist infinitely many primes in any nonzero residue class modulo m; in particular, there exists a
pair p, q such that p ≡ b (mod m), q ≡ −a (mod m), giving ap + bq divisible by m, a contradiction.

9. (Czech-Slovak97/4). Show that there exists an increasing sequence {an}∞1 of natural numbers such
that for any k ≥ 0, the sequence {k + an} contains only finitely many primes.

Solution: Let pk be the k-th prime number, k ≥ 1. Set a1 = 2. For n ≥ 1, let an+1 be the least
integer greater than an that is congruent to −k modulo pk+1 for all k ≤ n. Such an integer exists by
the Chinese Remainder Theorem. Thus, for all k ≥ 0, k + an ≡ 0 (mod pk+1) for n ≥ k + 1. Then at
most k + 1 values in the sequence {k + an} can be prime; from the k + 2-th term onward, the values
are nontrivial multiples of pk+1 and must be composite.

10. (Russia96/20). Do there exist three natural numbers greater than 1, such that the square of each,
minus one, is divisible by each of the others?

Solution: Such integers do not exist. Suppose a ≥ b ≥ c satisfy the desired condition. Since a2 − 1
is divisible by b, the numbers a and b are relatively prime. Hence the number c2 − 1, which is divisible
by a and b, must be a multiple of ab, so in particular c2 − 1 ≥ ab. But a ≥ c and b ≥ c, so ab ≥ c2,
contradiction.

11. (Japan96/2). Let m and n be positive integers with gcd(m,n) = 1. Compute gcd(5m + 7m, 5n + 7n).

Solution: Let sn = 5n + 7n. If n ≥ 2m, note that sn = smsn−m − 5m7msn−2m, so gcd(sm, sn) =
gcd(sm, sn−2m). Similarly, if m < n < 2m, we have gcd(sm, sn) = gcd(sm, s2m−n). Thus by the
Euclidean algorithm, we conclude that if m + n is even, then gcd(sm, sn) = gcd(s1, s1) = 12, and if
m + n is odd, then gcd(sm, sn) = gcd(s0, s1) = 2.

12. (MOP97/5/4). Find all positive integers n such that 2n−1 ≡ −1 (mod n).
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