Yellow MOP Lecture: 9–10 July 2002. Po-Shen Loh

1 Triangles

1.1 Facts

- 1. Extended Law of Sines $a / \sin A = 2R$.
- 2. [ABC] = abc/4R.
- 3. (Geometry Revisited, page 3.) Let p and q be the radii of two circles through A, touching BC at B and C, respectively. Then $pq = R^2$.
- 4. Ceva Given triangle ABC. Let $D \in BC$, $E \in CA$, and $F \in AB$. Suppose that:

$$\frac{AF}{FB}\frac{BD}{DC}\frac{CE}{EA} = 1$$

Prove that AD, BE, and CF are concurrent.

5. Trig Ceva Given triangle ABC. Let $D \in BC$, $E \in CA$, and $F \in AB$. Suppose that:

$$\frac{\sin CAD}{\sin DAB} \frac{\sin ABE}{\sin EBC} \frac{\sin BCF}{\sin FCA} = 1.$$

Prove that AD, BE, and CF are concurrent.

- 6. Prove that the centroid of a triangle lies 2/3 of the way down each median.
- 7. Steiner-Lehmus Let *ABC* be a triangle such that the lengths of two angle bisectors are equal. Prove that *ABC* is isosceles.
- 8. (Geometry Revisited, page 13.) Prove that abc = 4srR.
- 9. (Geometry Revisited, page 13.) Let r_a , r_b , and r_c be the radii of the three excircles of triangle ABC. Prove that $1/r = 1/r_a + 1/r_b + 1/r_c$.
- 10. Orthic Triangle The feet of the altitudes of triangle ABC determine a triangle, called the *orthic* triangle. Prove that the orthocenter of ABC is the incenter of that triangle.
- 11. Euler Line Let O, G, and H be the circumcenter, centroid, and orthocenter of ABC, respectively. Prove that O, G, and H are collinear, and that HG = 2GO.

1.2 Problems

1. (Nordic 1998.2). Let C_1 and C_2 be two circles which intersect at A and B. Let M_1 be the center of C_1 and M_2 the center of C_2 . Let P be a point on the segment AB such that $|AP| \neq |BP|$. Let the line through P perpendicular to M_1P meet C_1 at C and D, and let the line through P perpendicular to M_2P meet C_2 at E and F. Prove that C, D, E, F are the vertices of a rectangle.

Solution: It is already clear that the diagonals of CEDF bisect each other, so it suffices to show that they are the same length. But since P is on the radical axis of C_1 and C_2 , it must have equal power with respect to the two circles; this implies that PF = PD, so we are done.

2. (Belarus 2000.1). Let M be the intersection point of the diagonals AC and BD of a convex quadrilateral ABCD. The bisector of angle ACD hits ray BA at K. If $MA \cdot MC + MA \cdot CD = MB \cdot MD$, prove that $\angle BKC = \angle CDB$.

Solution: N is isection CK, BD. ABT on MCD means that CD/DN = MC/MN, or $CD = MC \cdot DN/MN$. Then MB * MD = MA * MC + MA * MC * ND/MN = MA * MC * MD/MN, and power of a point with M in QBCN. Now KBD = ABN = ACN = NCD = KCD so K, B, C, D concyclic. Hence BKC = CDB.

3. (UK 1998.3). Let ABP be an isosceles triangle with AB = AP and $\angle PAB$ acute. Let PC be the line through P perpendicular to BP, with C a point on the same side of BP as A (and not lying on AB). Let D be the fourth vertex of parallelogram ABCD, and let PC meet DA at M. Prove that M is the midpoint of DA.

Solution: Let X be the intersection of the altitude from A and BC. We will find congruent triangles: AB = CD, $\angle BAX = \angle DCM$, and $\angle ABC = \angle ADC$ by the parallelogram. Therefore, MD = BX. But since the altitude is the midline of triangle CDB, and since MA = XC by parallelogram, we are done.

2 Brutal Force

1. (Razvan, 6/19/98, *Quadrilaterals* #6) Prove that if in a convex quadrilateral two opposite angles are congruent, the bisectors of the other two angles are parallel.

Solution: True for parallelogram; then tilt to a general case.

- 2. (Razvan, 6/19/98, *Quadrilaterals #13*) Prove that the interior bisectors of the angles of a parallelogram form a rectangle whose diagonals are parallel to the sides of the parallelogram.
 Solution: True for rectangle; tilt to general case.
- 3. (Rookie Contests 1998, 1999, 2000, Po's Star Theorem) Given two congruent circles, ω_1 and ω_2 . Let them intersect at *B* and *C*. Select a point *A* on ω_1 . Let *AB* and *AC* intersect ω_2 at A_1 and A_2 . Let *X* be the midpoint of *BC*. Let A_1X and A_2X intersect ω_1 at P_1 and P_2 . Prove that $AP_1 = AP_2$. **Solution:** True for symmetric case; perturb *A* by θ . Then A_1 and A_2 move by θ (vertical angles), and P_1 and P_2 also move by θ (symmetry through *X*). Therefore done.
- 4. (Russia 1998.14). A Circle S centered at O meets another circle S' at A and B. Let C be a point on the arc of S contained in S'. Let E, D be the second intersections of S' with AC, BC, respectively. Show that $DE \perp OC$.

Solution: Clearly true for symmetric case; for perturbation, angles flow around as usual.

3 Collinearity and Concurrence

3.1 Definitions

Definition 1 Let ω be a circle with center O and radius r, and let P be a point. Then the **power** of P with respect to ω is $OP^2 - r^2$. Note that the power can be negative.

Definition 2 Let ω_1 and ω_2 be two circles. Then the **radical axis** of ω_1 and ω_2 is the locus of points with equal power with respect to the two circles. This locus turns out to be a straight line.

Definition 3 Two triangles ABC and DEF are perspective from a point when AD, BE, and CF are concurrent.

Definition 4 Two triangles ABC and DEF are perspective from a line when $AB \cap DE$, $BC \cap EF$, and $CA \cap FD$ are collinear.

3.2 Arsenal

Ceva Let ABC be a triangle, and let $D \in BC$, $E \in CA$, and $F \in AB$. Then AD, BE, and CF concur if and only if:

$$\frac{AF}{FB}\frac{BD}{DC}\frac{CE}{EA} = 1.$$

Trig Ceva Let ABC be a triangle, and let $D \in BC$, $E \in CA$, and $F \in AB$. Then AD, BE, and CF concur if and only if:

$$\frac{\sin CAD}{\sin DAB} \frac{\sin ABE}{\sin EBC} \frac{\sin BCF}{\sin FCA} = 1.$$

- **Radical Axis** Let $\{\omega_k\}_1^3$ be a family of circles, and let ℓ_k be the radical axis of ω_k and ω_{k+1} , where we identify ω_4 with ω_1 . Then $\{\ell_k\}_1^3$ are concurrent.
- **Brianchon** Let circle ω be inscribed in hexagon *ABCDEF*. Then the diagonals *AD*, *BE*, and *CF* are concurrent.
- **Identification** Three lines AB, CD, and EF are concurrent if and only if the points A, B, and $CD \cap EF$ are collinear.
- Desargues Two triangles are perspective from a point if and only if they are perspective from a line.
- **Menelaus** Let ABC be a triangle, and let D, E, and F line on the extended lines BC, CA, and AB. Then D, E, and F are collinear if and only if:

$$\frac{AF}{FB}\frac{BD}{DC}\frac{CE}{EA} = -1.$$

- **Pappus** Let ℓ_1 and ℓ_2 be lines, let $A, C, E \in \ell_1$, and let $B, D, F \in \ell_2$. Then $AB \cap DE$, $BC \cap EF$, and $CD \cap FA$ are collinear.
- **Pascal** Let ω be a conic, and let $A, B, C, D, E, F \in \omega$. Then $AB \cap DE$, $BC \cap EF$, and $CD \cap FA$ are collinear.

3.3 Problems

1. (Bulgaria 1996.2). The circles k_1 and k_2 with respective centers O_1 and O_2 are externally tangent at the point C, while the circle k with center O is externally tangent to k_1 and k_2 . Let ℓ be the common tangent of k_1 and k_2 at the point C and let AB be the diameter of k perpendicular to ℓ . Assume that O_2 and A lie on the same side of ℓ . Show that the lines AO_1 , BO_2 , and ℓ have a common point.

Solution: An equivalent way to specify AB is that AB is the diameter of k parallel to O_1O_2 . Let $X = AO_1 \cap BO_2$ and note that O_1O_2X and ABX are similar. Now just use trig, where we let r_1, r_2 , and R be the respective radii of the circles and ϕ be the angle O_1O_2O .

2. (USAMO 1997.2) Let *ABC* be a triangle, and draw isosceles triangles *BCD*, *CAE*, *ABF* externally to *ABC*, with *BC*, *CA*, and *AB* as the respective bases. Prove that the lines through *A*, *B*, *C* perpendicular to the (possibly extended) lines *EF*, *FD*, *DE*, respectively, are concurrent.

Solution: Construct circles centered at D, E, and F such that they contain BC, CA, and AB as respective chords. Apply radical axis.

3. (Ireland 1996.9). Let *ABC* be an acute triangle and let *D*, *E*, *F* be the feet of the altitudes from *A*, *B*, *C*, respectively. Let *P*, *Q*, *R* be the feet of the perpendiculars from *A*, *B*, *C* to *EF*, *FD*, *DE*, respectively. Prove that the lines *AP*, *BQ*, *CR* are concurrent.

Solution: Trig Ceva on orthic triangle.

4. (Po 1999.x). Let Γ be a circle, and let the line ℓ pass through its center. Choose points $A, B \in \Gamma$ such that A and B are on one side of ℓ , and let T_A and T_B be the respective tangents to Γ at A and B. Suppose that T_A and T_B are on opposite sides of O. Let A' and B' be the reflections of A and B across ℓ . Prove that $A, B, A', B', T_A \cap \ell$, and $T_B \cap \ell$ lie on an ellipse.

Solution: Pascal on AAB'BBA'; then $AA \cap BB$, $AB' \cap A'B$, and $A'A' \cap B'B'$ are collinear. Pascal again on $T_AAB'T_BBB'$ yields result.

5. (Bulgaria 1997.10). Let ABCD be a convex quadrilateral such that $\angle DAB = \angle ABC = \angle BCD$. Let H and O denote the orthocenter and circumcenter of the triangle ABC. Prove that H, O, D are collinear.

Solution: Let M be the midpoint of B and N the midpoint of BC. Let $E = AB \cap CD$ and $F = BC \cap AD$. Then EBC and FAB are isosceles triangles, so $EN \cap FM = O$. By Pappus on MCENAF, we get that G, O, D collinear and by Euler Line we are done.