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Abstract An axiomatic foundation for models of multi-component multiphase
porous flow appearing ubiquitously in the engineering literature is developed. This
unifies and extends various disparate and empirical formulations appearing in the
literature. Constitutive restrictions are derived from an appropriate statement of
the second law of thermodynamics, and the corresponding dissipation inequalities
establish stability of solutions. The convexity properties and variational structure
of these models are elucidated.
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1 Introduction

A thermodynamically consistent system of balance laws and constitutive hypothe-
ses are developed which realize the equations used to model geophysical flows
involving multi-component, mulitphase, flows in a porous media. These equations
model the gross properties of these flows since a precise description of the physical
system involved is neither available nor tractable. Specifically:
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• Even in the case of only a few components forming a small number of phases,
precise balances of mass, force, and energy, for each component and phase
would result in an enormous system of coupled partial differential equations
(PDE’s). Three dimensional numerical simulation involving even one of these
difficulties would greatly exceed the capability of today’s computers.

To mitigate this issue it is postulated that thermodynamic equilibrium
occurs on a time scale much shorter than the pore-to-pore transport. Classical
thermodynamics can then be used to determine the composition and volume
fraction of each phase within the pores. With this approximation, precise state-
ments of the balance laws at the pore scale are approximated using constitutive
relations derived from classical thermodynamics; this tacitly neglects pore scale
transfer of momentum due to phase changes.
• Geophysical flows can take place over many kilometers and a precise description

of the pore structure is not available. The porous medium contains features
which span multiple length scales, and only gross properties, such as the pore
ratio and permeability, can be estimated by interpolating and extrapolating
available geological data.

In the absence of a precise description of the medium, macroscopic trans-
port of mass, momentum, and energy, are modeled using phenomenological
laws motivated by homogenization theory. Gross properties of the porous medium
are then used to estimate the coefficients in the corresponding Fick, Darcy, and
Fourier laws.

Using Darcy’s law to model momentum balances replaces vector-valued partial
differential equations with algebraic relations. This results in a substantial reduc-
tion in the computational resources needed to simulate these flows, and results in
coarse grained models where (i) a scalar transport equation is used to represent
the balance of mass for each conserved component (species or molecule), and (ii)
a single scalar equation is used to represent the balance of energy if the system
is not isothermal. Currently it is accepted that these models are computationally
tractable and provide acceptable predictive capability [9,11]. These considerations
motivated the continuum theory below which utilizes ideas found ubiquitously in
the engineering literature to yield macroscopic approximations of these problems.

1.1 Background

The literature on the modeling and simulation of multiphase porous flow is vast.
See, for example, the monographs [9,11]. The ideas introduced above to develop
macroscopic continuum descriptions appear ubiquitously. However, frequently these
are developed within a specific context where the delineation between kinematic
assumptions, constitutive assumptions, and balance laws, is blurred. In this work
care is taken to provide precise statements that distinguish between balance and
constitutive laws, and to develop constitutive laws which are consistent with the
second law of thermodynamics. By doing so, we are able to expose essential varia-
tional and other mathematical structures that assist in the formulation of effective
numerical schemes. This provides a formulation which encompass essentially all
of the models for porous flow in a rigid medium that appear in the engineering
literature.
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Continuum descriptions of porous flow formulate the problem in the context of
mixture theory where the properties of each constituent are described by functions
taking values at every point. Classical mixture theory [6,12,22] treats each compo-
nent as a separate continuum with its own motion and balance laws. This results
in a large system of coupled PDE’s which model many of the fine scale interactions
among the phases. Numerical solution of these systems for geological problems is
not tractable, so in the engineering literature coarse scale models are formulated by
assuming that local thermodynamic equilibrium is attained at the microscopic pore
level. This assumption results in a substantial simplification (balance laws/PDE’s
are replaced by constitutive assumptions/algebraic relations) and can be viewed
as a separation of time scales whereby equilibrium at the microlevel is achieved at
a much faster rate than at the macrolevel. In this context constitutive descriptions
of the mixture are derived using the laws of classical thermodynamics. Below care
is taken to elucidate how classical thermodynamical models for the microstructure
can be integrated into a consistent formulation of the second law for deformable
continua given by the Coleman–Noll procedure [10].

1.2 Classical Thermodynamics

Since there is a substantial schism between the classical and continuum notation,
formulation, and statement of thermodynamic principles, in this section the es-
sential elements of classical thermodynamics entering our continuum theory are
reviewed. A fundamental outcome of the theory is that the components (con-
stituents) combine to form phases which constitute a classical homogeneous ther-
modynamic system. Identities guaranteed by the structure theorem for homoge-
neous functions will be used in an essential fashion to integrate the classical and
continuum statements of the second law.

Classical thermodynamics postulates that for a mixture with mass (or moles)
M̃c of a component c, in a volume Ṽ , with (internal) energy Ẽ, there exists a
concave function, the entropy, S = Ŝ(Ẽ, Ṽ , {M̃c}Ncc=1) for which ∂S/∂Ẽ > 0 [21]. In
isolation, it is postulated that the system evolves to an equilibrium state for which
the entropy is maximized subject to the constraints that the energy, volume, and
mass of each component are fixed. In this context there exist Lagrange multipliers(

1/θ, p/θ, {µc/θ}Ncc=1

)
dual to the constraints for which

θ
∂S

∂Ẽ
= 1, θ

∂S

∂Ṽ
= p, θ

∂S

∂M̃c

= −µc,

and have the physical interpretation of temperature θ, pressure p, and chemical po-
tentials µc. When the mixture takes the form of a homogeneous phase the entropy
satisfies

Ŝ(λẼ, λṼ , {λM̃c}Ncc=1) = λŜ
(
Ẽ, Ṽ , {M̃c}Ncc=1

)
, λ ≥ 0,

and Euler’s representation theorem for homogeneous functions gives,

θS = Ẽ + pṼ −
Nc∑
c=1

µcM̃c.
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In a continuum description of a porous flow, if V ⊂ Ω is a subset of the porous
medium and Ṽ ⊂ V denotes the volume occupied by this phase, then scaling with
λ = 1/|V | and localizing gives η = Ŝ

(
e, s, {Mc}Ncc=1

)
, where

(η, e, s,Mc) = lim
|V |→0

(1/|V |)
(
S, Ẽ, Ṽ , M̃c

)
.

Here (η, e,Mc) are the entropy, internal energy, and mass of component c in this
phase per unit volume of Ω, and s ∈ [0, 1] is the saturation (volume fraction) of
this phase. If e, s, and Mc : Ω → R are defined on Ω, and η = Ŝ

(
e, s, {Mc}Ncc=1

)
,

then the identity

η∇θ − s∇p+

Nc∑
c=1

Mc∇µc = 0, (1)

follows from the homogeneity of Ŝ.
Frequently the dominant heat capacity is that of the medium and the fluids

in the pores rapidly take on its temperature. In this “isothermal” setting it is
convenient to introduce the Helmholtz free energy ψ = e − θη. Writing the free
energy as ψ = Ψ̂(θ, s, {Mc}Ncc=1), then Ψ̂ is convex and homogeneous in the last
variables, and takes the form

Ψ̂(θ, s, {Mc}Ncc=1) = −p s+

Nc∑
c=1

µcMc, with
∂Ψ

∂s
= −p, ∂Ψ

∂Mc
= µc, (2)

and ∂ψ/∂θ = −η. The formulae in this section may be viewed as instances of the
statements dE = T dS− p dV +µdN and dA = S dT − p dV +µdN which appear
ubiquitously in classical thermodynamics texts.

1.3 Scaling, Homogenization, and Darcy Laws

Motivated by homogenization theory [1,2,3,19], porous flow models utilize Darcy
laws as proxies for momentum equations of the fluids. The Darcy law postulates
that the macroscopic velocity of a fluid is a linear function of the pressure gra-
dient. Scaling the velocity by the density gives the mass flux vector appearing in
the balance(s) of mass. In addition, the Darcy velocity also determines the viscous
dissipation which appears as a source term in the energy equation. For the geo-
logical problems under consideration the porosity may vary substantially and the
porous flow equations may degenerate in regions where the strata is impervious
or one fluid is displaced by another. In this section a simple example is presented
to explicitly illustrate how the mass flux and viscous dissipation scale with the
saturation (volume available to a fluid).

If Y ε = [−ε, ε]3 and Y εf = {|z| ≤ εs} as in Figure 1, then Poiseuille’s solution
of the Stokes’ equations,

−div(2µD(v)− pI) = 0, div(v) = 0,

in Y εf with p = p̄+ p′1x+ p′2y affine is

vε(x, y, z) =

(
z2 − (εs)2

2µ

)
∇p, |z| ≤ εs.
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Y εf

2sε

2ε

Fig. 1 Poiseuille flow in a pore Y ε.

Consider then a porous medium Ω ⊂ R3 containing a periodic array of these cells
with one of the fluids occupying the pores Y εf . When the complement Y ε \ Y εf is
essentially immobile (medium and/or other fluids bound to the medium) the fluid
in Y εf will exhibit a Poiseuille flow. If the fluid has mass density ρ then the mass
per unit volume of Ω is M = ρs, and the macroscopic mass flux per unit area in
Ω is

q =
1

2ε

ˆ sε

−εs
ρvε dz =

(
−ρε2s3

3µ

)
∇p = M

(
−ε2s2

3µ

)
∇p ≡Mv,

so that the corresponding Darcy law is v = −(s2k/µ)∇p with permeability k =
ε2/3. For geological flows the small parameter ε << 1 gives rise to small Darcy
velocities. In this situation inertia is frequently negligible, and this is assumed in
the force balance postulated in Section 2.1.

The dissipation per unit volume of Ω is

D =
1

|Y ε|

ˆ
Y εf

2µ|D(vε)|2 dv =

(
ε2s3

3µ

)
|∇p|2 ≡ sf · v,

where f = −s∇p represents the force the medium exerts on the fluid due to the
no-slip condition which, in turn, gives rise to the velocity gradients responsible for
dissipation. Eliminating the pressure gives f = (sk/µ)−1v; this scaling motivated
the constitutive laws appearing below in Section 3.3. In particular, that the force
scales with the inverse of the saturation.

2 Balance Laws

The porous medium is assumed to be rigid and to reside in a domain Ω ⊂ Rd.
At each point the fraction of volume occupied by the medium, s0 : Ω → [0, 1],
is specified. Unless explicitly stated otherwise, all densities are taken per unit
volume of Ω. The presence of multiple components and phases necessitates the
introduction of a large number of variables which are collected here for ease of
reference.

It is assumed that the volume and motion of each phase are characterized by
the following.
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• sπ : Ω → [0, 1] represents the volume fraction of phase 1 ≤ π ≤ Np. With
s0 denoting the volume fraction of the porous medium it is immediate that∑Np
π=0 sπ = 1. Writing s = (s1, . . . , sNp) ∈ [0, 1]Np , this relation becomes s ·1 =

1− s0, where 1 = (1, . . . , 1) ∈ RNp .
• vπ : Ω → Rd represents the velocity field which transports the mass and

internal energy of each phase, 1 ≤ π ≤ Np.

Laws will be postulated for the balance of the mass of each component, force
balance, energy balance, and an entropy imbalance. Mass balance involves the
following quantities.

• Mcπ : Ω → [0,∞) represents the mass of component c in phase π per unit vol-
ume; the matrix of pore mass densities is denoted asM = [Mcπ] ∈ [0,∞)Nc×Np .
• mc : Ω → [0,∞) is the mass per unit volume of component 1 ≤ c ≤ Nc; the

vector of mass densities is denoted as m = (m1, . . . ,mNc) ∈ [0,∞)Nc . Clearly
m = M1. The mass per unit volume of phase π is ρπ =

∑Nc
c=1Mcπ.

• hc : Ω → Rd represents the mass flux due to diffusion, 1 ≤ c ≤ Nc.
• qc : Ω → R is the supply (sinks and sources) of component c.

Next we list the quantities appearing in the balance of forces. A fundamental
assumption in our formulation is that the phases are viscous fluids, so rather than
postulating a stress tensor, pressures and viscous forces are stipulated for each
phase, as well as forces describing the interactions between the phases.

• pπ : Ω → R represents the pressure (force per unit area in phase π) of phase
1 ≤ π ≤ Np.
• fπ : Ω → Rd represents the viscous force per unit volume of Ω the medium

exerts upon phase π, 1 ≤ π ≤ Np.
• fππ′ : Ω → Rd represents the viscous forces per unit volume of Ω that phase π

exerts upon phase π′, 1 ≤ π, π′ ≤ Np.
• bπ : Ω → Rd is the body force acting on phase π per unit volume of phase π.

Quantities such as energy and heat appear in the balance of energy.

• e : Ω → R is the internal energy per unit volume of Ω.
• eπ : Ω → R with 1 ≤ π ≤ Np represents the internal energy of phase π per unit

volume of Ω, and e0 denotes the internal energy of the medium. The vector of
internal energy densities is denoted as e = (e0, e1, . . . , eNp) ∈ RNp+1.

• q : Ω → Rd represents the flux of thermal energy due to heat conduction.
• µc : Ω → R represents the chemical potential of each component 1 ≤ c ≤ Nc.
• r : Ω → R is supply of energy (radiation absorbed or emitted).

Finally, we list the quantities appearing in the entropy imbalance.

• η : Ω → R is entropy per unit volume of Ω.
• ηπ : Ω → R represents the entropy of phase π per unit volume of Ω.
• θ : Ω → (0,∞) represents the (absolute) temperature. The inverse temperature

will be denoted by β = 1/θ.

2.1 Balances for inertialess continua

Under the assumption that effects due to inertia are negligible and that the medium
is a rigid, chemically inert heat conductor, we postulate the following balance laws.
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1. Mass Balances: For each control volume V ⊂ Ω

d

dt

ˆ
V

mc dv =

ˆ
V

qc dv −
ˆ
∂V

(
hc +

Np∑
π=1

Mcπvπ
)
· n da 1 ≤ c ≤ Nc,

where n is the unit outward normal to the boundary of V . The local form of
these balance laws are

(mc)t + div
( Np∑
π=1

Mcπvπ + hc
)

= qc. (3)

2. Force Balances: For each control volume V ⊂ Ω, let Vπ be the volume occupied
by phase π in V . Assume for each P ⊂ {1, . . . , Np} that

0 =
∑
π∈P

[ ˆ
V

(
− fπ −

∑
π′∈P c

fππ′
)
dv +

ˆ
Vπ

bπ dvπ −
ˆ
∂Vπ

pπn daπ
]

where dvπ and daπ are the volume and area elements associated with the
volume occupied by phase π and P c is the complement of P . The local form
of this law written per unit volume of Ω is∑

π∈P

(
sπ∇pπ + fπ +

∑
π′∈P c

fππ′
)

=
∑
π∈P

sπbπ. (4)

3. Energy Balance: For each control volume V ⊂ Ω

d

dt

ˆ
V

e dv =

ˆ
V

(
r +

Nc∑
c=1

µcqc +

Np∑
π=1

sπbπ · vπ
)
dv

−
ˆ
∂V

(
q +

Nc∑
c=1

µchc +

Np∑
π=1

(eπ + sπpπ)vπ
)
· n da. (5)

The local form of this balance is

et + div
(
q +

Nc∑
c=1

µchc +

Np∑
π=1

(eπ + sπpπ)vπ
)

= r +

Nc∑
c=1

µcqc +

Np∑
π=1

sπbπ · vπ.

4. Entropy imbalance: For each control volume V ⊂ Ω

d

dt

ˆ
V

η dv ≥
ˆ
V

r

θ
dv −

ˆ
∂V

(1

θ
q · n +

Np∑
π=1

ηπvπ · n
)
da.

The local form of this law is

ηt + div
(q

θ
+

Np∑
π=1

ηπvπ
)
≥ r

θ
. (6)



8 Brian Seguin, Noel J. Walkington

Remark 1 The presence of the saturations sπ in several places of the above bal-
ances deserves some comment. First, our mass, energy, and entropy, densities are
taken per unit volume of the domain Ω. Taking these quantities to be per unit
mass in their respective phases, as is often done in the literature, causes difficulties
when the Coleman–Noll procedure is applied (see Proposition 1). Thus, these den-
sities can be integrated over a volume without reference to the saturation of the
phases. The one exception to this is the body force bπ acting on phase π, which is
taken per unit volume in the phase π. This term is scaled by the saturation sπ in
both the force balance and the energy balance to give equations identical in form
to those appearing in the engineering literature.

The presence of the saturation in relation to the pressure pπ is more subtle. In
the global form of the force balance, the saturation does not appear. Rather, the
pressure is integrated over the boundary of the volume Vπ, which is the portion of V
occupied by phase π, to obtain the total traction force acting on phase π in V . The
saturation appears in the local form of this balance law since the measures dv and
dvπ are related through the identity dv = sπdvπ. The saturations directly appear
in the global form of the energy balance since, as can be seen in (2), saturation
times pressure is a form of energy density. Thus, the term sπpπ appears with eπ
in the boundary term in (5).

2.2 Basic consequences of the balances

Force balance can be used to obtain a law of mutual action for the forces fππ′ .
Choosing P = {1, . . . , Np} in (4) yields∑

π∈P

(
sπ∇pπ + fπ

)
=
∑
π∈P

sπbπ. (7)

Consider (4) for the choices P equals Q ⊂ {1, . . . , Np} and Qc, add the results,
and utilize (7) to find that∑

π∈Q

∑
π′∈Qc

fππ′ = −
∑
π′∈Qc

∑
π∈Q

fπ′π.

Since this holds for any Q, one can deduce that

fππ′ = −fπ′π for all π, π′ ∈ {1, . . . , Np}

using standard arguments in the theory of additive interactions. See, for example,
[16].

It is possible to rewrite the energy balance in several ways that are useful in
different contexts. Using the force balance to eliminate the power expended by the
external body forces gives the alternative statement of energy balance

et + div
(
q +

Nc∑
c=1

µchc +

Np∑
π=1

eπvπ
)

+

Np∑
π=1

pπ div(sπvπ)

= r +

Nc∑
c=1

µcqc +

Np∑
π=1

(
fπ +

Np∑
π′=1

fππ′
)
· vπ. (8)
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Moreover, the mass balances (3) can be used to eliminate the mass supplies qc to
obtain

et −mt · µ +

Np∑
π=1

div

((
eπ + sπpπ −

Nc∑
c=1

Mcπµc
)
vπ

)

+

Np∑
π=1

vπ·
(
−sπ∇pπ+

Nc∑
c=1

Mcπ∇µc
)

= r−div(q)−
Nc∑
c=1

hc·∇µc+
Nc∑
π=1

(
fπ+

Np∑
π′=1

fππ′
)
·vπ.

(9)

Finally, this equation can be used to eliminate the radiation term from the local
form of the entropy inequality to find that

θηt − et + µ ·mt +

Np∑
π=1

(
θηπ − eπ − sπpπ +

Nc∑
c=1

Mcπµc
)

div(vπ)

+

Np∑
π=1

(
θ∇ηπ −∇eπ − pπ∇sπ +

Nc∑
c=1

µc∇Mcπ

)
· vπ

≥ 1

θ
q · ∇θ +

Nc∑
c=1

hc · ∇µc −
Np∑
π=1

fπ +

Np∑
π′=1

fππ′

 · vπ. (10)

This last relation is sometimes referred to as the reduced entropy inequality and
does not involve any external influences.

3 Constitutive Relations

3.1 Local thermodynamic equilibrium

At each point it is postulated that the energy, volume, and mass (e, s0,m) corre-
sponds to the macroscopic state of a classical thermodynamic system in equilib-
rium. Specifically, we assume that there is a constitutive law

η̂π : R× [0, 1]× [0,∞)Nc → R, (11)

such that η̂π(eπ, sπ, {Mcπ}Ncc=1) gives the entropy in phase π when this phase has
energy eπ, volume fraction sπ, and consists of the mass densities {Mcπ}Ncc=1, and
that there is a function

êI : RNp+1 × [0, 1]Np × [0,∞)Nc×Np → R (12)

such that eI = êI(e, s,M) is the interfacial energy within the pores when the
energy of the medium and phases is given by e, the volume fractions are specified
by s, and the distribution of the masses of the components in the different phases
is described by M . Set

Ŝ(e, s,M) = η̂0(e0) +

Np∑
π=1

η̂π(eπ, sπ, {Mcπ}Ncc=1),
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where η̂0 : R → R is the entropy of the medium per unit volume of Ω. Since the
medium is assumed to be rigid and chemically inert its entropy depends only upon
its internal energy. The following local equilibrium assumption is made.

Assumption 1 (Local equilibrium) The macroscopic entropy η is specified by

η̂(e, s0,m) = max
(e,s,M)

{
Ŝ(e, s,M) | e · (1,1) + êI(e, s,M) = e,

s · 1 = 1− s0, M1 = m
}
, (13)

where (1,1) ≡ (1, 1, . . . , 1) ∈ RNp+1. Moreover, for each argument (e, s0,m) the
maximum is attained at a unique value

(e, s,M) = arg max
(e,s,M)

{
Ŝ(e, s,M) | e · (1,1) + êI(e, s,M) = e,

s · 1 = 1− s0, M1 = m
}
. (14)

Because of uniqueness, the local equilibrium assumption yields constitutive laws
for the energy, volume fraction, and mass densities:

(e, s,M) = (ê(e, s0,m), ŝ(e, s0,m), M̂(e, s0,m)). (15)

Under the assumption that the phase entropy functions ηπ are smooth and that
∂ηπ/∂eπ > 0, the local equilibrium assumption implies there exist Lagrange mul-

tipliers (θ̃, p, µ̃)1 and KKT multipliers {(λ0π, λ1π, {Λcπ}Ncc=1)}Npπ=1, all non-negative,
such that

θ̃
∂ηπ
∂eπ

= 1 +
∂eI
∂eπ

, 0 ≤ π ≤ Np,

θ̃

(
∂ηπ
∂sπ

+ λ0π − λ1π
)

= p+
∂eI
∂sπ

, θ̃

(
∂ηπ
∂Mcπ

+ Λcπ

)
= −µ̃c +

∂eI
∂Mcπ

, (16)

sπλ
0
π = 0, (1− sπ)λ1π = 0, McπΛcπ = 0.

Moreover, since the value of (e, s,M) is assumed to be unique, we also have the con-
stitutive relations (θ̂(e, s0,m), p̂(e, s0,m), µ̂(e, s0,m)) for the intrinsic variables.

The above assumption allows the entropy to be viewed as both a function of a
macroscopic state (e, s0,m) and a microscopic state (e, s,M) so that

η̂(e, s0,m) = Ŝ(e, s,M), (17)

and a calculation involving the chain rule shows that

θ̃
∂η

∂e
= 1, θ̃

∂η

∂s0
= p, and θ̃

∂η

∂mc
= −µ̃c. (18)

In Section 4.1 below it is shown that, in the prototypical situation where the
entropy functions are concave, these expressions for the partial derivatives of η are
valid even if Ŝ is not smooth provided the partial derivatives and KKT multipliers
on the left of equation (16) are interpreted as sub-gradients.

1 This choice of notation is justified by Proposition 1.
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3.2 Restrictions due to the Second Law (Coleman–Noll procedure)

The Second Law of Thermodynamics, as interpreted by Coleman and Noll [10],
says that the entropy imbalance (6) must hold for any thermodynamic process that
is compatible with the balances of mass, force, and energy. This places restrictions
on the constitutive laws for the various thermodynamics quantities that appear in
the balances. Rather than explicitly state constitutive laws for all of the quantities
introduced at the beginning of Section 2, here we take the approach of finding
sufficient conditions to guarantee that the second law holds and these conditions
will motivate additional constitutive laws that are consistent with the Second Law
of Thermodynamics.

Proposition 1 Assume that local equilibrium, Assumption 1, holds so that the
macroscopic entropy η, is determined by (13) and that the macroscopic energies,
saturations, and densities are determined by (14). Under these constitutive as-
sumptions, the entropy imbalance holds for all thermodynamic processes if

1. The entropy of phase π is

ηπ =
1

θ

(
eπ + sπpπ −

Nc∑
c=1

Mcπµc
)
. (19)

2. The interfacial energy only depends upon the saturations; that is, eI = êI(s).
3. The temperature, phase pressures, and the chemical potential of the components

are related to the Lagrange multipliers in (16) through

θ = θ̃, pπ = p+
∂eI
∂sπ

, µc = µ̃c. (20)

4. The diffusive mass fluxes, viscous forces, and heat flux satisfy

Nc∑
c=1

hc · ∇µc ≤ 0,

Np∑
π=1

(
fπ +

Np∑
π′=1

fππ′
)
· vπ ≥ 0, q · ∇θ ≤ 0. (21)

Proof First notice that (20)1,3 together with (18)1,3 imply that

θ
∂η

∂e
= 1 and θ

∂η

∂m
= −µ. (22)

Moreover, taking the gradient of (19), utilizing (16), Item 2 of the proposition,
and (20)2 yields

θ∇ηπ = ∇eπ + pπ∇sπ −
Nc∑
c=1

µc∇Mcπ. (23)

Using the previous two equations as well as Items 1 and 4, we see that

(θ
∂η

∂e
− 1)et + (θ

∂η

∂m
+ µ) ·mt +

Np∑
π=1

(
θηπ − eπ − sπpπ +

Nc∑
c=1

Mcπµc
)

div(vπ)

+

Np∑
π=1

(
θ∇ηπ −∇eπ − pπ∇sπ +

Nc∑
c=1

µc∇Mcπ

)
· vπ

≥ 1

θ
q · ∇θ +

Nc∑
c=1

hc · ∇µc −
Np∑
π=1

fπ +

Np∑
π′=1

fππ′

 · vπ.
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holds for all thermodynamic processes. From the chain rule

ηt =
∂η

∂e
et +

∂η

∂m
·mt, (24)

it follows that the previous inequality is equivalent to the reduced dissipation
inequality (10). ut

Notice that Item 1 in the previous proposition implies that the entropy ηπ is
a positive homogeneous function of (eπ, sπ,Mcπ), which is a common assumption
in classical thermodynamics; see, for example, [21]. While the previous result only
yields sufficient conditions for the Second Law to hold, it can be shown that Item
1 is also a necessary condition under the assumption that the energy, pressure,
and chemical potential of each phase is independent of the velocity of that phase.
Thus, the homogeneity of ηπ is necessary for the Second Law of Thermodynamics
to hold in this context.

The relation (19), along with (1) applied to each phase, allows the balance of
energy (9) to be written in a simplified form using the entropy ηπ:

et−mt ·µ+

Np∑
π=1

θ div(ηπvπ) = r− div(q)−
Nc∑
c=1

hc ·∇µc+

Nc∑
π=1

(
fπ+

Np∑
π′=1

fππ′
)
·vπ.

(25)
This form of the energy balance can be used to obtain a dissipation relation. In
particular, by (24), (18), (20), and (25) we obtain the identity θηt = et + mt · µ
so that

− d

dt

ˆ
Ω

η dv +

ˆ
Ω

1

θ

{
− (1/θ)q · ∇θ +

Nc∑
π=1

(
fπ +

Np∑
π′=1

fππ′
)
· vπ −

Nc∑
c=1

hc · ∇µc
}
dv

=

ˆ
Ω

−r/θ +

ˆ
∂Ω

(
(1/θ)q +

Np∑
π=1

ηπvπ
)
· n da.

This equality can be used to obtain lower bounds for the entropy and upper bounds
for the dissipation, which are an essential ingredient for any theory for existence
of solutions to PDE’s and stability of numerical schemes.

To ensure the Second Law of Thermodynamics is not violated, henceforth we
shall assume that Items 1–4 of the previous proposition hold. It follows from (20)
that we now have constitutive laws for θ, pπ, and µc. However, the conditions in
(21) do not fully determine hc, fπ, fππ′ , and q. These will be discussed in the next
subsection.

3.3 Fluxes and Darcy’s law

The requirement that mass and heat diffuse from high to low values of their po-
tentials is classical. Fick and Fourier laws are prototypical constitutive relations
which realize this,

hc = −K̂c(e, s,M)∇µc, and q = −K̂θ(e, s,M)∇θ, (26)
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where K̂c(e, s,M) and K̂θ(e, s,M) are positive semidefinite symmetric tensors.
More general statements of Fick’s law admit coupling between the chemical po-
tentials [13].

One systematic way to formulate constitutive laws for viscous forces that satisfy
the relations (4) is to first introduce a dissipation function (a Raleighian in the

physics literature) of the form Rs({vπ}Npπ=1, {vπ − vπ′}π′<π) and, with Dπ and
D(ππ′) denoting derivatives with respect to the corresponding arguments, to define

fπ = DπRs, and fππ′ =
1

2
D(ππ′)Rs, π′ < π,

and fπ′π = −fππ′ when π′ > π. If Rs is a non-negative convex function of its
arguments taking values in [0,∞] which vanishes when vπ = vπ − vπ′ = 0, then
(omitting the arguments of Rs)

Np∑
π=1

(
fπ ·vπ+

Np∑
π′=1

fππ′ ·vπ
)

=

Np∑
π=1

(
DπRs ·vπ+

∑
π′<π

D(ππ′)Rs ·(vπ−vπ′)
)
≥ Rs.

In this context Darcy’s law for the velocities is realized as the Euler–Lagrange
relation for the convex function

Is({vπ}Npπ=1) = Rs

(
{vπ}Npπ=1, {vπ − vπ′}π′<π

)
+

Np∑
π=1

sπ(bπ −∇pπ) · vπ.

Prototypically dissipation functions are formulated using an inner product on the
set of velocities which, as in Section 1.3, take the form(
{vπ}Npπ=1, {wπ}Npπ=1

)
s

=

Np∑
π=1

( 1

sπ
(vπ,wπ)Aπ +

∑
π′<π

2√
sπsπ′

(vπ − vπ′ ,wπ −wπ′)Aππ′

)
, (27)

where the tensors Aπ and Aππ′ = Aπ′π are symmetric and positive definite and for
a symmetric, positive definition tensor A, (v,w)A = v · Aw denotes the induced
inner product on vectors. These tensors correspond to the (pseudo) inverses of the
permeability tensors that appear in the engineering and experimental literature.
Letting the velocities be determined by(
{vπ}Npπ=1, {wπ}Npπ=1

)
s

=

Np∑
π=1

sπ(bπ −∇pπ) ·wπ, for all {wπ}Npπ=1 (28)

gives the force system

fπ =
1

sπ
Aπvπ and fππ′ =

1√
sπsπ′

Aππ′(vπ − vπ′),

which satisfies the force balance (4) with (viscous) dissipation

Np∑
π=1

(
fπ +

Np∑
π′=1

fππ′
)
· vπ = |{vπ}Npπ=1|

2
s ,

where |.|s = (., .)
1/2
s denotes the norm corresponding to the s-weighted inner prod-

uct. In the case of a single phase, substituting (28) into the right-hand side of the
previous equation results in the traditional form of Darcy’s law.
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3.4 Mechanical & isothermal case

Frequently it is assumed that the temperature is either constant or that the trans-
port of energy by the flow is negligible. The later may happen when the thermal
energy stored in the medium dominates that of the fluid(s) in the pores and ther-
mal equilibrium is quickly attained whereby the fluid(s) take on the temperature of
the medium. In this situation the temperature will satisfy a classical heat equation
of the form

(cθ)t + div (K∇θ) = r, (29)

where c and K are the specific heat and conductivity of the medium respectively.
Thus, the temperature can be solved for independently of the other thermodynamic
quantities. In this case, it is preferable to formulate constitutive laws so that
temperature is an independent variable. This is accomplished by introducing the
Helmholtz free-energy density of the system:

Ψ̂(θ, s,M) = ψ̂0(θ) +

Np∑
π=1

ψ̂π
(
θ, sπ, {Mcπ}Ncc=1

)
+ êI(θ, s,M), (30)

where ψπ = eπ − θηπ is the Helmholtz free-energy density for phase π.
The local equilibrium assumption, Assumption 1, requires Ψ̂(θ, s,M) to be at

a minimum,

ψ̂(θ, s0,m) = inf
(s,M)

{Ψ̂(θ, s,M) | s · 1 = 1− s0, M1 = m}, (31)

and that for each argument (θ, s0,m) the minimum is attained at a unique value

(s,M) = arg min
(s,M)

{
Ψ̂(θ, s,M) | s · 1 = 1− s0, M1 = m

}
. (32)

As in Section 3.1, this gives rise to Lagrange multipliers µ̃ and p and KKT multi-
pliers λ0, λ1, and Λ for which

∂ψπ
∂sπ

+ λ0π − λ1π = −p− ∂eI
∂sπ

, and
∂ψπ
∂Mcπ

+ Λcπ = µ̃c.

The analog of equations (18)2,3 are

∂ψ

∂s0
= −p, and

∂ψ

∂mc
= µ̃c. (33)

Replacing the entropy with the Helmholtz free energy in the reduced entropy
inequality (10) results in

− ψt − ηθt + µ ·mt −
Np∑
π=1

(
ψπ + sπpπ −

Nc∑
c=1

Mcπµc
)

div(vπ)

−
Np∑
π=1

(
∇ψπ + ηπ∇θ + pπ∇sπ −

Nc∑
c=1

µc∇Mcπ

)
· vπ

− q · ∇θ −
Nc∑
c=1

hc · ∇µc +

Np∑
π=1

fπ +

Np∑
π′=1

fππ′

 · vπ ≥ 0, (34)
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which is referred to as the free energy imbalance.
The analog of Proposition 1 in this case is the following, which is presented

without proof.

Proposition 2 Assume that local equilibrium holds so that the macroscopic Helmholtz
free energy ψ is determined by (31) and that the macroscopic saturations and den-
sities are determined by (32). Under these constitutive assumptions, the free energy
imbalance holds for all thermodynamic processes if

1. The microscopic entropy is given by ηπ = −∂ψπ∂θ for 0 ≤ π ≤ Np.
2. The Helmholtz free energy of phase π, for 1 ≤ π ≤ Np, is given by

ψπ = −sπpπ +

Nc∑
c=1

Mcπµc. (35)

3. The interfacial energy only depends upon the saturations; that is, eI = êI(s).
4. The pressures in the phases π, for 1 ≤ π ≤ Np, and the chemical potential of

the components are related to the Lagrange multipliers through

pπ = p+
∂eI
∂sπ

and µc = µ̃c. (36)

5. The diffusive mass fluxes, viscous forces, and heat conductivity satisfy

Nc∑
c=1

hc · ∇µc ≤ 0,

Np∑
π=1

(
fπ + fππ′

)
· vπ ≥ 0, q · ∇θ ≤ 0. (37)

Notice that Item 2 says that ψπ is a homogeneous function of sπ and {Mcπ}Ncc=1

for 1 ≤ π ≤ Np. Then upon assuming that Assumptions 1–4 of the previous
proposition hold, and using equation (1) to simplify the time derivative of ψ =
ψ̂(θ, s0,m) shows that the total Helmholtz free energy evolves according to

d

dt

ˆ
Ω

ψ dv =

ˆ
Ω

( Np∑
π=1

sπ∇pπ · vπ +

Nc∑
c=1

(qcµc + hc · ∇µc)
)
dv

−
ˆ
Ω

(
ηθt +

Np∑
π=1

ηπvπ · ∇θ
)
dv −

ˆ
∂Ω

Nc∑
c=1

µc
( Np∑
π=1

Mcπvπ + hc
)
· n da.

Using force balance to eliminate the pressures and assuming isothermal conditions
(θt and ∇θ are negligible) gives the dissipation relation

d

dt

ˆ
Ω

ψ dv +

ˆ
Ω

{ Np∑
π=1

(
fπ +

Np∑
π′=1

fππ′
)
· vπ −

Nc∑
c=1

hc · ∇µc
}
dv

=

ˆ
Ω

{ Np∑
π=1

sπbπ · vπ +

Nc∑
c=1

qcµc
}
dv −

ˆ
∂Ω

Nc∑
c=1

µc
( Np∑
π=1

Mcπvπ + hc
)
· n da.
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3.5 Summary

Substituting the constitutive postulates into the local forms of the balances of
mass and energy gives the following system of partial differential equations for
the mass densities and internal energy, (m, e), which model multiphase flow in a
porous medium:

∂mc

∂t
+ div

 Np∑
π=1

Mcπvπ −Kc∇µc

 = qc, c = 1, 2, . . . , Nc,

and

et −mt · µ +

Np∑
π=1

θ div(ηπvπ) = r + div(Kθ∇θ) +

Nc∑
c=1

|∇µc|2Kc + |{vπ}Npπ=1|
2
s .

In these equations qc and r model the source of each components and heat supply
respectively, and the body force bπ on each phase is specified in the Darcy law for

the phase velocities {vπ}Npπ=1. The constitutive input consists of:

• Entropy functions (11) for each phase or, equivalently, the free energy functions.
• The interfacial surface and wetting energy (12).
• Mass diffusion tensors for each component and heat conduction tensor (26).
• Diffusion tensors for the phases appearing in the Darcy law (28).

The dependence of microvariables (e, s,M) and Lagrange multipliers (θ, p,µ) upon
(e, s0,m) is then determined by m = M1 and Assumption 1, and the phase
pressures in the Darcy law for the velocities are pπ = p+ ∂eI/∂sπ.

4 Structural Properties

4.1 Entropy maximization

Here we justify the formal calculations done in Section 3. We begin by showing
that if the entropy functions η̂π for each phase are concave, then the entropy of the
mixture η̂(e, s0,m) is also a concave function and can be realized as the maximum
value of a concave function on a convex set.

Proposition 3 For each 1 ≤ π ≤ Np let η̂π : R × [0, 1] × [0,∞)Nc → R and
η̂0 : R→ R be concave functions. Suppose that ∂ηπ/∂eπ ≥ 0 and that the inequality
is strict for at least one phase. Let êI : [0, 1]Np → R be convex and set

Ŝ(e, s,M) = η̂0(e0) +

Np∑
π=1

η̂π(eπ, sπ, {Mcπ}Ncc=1),

(e, s,M) ∈ S ≡ RNp+1 × [0, 1]Np × [0,∞)Nc×Np .

For each (e, s0,m) ∈ R × [0, 1] × [0,∞)Nc assume that the maximum in the defi-
nition

η̂(e, s0,m) ≡ max
(e,s,M)∈S

{Ŝ(e, s,M) | e · (1,1)+ êI(s) = e, s ·1 = 1−s0, M1 = m}
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is achieved. Then

η̂(e, s0,m) = max
(e,s,M)∈S

{Ŝ(e, s,M) | e ·(1,1)+ êI(s) ≤ e, s ·1 = 1−s0, M1 = m},

(38)
in particular, η̂ is a concave function.

Proof If the maximum of Ŝ(e, s,M) was achieved at a point in S where e · (1,1) +
êI(s) < e then there exists ε > 0 for which (e + ε(1,1)) · (1,1) + êI(s) = e and
the hypothesis that ∂ηπ/∂eπ > 0 gives the contradiction Ŝ(e + ε(1,1), s,M) >
Ŝ(e, s,M). It follows that the formula (38) for η̂ holds.

Since êI is convex (and the other constraints are linear) it is immediate that

K = K(e, s0,m) ≡ {(e, s,M) ∈ S | e · (1,1) + êI(s) ≤ e, s · 1 = 1− s0, M1 = m}

is a convex set. Concavity of η̂ then follows from the concavity of Ŝ and the fact
that η is the maximum over all convex combinations of elements of the set in S. ut

In this context results from convex analysis can be used to elucidate the re-
lationship between η̂ and Ŝ. The extension of the domain of Ŝ to V = RNp+1 ×
RNp × RNc×Np by

Ŝ(e, s,M) =

{
Ŝ(e, s,M) if (e, s,M) ∈ S,
−∞ otherwise,

defines a proper, upper semi-continuous, concave function Ŝ : V→ R∪{−∞}. For
(e, s0,m) ∈ R× [0, 1]× [0,∞)Nc set

ÎK(e, s,M) ≡ Î(e, s,M ; e, s0,m) =

{
0 if (e, s,M) ∈ K,
−∞ otherwise

to be the concave indicator of the (closed and convex) set K ⊂ V over which the
extreme value of Ŝ is to be taken. With these definitions

η̂(e, s0,m) = max
(e,s,M)∈V

(
Ŝ(e, s,M) + ÎK(e, s,M)

)
.

Since the intersections of the domains of these functions is non-empty, at an ex-
tremim 0 ∈ ∂Ŝ(e, s,M) + ∂ÎK(e, s,M). Here ∂Ŝ ⊂ V and ∂ÎK ⊂ V are the super
gradients of Ŝ and ÎK, respectively:

∂Ŝ(e, s,M) =
{

(f , t, N) ∈ V |
(
(f , t, N), (ẽ, s̃, M̃)− (e, s,M)

)
V

≥ Ŝ(ẽ, s̃, M̃)− Ŝ(e, s,M), ∀(ẽ, s̃, M̃) ∈ V
}
,

and ∂ÎK is defined similarly. In this expression the pairing (. , .)V is the usual inner
product on V.

Upon assuming that the entropy functions η̂π are differentiable, classical results
from optimization show

∂Ŝ(e, s,M) =
{

(DeS,DsS + λ0 − λ1, DMS + Λ) |

λ0,λ1 ∈ [0,∞)Np , Λ ∈ [0,∞)Nc×Np ,λ0 · s = 0, λ1 · (1− s) = 0, Λ : M = 0
}
,
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where λ0, λ1, and Λ are the KKT multipliers dual to the constraints 0 ≤ sπ ≤ 1
and 0 ≤Mcπ respectively. When êI is differentiable and e · (1,1) + êI(s) = e; that
is, (e, s,M) ∈ ∂K, a similar calculation shows

∂ÎK(e, s,M) =
{
β
(
− (1,1),−p1 +DseI ,µ⊗ 1

)
| β ∈ [0,∞), p ∈ R, µ ∈ RNc

}
,

where β is the KKT multiplier for the inequality constraint and p and µ are the
Lagrange multipliers for the equality constraints scaled by β. The following lemma
is useful in this context.

Lemma 1 ([20, IV.4.3]) Let φ : H → R ∪ {∞} be a proper, convex, and lower
semi-continuous function on a Hilbert space H. If d

dτ u ∈ L
2[0, T ;H] and if there

exists a g ∈ L2[0, T ;H] with g(τ) ∈ ∂φ(u(τ)) a.e. on [0, T ], then φ◦u is absolutely
continuous on [0, T ] and

d

dτ
φ(u(τ)) =

(
h(τ), ddτ u(τ)

)
H
, a.e. τ ∈ (0, T ).

for any function h with h ∈ ∂φ(u) a.e. on [0, T ].

We abuse the notation by writing d
dτ φ(u) =

(
∂φ(u), dudτ

)
H

. Combining the above
then shows that if

(e, s,M)(τ) = arg max
(e,s,M)∈S

{
Ŝ(e, s,M) | e · (1,1) + êI(s) ≤ e(τ),

s · 1 = 1− s0, M1 = m(τ)
}

(39)

is sufficiently regular in time and τ 7→ (e(τ), s0(τ),m(τ)) is a smooth function from
[0, T ] to R×R+×RNc+ , then the derivative of the entropy function in Proposition
3 with respect to τ can be computed as

d

dτ
η̂(e, s0,m) =

d

dτ
Ŝ(e, s,M) =

(
∂Ŝ(e, s,M), ddτ (e, s,M)

)
V

=
(
−∂ÎK(τ)(e, s,M), ddτ (e, s,M)

)
V
.

Substituting in the formula for ∂ÎK(τ) then shows

1

β

d

dτ
η̂(e, s0,m) = 1 · eτ +DseI · sτ + p1 · sτ − (µ⊗ 1) : Mτ = eτ + p s0τ −µ ·mτ .

Substituting τ with position shows that the same formula holds if the time deriva-
tives are replaced by spatial gradients. Also, the hypotheses of Proposition 3 guar-
antee that β > 0, so upon defining θ = 1/β, we see that

θ
d

dτ
η̂(e, s0,m) = eτ + p s0τ − µ ·mτ .

This result is used to deduce (18) from (17).
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4.2 Variational structure: (I) Isothermal setting

The equations for the balance of mass in the isothermal setting with Darcy laws
as in Proposition 2 may be viewed as a maximally dissipative system [4,5,7,8,14,
17]. Specifically, in the absence of mass supplies and diffusion, an implicit Euler
approximation of these equations with time step τ may be constructed as a se-
quence of “minimizing movements”; that is as the Euler–Lagrange equations for
minimizers of

Î
(
s,M, {vπ}Npπ=1

)
=

ˆ
Ω

{τ
2
|{vπ}Npπ=1|

2
sn−1 − τ

Np∑
π=1

sπbπ · vπ + Ψ̂(s,M)
}
dv,

subject to the constraints: 0 ≤ sπ ≤ 1, 0 ≤Mcπ,

mc + τ div
( Np∑
π=1

Mn−1
cπ vπ

)
= mn−1

c , s · 1 = 1− s0,

and vπ · n|∂Ω = 0, with m ≡ M1 and | · |s = (., .)
1/2
s denoting the (semi) norm

characterizing the Darcy law (28). To verify this, introduce Lagrange multipliers
µ and p and formulate the Lagrangian2

L̂
(
s,M, {vπ}Npπ=1,µ, p

)
=

ˆ
Ω

{τ
2
|{vπ}Npπ=1|

2
sn−1 − (m−mn−1) · µ

+ τ

Np∑
π=1

( Nc∑
c=1

Mn−1
cπ ∇µc − sn−1

π bπ
)
· vπ + Ψ̂(s,M) + (s0 + s · 1− 1)p

}
dv.

Formally computing the variations gives

δL̂vπ 0 =
(
{vπ}Npπ=1, {δvπ}

Np
π=1

)
sn−1

+

Np∑
π=1

( Nc∑
c=1

Mn−1
cπ ∇µc − sn−1

π bπ
)
· δvπ,

δL̂Mcπ
0 =

∂Ψ

∂Mcπ
+ Λcπ − µc

δL̂sπ 0 =
∂Ψ

∂sπ
+ λ0π − λ1π + p,

where the KKT multipliers λ0π, λ1π, and Λcπ are non-negative and satisfy

ΛcπMcπ = 0, λ0πsπ = 0, λ1π(1− sπ) = 0,

and the variations with respect to µ and p trivially give the mass balance and the
constraint on the saturations. When Ψ̂ takes the form shown in equations (30), an

2 A priori it is not known that the Lagrange multipliers associated with the mass and volume
fraction constraints are the chemical potential µ and pressure p. However, due to how these
multipliers appear in the equations, it can be shown that indeed these Lagrange multipliers
have the expected physical interpretation.
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approximation of the Darcy law (28) is recovered,

(
{vπ}Npπ=1, {δvπ}

Np
π=1

)
sn−1

=

Np∑
π=1

(
sn−1
π bπ −

Nc∑
c=1

Mn−1
cπ ∇µc

)
· δvπ,

'
Np∑
π=1

sπ (bπ −∇pπ) · δvπ,

which, for isothermal conditions, follows from equation (1).

4.3 Variational structure: (II) General case

Very few variational characterizations of the thermo-mechanical laws of continuum
mechanics are available; this section presents one extension of the isothermal case
to include thermal effects. In the absence of heat conduction (q = 0), it is possible
to proceed as in the previous section and construct an implicit Euler scheme for the
porous flow equations which takes the form of a constrained minimization problem.
The associated saddle point problem involves the temperature θ as the Lagrange
multiplier for the energy equation. The temperature gradient is required to model
heat conduction and is not available for the minimization problem; for this reason
the saddle point problem is presented directly. The formulation presented in this
section was not derived from fundamental variational principles such as Hamilton’s
principles or those in [15,18]. Instead an extension of the isothermal principle was
“reverse engineered” give the desired equations.

Upon assuming a Darcy law of the form (28), the energy equation may be
written as

∂η

∂t
+ div

( Nπ∑
π=1

ηπvπ
)

=
1

θ

(
r − div(q) + |{vπ}Npπ=1|

2
s

)
,

where η = η0 +
∑Np
π=1 ηπ ≡ η · (1,1). Since ∂ηπ/∂eπ = 1/θ > 0 it is possible to

express the internal energy of each phase as eπ = êπ(ηπ, sπ, {Mcπ}Ncc=1) where êπ
is homogeneous. Write the total energy as

Ê(η, s,M) = ê0(η0) +

Np∑
π=1

êπ(ηπ, sπ, {Mcπ}Ncc=1) + êI(s),

and let τ denote a time step. Given (ηn−1, sn−1,Mn−1), set θn−1 = ∂eπ/ηπ, and
let

L̂
(
η, s,M, {vπ}Npπ=1, θ, p,µ

)
=

ˆ
Ω

{τ
2

(θ/θn−1)2|{vπ}Npπ=1|
2
sn−1

+τ

Np∑
π=1

(
ηn−1
π ∇θ+

Nc∑
c=1

Mn−1
cπ ∇µc−sn−1

π bπ
)
·vπ+(1/2)|∇(1/θ)|2Kn−1

θ
+(θ/θn−1)r

+ Ê(η, s,M)− θ(η − ηn−1) · (1,1) + (s0 + s · 1− 1)p− (m−mn−1) · µ
}
dv,
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where Kn−1
θ = (θn−1)2Kθ with Kθ denoting the usual heat conductivity tensor

appearing in Fourier’s law. Formally computing the variations gives

δL̂vπ 0 = (θ/θn−1)2
(
{vπ}Npπ=1, {δvπ}

Np
π=1

)
sn−1

+

Np∑
π=1

(
ηn−1
π ∇θ +

Nc∑
c=1

Mn−1
cπ ∇µc − sn−1

π bπ
)
· δvπ,

δL̂θ η + τ div
( Nπ∑
π=1

ηn−1
π vπ

)
= ηn−1 +

τ

θn−1

(
r

− (θn−1/θ)2 div((θn−1/θ)2Kθ∇θ) + (θ/θn−1)|{vπ}Npπ=1|
2
sn−1

)
,

δL̂ηπ 0 =
∂E

∂ηπ
− θ,

δL̂sπ 0 =
∂E

∂sπ
+ λ0π − λ1π + p,

δL̂Mcπ
0 =

∂E

∂Mcπ
+ Λcπ − µc,

where λ0π, λ1π, and Λcπ are KKT multipliers. Equation (1) shows that the variations
with respect to vπ gives (an approximation of) the Darcy law (28), and variations
with respect to p and µ yield the constraints on the saturation and the discrete
balances of mass.
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