

Putnam E.14

Po-Shen Loh

2 December 2025

1 Problems

Putnam 2017/A1. Let S be the smallest set of positive integers such that

- (a) 2 is in S ,
- (b) n is in S whenever n^2 is in S , and
- (c) $(n+5)^2$ is in S whenever n is in S .

Which positive integers are not in S ?

(The set S is “smallest” in the sense that S is contained in any other such set.)

Putnam 2017/A2. Let $Q_0(x) = 1$, $Q_1(x) = x$, and

$$Q_n(x) = \frac{(Q_{n-1}(x))^2 - 1}{Q_{n-2}(x)}$$

for all $n \geq 2$. Show that, whenever n is a positive integer, $Q_n(x)$ is equal to a polynomial with integer coefficients.

Putnam 2017/A3. Let a and b be real numbers with $a < b$, and let f and g be continuous functions from $[a, b]$ to $(0, \infty)$ such that $\int_a^b f(x) dx = \int_a^b g(x) dx$ but $f \neq g$. For every positive integer n , define

$$I_n = \int_a^b \frac{(f(x))^{n+1}}{(g(x))^n} dx.$$

Show that I_1, I_2, I_3, \dots is an increasing sequence with $\lim_{n \rightarrow \infty} I_n = \infty$.