

Putnam $\Sigma.5$

Po-Shen Loh

21 September 2025

Meet in Wean 5403 at 10:30am

1 Problems

Putnam 2014/B4. Show that for each positive integer n , all the roots of the polynomial

$$\sum_{k=0}^n 2^{k(n-k)} x^k$$

are real numbers.

Putnam 2014/B5. In the 75th annual Putnam Games, participants compete at mathematical games. Patniss and Keeta play a game in which they take turns choosing an element from the group of invertible $n \times n$ matrices with entries in the field $\mathbb{Z}/p\mathbb{Z}$ of integers modulo p , where n is a fixed positive integer and p is a fixed prime number. The rules of the game are:

- (1) A player cannot choose an element that has been chosen by either player on any previous turn.
- (2) A player can only choose an element that commutes with all previously chosen elements.
- (3) A player who cannot choose an element on his/her turn loses the game.

Patniss takes the first turn. Which player has a winning strategy? (Your answer may depend on n and p .)

Putnam 2014/B6. Let $f : [0, 1] \rightarrow \mathbb{R}$ be a function for which there exists a constant $K > 0$ such that $|f(x) - f(y)| \leq K|x - y|$ for all $x, y \in [0, 1]$. Suppose also that for each rational number $r \in [0, 1]$, there exist integers a and b such that $f(r) = a + br$. Prove that there exist finitely many intervals I_1, \dots, I_n such that f is a linear function on each I_i and $[0, 1] = \bigcup_{i=1}^n I_i$.