

Putnam E.3

Po-Shen Loh

9 September 2025

1 Problems

Putnam 2016/A1. Find the smallest positive integer j such that for every polynomial $p(x)$ with integer coefficients and for every integer k , the integer

$$p^{(j)}(k) = \frac{d^j}{dx^j} p(x) \Big|_{x=k}$$

(the j -th derivative of $p(x)$ at k) is divisible by 2016.

Putnam 2016/A2. Given a positive integer n , let $M(n)$ be the largest integer m such that

$$\binom{m}{n-1} > \binom{m-1}{n}.$$

Evaluate

$$\lim_{n \rightarrow \infty} \frac{M(n)}{n}.$$

Putnam 2016/A3. Suppose that f is a function from \mathbb{R} to \mathbb{R} such that

$$f(x) + f\left(1 - \frac{1}{x}\right) = \arctan x$$

for all real $x \neq 0$. (As usual, $y = \arctan x$ means $-\pi/2 < y < \pi/2$ and $\tan y = x$.) Find

$$\int_0^1 f(x) dx.$$