

Putnam E.4

Po-Shen Loh

16 September 2025

1 Problems

Putnam 2016/B1. Let x_0, x_1, x_2, \dots be the sequence such that $x_0 = 1$ and for $n \geq 0$,

$$x_{n+1} = \ln(e^{x_n} - x_n)$$

(as usual, the function \ln is the natural logarithm). Show that the infinite series

$$x_0 + x_1 + x_2 + \dots$$

converges and find its sum.

Putnam 2016/B2. Define a positive integer n to be *squarish* if either n is itself a perfect square or the distance from n to the nearest perfect square is a perfect square. For example, 2016 is squarish, because the nearest perfect square to 2016 is $45^2 = 2025$ and $2025 - 2016 = 9$ is a perfect square. (Of the positive integers between 1 and 10, only 6 and 7 are not squarish.)

For a positive integer N , let $S(N)$ be the number of squarish integers between 1 and N , inclusive. Find positive constants α and β such that

$$\lim_{N \rightarrow \infty} \frac{S(N)}{N^\alpha} = \beta,$$

or show that no such constants exist.

Putnam 2016/B3. Suppose that S is a finite set of points in the plane such that the area of triangle $\triangle ABC$ is at most 1 whenever A, B , and C are in S . Show that there exists a triangle of area 4 that (together with its interior) covers the set S .