Red MOP Lecture (with solutions): July 16, 2013 Po-Shen Loh

1 Definitions

Definition 1 Let ω be a circle with center O and radius r, and let P be a point. Then the **power** of P with respect to ω is $OP^2 - r^2$. Note that the power can be negative.

Definition 2 Let ω_1 and ω_2 be two circles. Then the **radical axis** of ω_1 and ω_2 is the locus of points with equal power with respect to the two circles. This locus turns out to be a straight line.

Definition 3 Two triangles ABC and DEF are perspective from a point when AD, BE, and CF are concurrent.

Definition 4 Two triangles ABC and DEF are perspective from a line when $AB \cap DE$, $BC \cap EF$, and $CA \cap FD$ are collinear.

2 Arsenal

Ceva Let ABC be a triangle, and let $D \in BC$, $E \in CA$, and $F \in AB$. Then AD, BE, and CF concur if and only if:

$$\frac{AF}{FB}\frac{BD}{DC}\frac{CE}{EA} = 1.$$

Trig Ceva Let ABC be a triangle, and let $D \in BC$, $E \in CA$, and $F \in AB$. Then AD, BE, and CF concur if and only if:

$$\frac{\sin CAD}{\sin DAB} \frac{\sin ABE}{\sin EBC} \frac{\sin BCF}{\sin FCA} = 1.$$

- **Radical Axis** Let $\{\omega_k\}_1^3$ be a family of circles, and let ℓ_k be the radical axis of ω_k and ω_{k+1} , where we identify ω_4 with ω_1 . Then $\{\ell_k\}_1^3$ are concurrent.
- **Brianchon** Let circle ω be inscribed in hexagon *ABCDEF*. Then the diagonals *AD*, *BE*, and *CF* are concurrent.
- **Identification** Three lines AB, CD, and EF are concurrent if and only if the points A, B, and $CD \cap EF$ are collinear.
- **Desargues** Two triangles are perspective from a point if and only if they are perspective from a line.
- **Menelaus** Let ABC be a triangle, and let D, E, and F line on the extended lines BC, CA, and AB. Then D, E, and F are collinear if and only if:

$$\frac{AF}{FB}\frac{BD}{DC}\frac{CE}{EA} = -1.$$

- **Pappus** Let ℓ_1 and ℓ_2 be lines, let $A, C, E \in \ell_1$, and let $B, D, F \in \ell_2$. Then $AB \cap DE$, $BC \cap EF$, and $CD \cap FA$ are collinear.
- **Pascal** Let ω be a conic, and let $A, B, C, D, E, F \in \omega$. Then $AB \cap DE$, $BC \cap EF$, and $CD \cap FA$ are collinear.

3 Problems

1. (Bulgaria 1996.2). The circles k_1 and k_2 with respective centers O_1 and O_2 are externally tangent at the point C, while the circle k with center O is externally tangent to k_1 and k_2 . Let ℓ be the common tangent of k_1 and k_2 at the point C and let AB be the diameter of k perpendicular to ℓ . Assume that O_2 and A lie on the same side of ℓ . Show that the lines AO_1 , BO_2 , and ℓ have a common point.

Solution. An equivalent way to specify AB is that AB is the diameter of k parallel to O_1O_2 . Let $X = AO_1 \cap BO_2$ and note that O_1O_2X and ABX are similar. Now just use trig, where we let r_1, r_2 , and R be the respective radii of the circles and ϕ be the angle O_1O_2O .

2. (USAMO 1997.2) Let *ABC* be a triangle, and draw isosceles triangles *BCD*, *CAE*, *ABF* externally to *ABC*, with *BC*, *CA*, and *AB* as the respective bases. Prove that the lines through *A*, *B*, *C* perpendicular to the (possibly extended) lines *EF*, *FD*, *DE*, respectively, are concurrent.

Solution. Construct circles centered at D, E, and F such that they contain BC, CA, and AB as respective chords. Apply radical axis.

3. (Ireland 1996.9). Let *ABC* be an acute triangle and let *D*, *E*, *F* be the feet of the altitudes from *A*, *B*, *C*, respectively. Let *P*, *Q*, *R* be the feet of the perpendiculars from *A*, *B*, *C* to *EF*, *FD*, *DE*, respectively. Prove that the lines *AP*, *BQ*, *CR* are concurrent.

Solution. Trig Ceva on orthic triangle.

4. (Po 1999.x). Let Γ be a circle, and let the line ℓ pass through its center. Choose points $A, B \in \Gamma$ such that A and B are on one side of ℓ , and let T_A and T_B be the respective tangents to Γ at A and B. Suppose that T_A and T_B are on opposite sides of O. Let A' and B' be the reflections of A and B across ℓ . Prove that $A, B, A', B', T_A \cap \ell$, and $T_B \cap \ell$ lie on an ellipse.

Solution. Pascal on AAB'BBA'; then $AA \cap BB$, $AB' \cap A'B$, and $A'A' \cap B'B'$ are collinear. Pascal again on $T_AAB'T_BBB'$ yields result.

5. (Bulgaria 1997.10). Let ABCD be a convex quadrilateral such that $\angle DAB = \angle ABC = \angle BCD$. Let H and O denote the orthocenter and circumcenter of the triangle ABC. Prove that H, O, D are collinear.

Solution. Let M be the midpoint of B and N the midpoint of BC. Let $E = AB \cap CD$ and $F = BC \cap AD$. Then EBC and FAB are isosceles triangles, so $EN \cap FM = O$. By Pappus on MCENAF, we get that G, O, D collinear and by Euler Line we are done.