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1 Classical results

Archimedes’ Principle. Let a sphere of radius 1 be inscribed inside a cylinder of radius 1 and height 2.
Then for any two planes parallel to the base of the cylinder, the cylindrical strip that they cut out of
the cylinder has surface area equal to that of the strip that they cut out of the sphere.

2 Problems

1. Two circles C1 and C2 intersect at A and B. C1 has radius 1. L denotes the arc AB of C2 which lies
inside C1. L divides C1 into two parts of equal area. Show L has length greater than 2.

2. Show that if X is a square of side 1 and X = A ∪ B, then A or B has diameter at least
√
5/2. Show

that we can find A and B both having diameter at most
√
5/2. The diameter of a set is the maximum

(strictly speaking, the supremum) of all distances between pairs of points in the set.

3. Let S be a spherical cap with distance taken along great circles. Show that we cannot find a distance
preserving map from S to the plane.

4. Let k be a positive real and let P1, P2, . . . , Pn be points in the plane. What is the locus of P such that∑
PP 2

i = k? State in geometric terms the conditions on k for such points P to exist.

5. Let S be a set of n points in the plane such that the greatest distance between two points of S is 1.
Show that at most n pairs of points of S are at distance 1 apart.

6. Show that we cannot place 10 unit squares in the plane so that no two have an interior point in common
and one has a point in common with each of the others.

7. Find f : R → R which preserves all rational distances but not all distances. Show that if f : R2 → R2

preserves all rational distances then it preserves all distances.

8. Four points are chosen at random on the surface of a sphere. What is the probability that the center
of the sphere lies inside the tetrahedron whose vertices are at the four points? (It is understood that
each point is independently chosen relative to a uniform distribution on the sphere.)
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