

Putnam Σ.3

Po-Shen Loh

7 September 2025

1 Problems

Putnam 2004/B4. Let n be a positive integer, $n \geq 2$, and put $\theta = 2\pi/n$. Define points $P_k = (k, 0)$ in the xy -plane, for $k = 1, 2, \dots, n$. Let R_k be the map that rotates the plane counterclockwise by the angle θ about the point P_k . Let R denote the map obtained by applying, in order, R_1 , then R_2, \dots , then R_n . For an arbitrary point (x, y) , find, and simplify, the coordinates of $R(x, y)$.

Putnam 2004/B5. Evaluate

$$\lim_{x \rightarrow 1^-} \prod_{n=0}^{\infty} \left(\frac{1+x^{n+1}}{1+x^n} \right)^{x^n}.$$

Putnam 2004/B6. Let \mathcal{A} be a non-empty set of positive integers, and let $N(x)$ denote the number of elements of \mathcal{A} not exceeding x . Let \mathcal{B} denote the set of positive integers b that can be written in the form $b = a - a'$ with $a \in \mathcal{A}$ and $a' \in \mathcal{A}$. Let $b_1 < b_2 < \dots$ be the members of \mathcal{B} , listed in increasing order. Show that if the sequence $b_{i+1} - b_i$ is unbounded, then

$$\lim_{x \rightarrow \infty} N(x)/x = 0.$$