

Putnam Σ.9

Po-Shen Loh

26 October 2025

1 Problems

Putnam 2005/B4. For positive integers m and n , let $f(m, n)$ denote the number of n -tuples (x_1, x_2, \dots, x_n) of integers such that $|x_1| + |x_2| + \dots + |x_n| \leq m$. Show that $f(m, n) = f(n, m)$.

Putnam 2005/B5. Let $P(x_1, \dots, x_n)$ denote a polynomial with real coefficients in the variables x_1, \dots, x_n , and suppose that

$$\left(\frac{\partial^2}{\partial x_1^2} + \dots + \frac{\partial^2}{\partial x_n^2} \right) P(x_1, \dots, x_n) = 0 \quad (\text{identically})$$

and that

$$x_1^2 + \dots + x_n^2 \text{ divides } P(x_1, \dots, x_n).$$

Show that $P = 0$ identically.

Putnam 2005/B6. Let S_n denote the set of all permutations of the numbers $1, 2, \dots, n$. For $\pi \in S_n$, let $\sigma(\pi) = 1$ if π is an even permutation and $\sigma(\pi) = -1$ if π is an odd permutation. Also, let $\nu(\pi)$ denote the number of fixed points of π . Show that

$$\sum_{\pi \in S_n} \frac{\sigma(\pi)}{\nu(\pi) + 1} = (-1)^{n+1} \frac{n}{n+1}.$$