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Abstract An axiomatic development for a continuum description of a multi-component
multiphase porous flow in an elastic medium is developed. The Coleman–Noll procedure is
used to derive constitutive restrictions which guarantee that the resulting model satisfies an
appropriate statement of the second law of thermodynamics and a corresponding dissipation
inequality. Many of the models and formulations appearing in the engineering literature are
shown to be special cases of the model developed here.

Keywords Poroelasticity · Multiphase flow · Biot theory · Thermodynamics

Mathematics Subject Classification 76S05 · 74F10 · 80A17

1 Introduction

Coleman–Noll theory is utilized to develop a continuum description of flow through an
elastic porous medium which satisfies the statement of the second law of thermodynamics
developed in their pioneering paper [12]. Geological problems involve fluids and media for
which a detailed description of their properties is not available and are too complex to sim-
ulate precisely. Models of the gross properties of these systems utilize mixture theory with
substantial constitutive postulates to model the dissipation, phase formation, and interac-
tion between the phases and medium. In another paper the authors developed an axiomatic
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formulation for flows in a rigid media [26]; extension to include elastic media requires addi-
tional constitutive postulates to model how the fluid pressure(s) enter into the macroscopic
stress–strain relation of the combination of medium and fluids. Classical poroelasticity mod-
els utilize Biot theory to develop the macroscopic stress-strain relation. Biot theory is typ-
ically developed in the context of linear elasticity with a single fluid pressure [10]; in par-
ticular, the reference and current configurations of the medium and fluid(s) are not distinct
in this theory. The poroelastic model below is developed in the current configuration; while
this is less convenient for linearization of the elastic response of the medium, it significantly
simplifies the constitutive theory for the fluid(s) in the pores.

1.1 Porous Flow Models

Porous flows of interest typically involve multiple fluids in a tortuous medium with interac-
tions occurring over multiple spatial and temporal scales. Moreover, only gross properties
of the spatial and compositional makeup of the medium and fluids are available, so mod-
els based on first principles can only realize macroscopic balance laws for mass, force, and
energy, along with an entropy inequality. Modeling the kinematics, dynamics, and thermo-
dynamics, required to close the systems of conservation laws has a long history. Darcy’s
experimental results of 1857 resulted in his eponymous law relating the mass flow and pres-
sure gradient [13], and the series of papers by Biot and Willis [3–6] dating from the 1940’s
integrated elasticity of the medium into the modeling. The monograph by Bear [2] presents
a comprehensive review of the classical theory, and the more recent monograph by Chen,
Huan, and Ma [9] includes a detailed discussion of numerical methods to simulate solutions.
The monograph by Cheng [10] provides an extensive overview of poroelastic models.

Due to their importance in the oil industry, a majority of the work on porous flow focuses
on incompressible one or two phase problems [1, 7, 8, 14, 16, 17, 19, 22, 27, 31]. When
multiple components are present a separation of time scales is assumed so that classical
thermodynamics can be used to determine the formation and evolution of the various phases
[11, 15, 18, 20, 23]. Integrating classical statements of thermodynamics into a continuum
description of flow in a rigid medium consistent with the second law formulated by Coleman
and Noll [12] was undertaken by the authors in [26]. Classical elasticity theory assumes that
stresses can be determined from the deformation, but this is not so for a poroelastic medium
since the stress in the medium also depends upon the pressure in the pores. In addition,
deformation of the medium results in changes of pore volume and hence the fluid pressure.
Homogenization theory for a periodic linear elastic medium with pore pressure p [25] shows
that there exists a homogenized elasticity tensor C and two Biot parameters, a tensor B and
a scalar β , for which the homogenized stress T0 in the solid and a volumetric strain ξ take
the form

T0 = C(∇u) + p(B − s01) and ξ = B · ∇u + βp, (1)

where u is the macroscopic displacement. If Vs ⊂ V is the solid portion of a representative
volume of the porous medium and |Ṽs | is the volume of the deformed solid, then setting
s0 = |Vs |/|V | and s = |Ṽs |/|V | the volumetric strain is characterized by

s = s0 + ξ + O(ε),

where ε is the ratio of the pore size (period) of the medium to a characteristic length scale
of the domain. These constitutive laws are comparable to those appearing in [10, equations
(5.5) and (5.6)], except there the total stress is used, while in (1) only the stress in the solid
phase is present. In the absence of detailed geometric information on the pores required
to determine the homogenized coefficients (C,B, β), the Biot theory appearing in the engi-
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neering literature typically assumes isotropic response so that C(E) = 2μE+λ tr(E)1 and B
is a multiple of the identity [24]. In Sect. 4.1 we show that formulae for the Biot parameters
are developed from a linearization of the formulation presented here.

1.2 Overview

Currently it is accepted that computationally tractable simulations of porous flows through
an elastic medium with acceptable predictive capability can be realized with a system of
partial differential equations consisting of (i) a scalar equation representing the balance of
mass for each conserved component (chemical species), (ii) a vector valued equation rep-
resenting a macroscopic momentum balance, and (iii) a scalar equation representing the
balance of energy. The model presented below fits into this paradigm, which results in a sys-
tem of coupled partial differential equations for the mass densities {mc}Nc

c=1 of the conserved
components,1 the displacement of the solid u, and the internal energy e. All other physical
processes are modeled with algebraic equations. These include Darcy laws which enter as
force balances for the fluid phases, and constitutive equations describing the formation of
the phases.

The balances of mass take the form,

∂

∂t
mc + div

(
mcv0 − Kc∇μc +

Np∑
π=1

Mcπ vr
π

)
= hc,

where the quantities inside the divergence represent the mass flux of the component arising
from the motion of the medium and each phase, and the right-hand side the mass sinks and
sources. Denoting the deformation gradient of the solid by F := 1 + ∇u, the balance of
forces for the solid/fluid system takes the form

Np∑
π=0

sπ bπ + div

[(
∂eI

∂F
− θ

∂η0

∂F

)
F� +

(
e0 − θη0 −

Np∑
π=1

sπpπ

)
1

]
= 0.

This equation neglects the inertial term since the motion is slow in relation to the time scales
of interest. The term inside the divergence is the (total) stress, and the remaining term is the
(total) body force. The balance of energy becomes

ė = r + ṁ · μ + div(Kθ∇θ) +
Nc∑
c=1

∇μc · Kc∇μc +
Np∑
π=1

(
vr

π ·
Np∑

π ′=0
π ′ �=π

Aππ ′
(
vr

π − vr
π ′

))

+ ∇v0 ·
[(

∂eI

∂F
− θ

∂η0

∂F

)
F� − θη1

]
−

Np∑
π=1

θ div
(
ηπ vr

π

)
.

The left-hand side of this equation is the rate of change of the internal energy and the right-
hand side represents the change due to external supply, chemical energy carried by the mass,
diffusion of heat and mass, viscous dissipation due to the relative motion of the fluids, elastic
energy, and transport due to the motion of the fluids relative to the solid.

1In porous flow contexts {mc}Nc
c=1 denote mass densities of components and {ρπ }Np

π=1 are the mass densities
of the phases.
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Constitutive relations are required to close this system of partial differential equations.
The development of constitutive relations to model phase formation and corresponding en-
ergy balance is non-trivial and is one of the main novelties of this work. Below we utilize
the methodology introduced by Coleman and Noll [12], whereby the second law of ther-
modynamics is exploited to develop constitutive relations which guarantee a dissipation in-
equality for the resulting model. These relations naturally divide into two distinct types. The
first type characterize the state of the fluids and phases at the pore scale and are introduced
in Sect. 3.1. It is assumed that these processes evolve to an equilibrium at much shorter
time scales than the macroscopic flow processes so that classical thermodynamics can be
used to characterize the state of the fluids at the pore scale. This principle is referred to as
local thermodynamic equilibrium, and while equilibrium has been assumed in poroelastic
theories before [10], the novel formulation of this assumption we present provides a seam-
less integration of classical and continuum statements of the second law for multi-phase
multicomponent fluids. In Sect. 3.2 these constitutive assumptions are introduced into the
balance laws and the Coleman–Noll procedure is utilized to identify constitutive restrictions
on the remaining variables which guarantee satisfaction of the second law of thermody-
namics. The short Sect. 3.3 discusses the consequences of these restrictions. The second set
of constitutive assumptions determine the dissipative processes, such as the Darcy law(s),
and are discussed in Sect. 3.4. Section 3.5 discusses the simplifications that result when the
temperature is assumed to be constant or is determined by that of the solid medium.

The next section introduces the notation required to describe systems with multiple com-
ponents and phases, and develops the statements of the physical laws these quantities obey.
The continuum model developed in Sect. 3 models a broad class of flows in poroelastic
media. In Sect. 4 connections with other theories and the present theory are made. Finally,
Sect. 5 summaries the proposed model by recapping the constitutive assumptions and bal-
ance laws.

2 Balance Laws

Balance laws will be formulated for a porous medium in which multiple phases of fluids
flow through a porous solid phase. The fluid phases are formed by different components;
that is, species which are conserved. There will be a total of Nc components that make up
Np phases. The formulation of the balance laws will be motivated by mixture theory and
results from homogenization involving poroelastic materials.

BR will denote a reference configuration of the body (medium and fluids) in a three-
dimensional Euclidean space E with associated vector space V , and I an interval of time.
Unless stated otherwise, all densities are taken per unit volume of space in the present
configuration.

2.1 Introduction of Relevant Quantities

A large number of quantities are required to characterize the evolution of the porous medium
under consideration. The variables used below are gathered here for easy reference.

The motion and volume fraction of each phase are described by the following.

– χ : BR × I → E is the motion of the medium, and is identified as the motion of the solid
phase. Let

T := {(
χ(X, t), t

) ∈ E × I | (X, t) ∈ BR × I
}

be the trajectory of the motion.
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– The deformation gradient of this motion is denoted by F = ∇χ .
– A superscript dot will denote the material time-derivative relative to the motion of the

solid; if φ is a spatial field, then

φ̇ := ∂φ

∂t
+ v0 · ∇φ. (2)

– vπ : T → V is the velocity of phase π , for 0 ≤ π ≤ Np , where phase π = 0 corresponds
to the solid phase. We write vr

π := vπ − v0 for the velocity of phase π relative to the solid
phase.

– sπ : T → [0,1] represents the volume fraction of phase 0 ≤ π ≤ Np . We write s :=
(s0, s1, . . . , sNp ) and assume that

∑Np

π=0 sπ = 1.

Laws will be postulated for the balance of the mass of each component, force balance
for each phase, a single energy balance, and a single entropy imbalance. The mass balances
involve the following quantities.

– m0 : T → [0,∞) is the mass density of the solid phase.
– mc : T → [0,∞) is the mass density of component c, for 1 ≤ c ≤ Nc . The vector of fluid

mass densities is denoted by m := (m1, . . . ,mNc ).
– Mcπ : T → [0,∞) represents the mass density of component c in phase π for 1 ≤ c ≤ Nc

and 1 ≤ π ≤ Np . The matrix of mass densities is denoted by M = [Mcπ ]. Clearly mc =∑Np

π=1 Mcπ .
– hc : T → V represents the mass flux of component c due to diffusion.
– hc : T →R is the supply (sinks and sources) of component c.

Next we list the quantities appearing in the balances of forces. It is assumed that the solid
phase is elastic, while the fluid phases are viscous. In the fluid phases, the viscous forces
will be modeled as body forces, dependent on the velocity of the fluid relative to the other
phases, rather than surface forces as is customary. In this way, the force balance for a fluid
phase will take the form of a Darcy Law. This formulation of viscous forces in porous flow
is motivated by results in homogenization theory [25]. Also, the phases will interact with
each other through body forces, as is common in mixture theory.

– Tπ : T → Sym2 is the elastic stress for phase 0 ≤ π ≤ Np . For the fluid phases, π �= 0,
we assume Tπ = −sπpπ 1, where pπ is the pressure in the fluid phase. The term sπpπ is
sometimes referred to as the partial pressure in phase π .

– fππ ′ : T → V with π �= π ′ is the force density that phase π ′ exerts on phase π . We assume
that this can be additively decomposed into the sum of an elastic force fEππ ′ and a viscous
force fV ππ ′ so that fππ ′ = fEππ ′ + fV ππ ′ .

– bπ : T → V is the body force density acting on phase π per unit volume of phase π .

The quantities appearing in the balance of energy are the following.

– e : T → R is the total internal energy density of the entire continuum.
– eπ : T → R is the internal energy density of phase 0 ≤ π ≤ Np . The vector of internal

energy densities is denoted by e = (e0, . . . , eNp ).
– q : T → V represents the heat flux.

2Here we assume that the stresses are symmetric. In more general mixture theory, it is possible for stresses
to be nonsymmetric. In this case one must postulate a torque balance for each phase. However, if for each
phase there is no external supply of torques, then torque balance implies that the stresses are symmetric. See
Truesdell [29] for details.
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– μc : T → R is the chemical potential of component 1 ≤ c ≤ Nc . The vector of chemical
potentials is denoted by μ := (μ1, . . . ,μNc ).

– r : T →R is the supply of energy.

Finally, we list the quantities appearing in the entropy imbalance.

– η : T → R is the total entropy density of the entire continuum.
– ηπ : T → R is the entropy density of phase 0 ≤ π ≤ Np .
– θ : T → (0,∞) is the (absolute) temperature.
– ψπ = eπ − θηπ is the (Helmholtz) free energy of phase 0 ≤ π ≤ Np . The free energy is

used in place of the entropy in the isothermal setting.

2.2 Balances for Inertialess Continua

All of the balances will first be formulated globally using a spatial region V (t) that is con-
vecting with the motion of the solid phase. We will assume that the fluid phases are trans-
ported by the porous solid so that their velocities take the form vπ = v0 + vr

π (1 ≤ π ≤ Np),
and that inertial effects are negligible.

1. Mass balance: The global form of mass balance for the solid states that

d

dt

∫
V (t)

m0 dv = 0. (3)

The local form of this balance is

∂

∂t
m0 + div(m0v0) = 0. (4)

For fluid component c, global mass balance reads

d

dt

∫
V (t)

mc dv =
∫

V (t)

hc dv −
∫

∂V (t)

(
hc +

Np∑
π=1

Mcπ vr
π

)
· nda, (5)

where n is the exterior unit normal. Localizing this balance yields

∂

∂t
mc + div

(
mcv0 + hc +

Np∑
π=1

Mcπ vr
π

)
= hc. (6)

2. Force balance: Assume for each subcollection P ⊂ {0, . . . ,Np} of phases that

∑
π∈P

[∫
V (t)

sπ bπ dv +
∫

∂V (t)

Tπ nda +
∑

π ′∈Pc

∫
V (t)

fππ ′ dv

]
= 0, (7)

where P c is the complement of P in {0, . . . ,Np}. The local form is

∑
π∈P

[
sπ bπ + div(Tπ ) +

∑
π ′∈Pc

fππ ′

]
= 0. (8)
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3. Energy balance: The global form is

d

dt

∫
V (t)

e dv =
∫

V (t)

r dv −
∫

∂V (t)

q · nda

+
Nc∑
c=1

[∫
V (t)

μchc dv −
∫

∂V (t)

μchc · nda

]

+
Np∑
π=0

[∫
V (t)

sπ bπ · vπ dv +
∫

∂V (t)

(
Tπ vπ − eπ vr

π

) · nda

]
. (9)

The local form reads

∂

∂t
e + div

[
ev0 + q +

Nc∑
c=1

μchc +
Np∑
π=0

(
eπ vr

π − Tπ vπ

)]

= r +
Nc∑
c=1

μchc +
Np∑
π=0

sπ bπ · vπ . (10)

4. Entropy imbalance: The global form of entropy imbalance is

d

dt

∫
V (t)

η dv ≥
∫

V (t)

r

θ
dv −

∫
∂V (t)

1

θ
q · nda −

Np∑
π=1

∫
∂V (t)

ηπ vr
π · nda. (11)

The local form is

∂

∂t
η + div

(
ηv0 + q

θ
+

Np∑
π=1

ηπ vr
π

)
≥ r

θ
. (12)

2.3 Basic Consequences of the Balances

The aforementioned balances have a few consequences that will be useful in our analysis.
First of all, using results in Noll’s theory of interactions [21], force balance yields the law
of mutual action:

fππ ′ = −fπ ′π for all π,π ′ ∈ {0, . . . ,Np}. (13)

The energy balance can be rewritten in a different form which will be useful below.
Eliminating the mass supplies hc and the external body forces sπ bπ from the energy balance
using (6) and (8), and using (13), the energy balance becomes (recall Tπ = −sπpπ 1 for
π �= 0 and the notation (2))

ė − ṁ · μ = r − div q −
Nc∑
c=1

∇μc · hc −
Np∑
π=1

(
vr

π ·
Np∑

π ′=0
π ′ �=π

fV ππ ′

)

+ ∇v0 ·
[

T0 +
(

μ · m − e −
Np∑
π=1

sπpπ

)
1

]
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+
Np∑
π=1

vr
π ·

[
Nc∑
c=1

μc∇Mcπ − ∇eπ −
Np∑

π ′=0
π ′ �=π

fEππ ′

]

+
Np∑
π=1

div
(
vr

π

)[ Nc∑
c=1

μcMcπ − eπ − sπpπ

]
. (14)

This equation can be used to eliminate the radiation from the entropy imbalance to obtain

θη̇ − ė + ṁ · μ ≥ 1

θ
∇θ · q +

Nc∑
c=1

∇μc · hc +
Np∑
π=1

(
vr

π ·
Np∑

π ′=0
π ′ �=π

fV ππ ′

)

− ∇v0 ·
[

T0 +
(

μ · m − e −
Np∑
π=1

sπpπ + θη

)
1

]

−
Np∑
π=1

vr
π ·

[
Nc∑
c=1

μc∇Mcπ − ∇eπ −
Np∑

π ′=0
π ′ �=π

fEππ ′ + θ∇ηπ

]

−
Np∑
π=1

div
(
vr

π

)[ Nc∑
c=1

μcMcπ − eπ − sπpπ + θηπ

]
. (15)

This last relation is sometimes referred to as the reduced entropy inequality and does not
involve any external influences. It is the form of the entropy imbalance that is most useful
when applying the Coleman–Noll procedure.

3 Constitutive Relations

3.1 Local Thermodynamic Equilibrium

It is necessary to specify how the mass of each component mc , total internal energy e,
and entropy η, are partitioned among the various phases, and to determine how much of
each phase is present at any particular point. Classical thermodynamics was developed to
determine macroscopic properties of equilibrated systems from their constituents (energy,
volume, mass). Porous flow models postulate a separation of time scales so that this theory
can be used to model the state of the fluids at the pore scale. This is realized by assuming
that at each point of the continuum the phases are formed by maximizing the total entropy
subject to constraints on the total amount of internal energy and mass available, and the de-
formation F. This characterizes equilibria of classical thermodynamic ensembles [28]. This
assumption has been made in poroelasticity before [10], but a clear statement of the second
law has not been formulated precisely in the multi-component multiphase fluid setting.

We assume that the entropy of a fluid phase, π �= 0, is specified by the constitutive law

ηπ = η̂π

(
eπ , sπ , {Mcπ }Nc

c=1

)
, (16)

and the entropy for the solid phase is determined by

η0 = η̂0(e0, s0,F). (17)
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The entropy for the entire continuum is determined by the local equilibrium assumption
introduced below. The total internal energy at the pore scale is assumed to consist of the
internal energy of the phases and the energy concentrated at the interfaces between the
phases associated with surface tension and wetting. This additional contribution to the inter-
nal energy depends upon the phases present, and in the porous flow model is constitutively
specified by a function of the form

eI = êI (e, s,M,F), (18)

where, recall, e = (e0, . . . , eNp ).

Assumption 1 (Local Equilibrium) The entropy η of the continuum is specified by

η = η̂(e,m,F)

:= sup
(e,s,M)

{
η̂0(e0, s0,F) +

Np∑
π=1

η̂π

(
eπ , sπ , {Mcπ }Nc

c=1

) ∣∣ êI (e, s,M,F)

+
Np∑
π=0

eπ = e,

Np∑
π=0

sπ = 1,

Np∑
π=1

Mcπ = mc

}
. (19)

Moreover, for each (e,m,F) the maximum is attained at a unique point

(e, s,M) = arg max
(e,s,M)

{
η̂0(e0, s0,F) +

Np∑
π=1

η̂π

(
eπ , sπ , {Mcπ }Nc

c=1

) ∣∣ êI (e, s,M,F)

+
Np∑
π=0

eπ = e,

Np∑
π=0

sπ = 1,

Np∑
π=1

Mcπ = mc

}
. (20)

The supremum in these expressions is taken over e ∈ R
Np+1, s ∈ [0,1]Np+1, and M ∈

[0,∞)Nc×Np .

By the uniqueness part of this assumption, we obtain constitutive laws for the energies,
volume fractions, and mass densities:

(e, s,M) = (
ê(e,m,F), ŝ(e,m,F), M̂(e,m,F)

)
.

Under the assumption that the entropy and interfacial energy functions are smooth, the
local thermodynamic equilibrium assumption implies the existence of Lagrange multipliers
(λe, λs,λm) ∈R×R×R

Nc and KKT (Karush–Kuhn–Tucker) multipliers(
λ0,λ1,Λ

) ∈ [0,∞)1+Nπ × [0,∞)1+Nπ × [0,∞)Nπ Nc

such that

∂ηπ

∂eπ

= λe

(
1 + ∂eI

∂eπ

)
, π ∈ {0, . . . ,Np}, (21)

∂ηπ

∂sπ

+ λ0
π − λ1

π = λs + λe ∂eI

∂sπ

, π ∈ {0, . . . ,Np}, (22)
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∂ηπ

∂Mcπ

+ Λcπ = λm
c + λe ∂eI

∂Mcπ

, π ∈ {1, . . . ,Np}, (23)

sπλ0
π = 0, (1 − sπ )λ1

π = 0, π ∈ {0, . . . ,Np}, (24)

McπΛcπ = 0, π ∈ {1, . . . ,Np}, (25)

with c ∈ {1, . . . ,Nc}. We shall see that the Lagrange multipliers λe , λs , and λm
c are related

to the temperature θ , a pressure p, and the chemical potentials μc , respectively.
Let (ē, m̄, F̄) be a parameter dependent family of states at which the entropy η can be

considered. By the assumption of local equilibrium, there corresponds a parameter depen-
dent family (ē, s̄, M̄) such that

η̂(ē, m̄, F̄) = η̂0(ē0, s̄0, F̄) +
Np∑
π=1

η̂π

(
ēπ , s̄π , {M̄cπ }Nc

c=1

)
.

Differentiating this equation with respect to the parameter, using the chain rule, and (21)–
(25) yields

η′ = ∂η

∂e
ē′ + ∂η

∂m
· m̄′ + ∂η

∂F
· F̄′ = λeē′ + λm · m̄′ +

(
∂η0

∂F
− λe ∂eI

∂F

)
· F̄′, (26)

where prime denotes the derivative with respect to the parameter. Since the process (ē, m̄, F̄)

was arbitrary, it follows that

∂η

∂e
= λe,

∂η

∂m
= λm, and

∂η

∂F
= ∂η0

∂F
− λe ∂eI

∂F
. (27)

3.2 Restrictions Due to the Second Law

Coleman and Noll’s interpretation [12] of the second law of thermodynamics is that the en-
tropy imbalance (12) must hold for all thermodynamic processes. Moreover, they stipulated
that external influences can be specified arbitrarily, so for any thermodynamic process one
can choose hc , bπ , and r such that the balances of mass, force, and energy hold. Since the
second law does not restrict the class of processes, it should be interpreted as a restriction
on constitutive laws. Here, rather than specifying all of the constitutive laws and use the sec-
ond law to find if and only if restrictions on them, we only find sufficient conditions for the
second law to hold and use these to motivate additional constitutive laws that are consistent
with the second law of thermodynamics.

Proposition 1 Assume that local equilibrium holds so that the entropy η is determined
by (19) and that the energies, volume fractions, and densities of the different phases are
determined by (20). Under these constitutive assumptions, the entropy imbalance holds for
all thermodynamics processes if

1. The entropy of fluid phase π �= 0 is given by

ηπ = 1

θ

(
eπ + sπpπ −

Nc∑
c=1

Mcπμc

)
. (28)
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2. The stress in the solid phase is given by

T0 = (e0 − θη0 + eI )1 − θ
∂η0

∂F
F� + ∂eI

∂F
F�. (29)

3. The interfacial energy only depends upon the volume fractions and the deformation gra-
dient; that is,

eI = êI (s,F). (30)

4. The temperature, phase pressures, and the chemical potential of the components are re-
lated to the Lagrange multipliers through

θ = 1/λe, pπ = p + ∂eI

∂sπ

, μc = −θλm
c , (31)

where p := λsθ .
5. The diffusive mass fluxes, heat flux, and viscous forces satisfy

Nc∑
c=1

hc · ∇μc ≤ 0, q · ∇θ ≤ 0,

Np∑
π=1

(
vr

π ·
Np∑

π ′=0
π ′ �=π

fV ππ ′

)
≤ 0. (32)

6. The elastic forces between the phases satisfy

pπ∇sπ =
Np∑

π ′=0
π ′ �=π

fEππ ′ , π �= 0. (33)

Proof A chain rule calculation similar to (26) in the reduced entropy inequality (15) shows

0 ≤ (
λeθ − 1

)
ė + (

μ + θλm
) · ṁ

− 1

θ
∇θ · q −

Nc∑
c=1

∇μc · hc −
Np∑
π=1

(
vr

π ·
Np∑

π ′=0
π ′ �=π

fV ππ ′

)

+ ∇v0 ·
[

T0 −
(

∂eI

∂F
− θ

∂η0

∂F

)
F� +

(
μ · m − e −

Np∑
π=1

sπpπ + θη

)
1

]

+
Np∑
π=1

vr
π ·

[
Nc∑
c=1

μc∇Mcπ − ∇eπ −
Np∑

π ′=0
π ′ �=π

fEππ ′ + θ∇ηπ

]

+
Np∑
π=1

div
(
vr

π

)[ Nc∑
c=1

μcMcπ − eπ − sπpπ + θηπ

]
.
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We must use Items 1–6 to show that this inequality holds regardless of the state of the
continuum. It follows from Items 1, 4, 5, and 6 that it suffices to show that

T0 =
(

∂eI

∂F
− θ

∂η0

∂F

)
F� −

(
μ · m − e −

Np∑
π=1

sπpπ + θη

)
1 (34)

and

Nc∑
c=1

μc∇Mcπ − ∇eπ − pπ∇sπ + θ∇ηπ = 0. (35)

To obtain the first of these, sum (28) from π = 1 to Np and use the facts

η =
Np∑
π=0

ηπ and e = eI +
Np∑
π=0

eπ

to find that

e0 − θη0 + eI = e − θη − m · μ +
Np∑
π=1

sπpπ .

Using this equation and Item 2 yields (34). To obtain (35), begin by taking the gradient of
(16) and use (21)–(25) to find that

θ∇ηπ = θλe

(
1 + ∂eI

∂eπ

)
∇eπ +

(
θλs + θλe ∂eI

∂sπ

)
∇sπ +

Nc∑
c=1

(
θλm

c + θλe ∂eI

∂Mcπ

)
∇Mcπ .

Combining this with Items 3 and 4 results in (35), which completes the proof. �

3.3 Comments and Consequences of the Restrictions

Item 1 of the Proposition 1 is consistent with the common assumption in classical thermo-
dynamics that ηπ is a homogeneous function of eπ , sπ , and Mcπ ; see, for example, [28].

Item 6 specifies the net elastic forces on a fluid phase π by the other phases. The net
elastic force on the solid phase coming from the fluid phases can be computed from the fact
that (13) implies

0 =
Np∑
π=0

Np∑
π ′=0
π ′ �=π

fEππ ′ =
Np∑

π ′=1

fE0π ′ +
Np∑
π=1

Np∑
π ′=0
π ′ �=π

fEππ ′

and hence by (31)2

Np∑
π ′=1

fE0π ′ = −
Np∑
π=1

pπ∇sπ = −
Np∑
π=1

(
p + ∂eI

∂sπ

)
∇sπ

= p∇s0 − ∇eI + ∂eI

∂s0
∇s0 + ∂eI

∂F
∇F. (36)
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This formula together (33) specifies net elastic force
∑Np

π ′=0
π ′ �=π

fEππ ′ on any phase π in terms

of the given constitutive laws.
If (33) is used in the force balance for fluid phase π and the divergence of the stress is

expanded, then one obtains

sπ bπ − sπ∇pπ +
Np∑

π ′=0
π ′ �=π

fV ππ ′ = 0. (37)

Thus, the net elastic force acting on the fluid phase from other phases cancels with part of
the term associated with the divergence of the stress.

The results of Proposition 3.2 can also be used to rewrite the energy balance (14) in the
form

ė − μ · ṁ = r − div q −
Nc∑
c=1

∇μc · hc −
Np∑
π=1

(
vr

π ·
Np∑

π ′=0
π ′ �=π

fV ππ ′

)

+ ∇v0 ·
(

∂eI

∂F
F� − θ

∂η0

∂F
F� − θη1

)
−

Np∑
π=1

θ div
(
ηπ vr

π

)
. (38)

This form of the energy balance can be used to obtain a dissipation relation. Namely, using
(27) and (31) we have

θη̇ = ė − μ · ṁ +
(

∂eI

∂F
F� − θ

∂η0

∂F
F�

)
· ∇v0.

Using this in (38) and then integrating the term involving the heat flux by parts, one obtains
for any region V (t) convecting with the solid phase that

− d

dt

∫
V (t)

η dv −
∫

V (t)

1

θ

{
1

θ
q · ∇θ +

Nc∑
c=1

∇μc · hc +
Np∑
π=1

(
vr

π ·
Np∑

π ′=0
π ′ �=π

fV ππ ′

)}
dv

= −
∫

V (t)

r

θ
dv +

∫
∂V (t)

(
q
θ

+
Np∑
π=1

ηπ vπ

)
· nda.

This equation can be used to establish bounds upon the gradients of the temperature, chem-
ical potentials, and pressure. Such estimates are important for the development of stable
numerical schemes.

3.4 Fluxes and Darcy’s Law

Prototypical constitutive laws for the mass and heat flux are provided by Fick and Fourier
laws. Here, these take the form

hc = −K̂c(e, s,M)∇μc and q = −K̂θ (e, s,M)∇θ, (39)
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where it is assumed that K̂c(e, s,M) and K̂θ (e, s,M) are positive semidefinite symmetric
tensors, which ensures that (32)1,2 hold.

The specification of the viscous forces fV ππ ′ is related to Darcy’s law, which is funda-
mental to the theory of porous flow and is discussed in detail in all of the monographs on
the subject [2, 9, 10, 25]. These forces should depend on the velocities of the phases π and
π ′ and, possibly, the volume fractions. For this reason, we assume that

fV ππ ′ = −Âππ ′(s)(vπ − vπ ′), (40)

where the Âππ ′(s) are assumed to be positive semidefinite symmetric tensors and satisfy
Âππ ′(s) = Âπ ′π (s). These properties ensure that the inequality (32)3 holds. Substituting (40)
into the force balance for phase π (37) results in

sπ bπ − sπ∇pπ −
Np∑

π ′=0
π ′ �=π

Âππ ′(s)(vπ − vπ ′) = 0. (41)

In the case of a single fluid phase, if Â10(s0, s1) is invertible, the above equation can be
written in the form

vr
1 = s1Â10(s0, s1)

−1(b1 − ∇p1),

which is the traditional form of Darcy’s law. In this way one can see that Darcy’s law can
be viewed as a consequence of force balance, in the absence of inertial forces, together with
an appropriate constitutive law for the viscous forces. Moreover, the tensors Aππ ′ corre-
spond to the (pseudo) inverses of the permeability tensors that appear in the engineering and
experimental literature.

It is possible to formulate Darcy’s law as the Euler–Lagrange equation of a (convex)
dissipation function. Set

Is
({

vr
π

}Np

π=1

) := 1

2

∥∥{
vr

π

}Np

π=1

∥∥2

A −
Np∑
π=1

sπ (bπ − ∇pπ) · vr
π ,

where ‖.‖A is the norm associated with the inner-product

({
vr

π

}Np

π=1
,
{
wr

π

}Np

π=1

)
A :=

Np∑
π=1

(
Np∑

π ′=0
π ′<π

Aππ ′
(
vr

π − vr
π ′

) · (wr
π − wr

π ′
))

. (42)

The associated Euler–Lagrange equation is

({
vr

π

}Np

π=1
,
{
wr

π

}Np

π=1

)
A =

Np∑
π=1

sπ (bπ − ∇pπ) · wr
π for all

{
wr

π

}Np

π=1
,

which is the variational formulation of Darcy’s law (41).

3.5 Mechanical and Isothermal Case

Often it is assumed that the temperature is constant or that the thermal energy in the solid
phase dominates that of the fluid phases so that the temperature of the fluids become that of
the solid much faster than the other processes taking place. In this case the energy balance
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reduces to an equation for the temperature of the solid that is decoupled from the other
balances. For example, the temperature could satisfy a classic heat equation

∂

∂t
(cθ) − div(Kθ∇θ) = r,

where c and Kθ are the specific heat and conductivity of the solid phase, respectively.
To specify a constant temperature it is preferable to use the Helmholtz free-energy rather

than the entropy in the local thermodynamic equilibrium assumption. Letting ψπ = eπ −θηπ

denote the free-energy density of phase π , the local equilibrium assumption requires that

ψ = ψ̂(θ,m,F) := inf
(s,M)

{
ψ̂0(θ, s0,F) +

Np∑
π=1

ψ̂π

(
θ, sπ , {Mcπ }Nc

c=1

)

+ êI (θ, s,M,F)
∣∣ Np∑

π=0

sπ = 1,

Np∑
π=1

Mcπ = mc

}
. (43)

Moreover, for each (θ,m,F) the minimum is attained at a unique point

(s,M) = arg min
(s,M)

{
ψ̂0(θ, s0,F) +

Np∑
π=1

ψ̂π

(
θ, sπ , {Mcπ }Nc

c=1

)

+ êI (θ, s,M,F)
∣∣ Np∑

π=0

sπ = 1,

Np∑
π=1

Mcπ = mc

}
. (44)

The infimum in these expressions is taken over s ∈ [0,1]Np+1 and M ∈ [0,∞)Nc×Np .
As in Sect. 3.1, there are Lagrange multipliers (λs,λm) and KKT multipliers (λ0,λ1,Λ)

such that

∂ψπ

∂sπ

+ λ0
π − λ1

π = λs − ∂eI

∂sπ

, π ∈ {0, . . . ,Np}, (45)

∂ψπ

∂Mcπ

+ Λcπ = λm
c − ∂eI

∂Mcπ

, π ∈ {1, . . . ,Np}, (46)

as well as (24) and (25) with c ∈ {1, . . . ,Nc}.
Replacing the entropy with the free-energy in the reduced entropy inequality results in

−ψ̇ − ηθ̇ + ṁ · μ ≥ 1

θ
∇θ · q +

Nc∑
c=1

∇μc · hc +
Np∑
π=1

(
vr

π ·
Np∑

π ′=0
π ′ �=π

fV ππ ′

)

− ∇v0 ·
[

T0 +
(

μ · m − ψ −
Np∑
π=1

sπpπ

)
1

]

−
Np∑
π=1

vr
π ·

[
Nc∑
c=1

μc∇Mcπ − ∇ψπ −
Np∑

π ′=0
π ′ �=π

fEππ ′ − ηπ∇θ

]

−
Np∑
π=1

div
(
vr

π

)[ Nc∑
c=1

μcMcπ − ψπ − sπpπ

]
,
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which is sometimes referred to as the free-energy imbalance. The following result is analo-
gous to Proposition 1, and is presented without proof.

Proposition 2 Assume that local equilibrium holds so that the Helmholtz free-energy ψ is
determined by (43) and that the volume fractions and densities of the different phases are
determined by (44). Under these constitutive assumptions, the free-energy imbalance holds
for all thermodynamic processes if

1. The entropy of each phase is given by ηπ = − ∂ψπ

∂θ
for 0 ≤ π ≤ Np .

2. The free-energy of fluid phase π �= 0 is given by

ψπ = −sπpπ +
Nc∑
c=1

Mcπμc. (47)

3. The stress in the solid phase is given by

T0 = (ψ0 + eI )1 + ∂ψ0

∂F
F� + ∂eI

∂F
F�. (48)

4. The interfacial energy only depends upon the volume fractions and the deformation gra-
dient; that is, eI = êI (s,F).

5. The phase pressures and the chemical potential of the components are related to the
Lagrange multipliers through

pπ = p + ∂eI

∂sπ

and μc = λm
c , (49)

where p := −λs .
6. The diffusive mass fluxes, heat flux, and viscous forces satisfy

Nc∑
c=1

hc · ∇μc ≤ 0, q · ∇θ ≤ 0,

Np∑
π=1

(
vr

π ·
Np∑

π ′=0
π ′ �=π

fV ππ ′

)
≤ 0. (50)

7. The elastic forces between the phases satisfy

pπ∇sπ =
Np∑

π ′=0
π ′ �=π

fEππ ′ π �= 0. (51)

This result can be used to obtain an equation that describes the rate of change of the total
Helmholtz free-energy. To see this, take the gradient of ψπ = ψ̂π (θ, sπ , {Mcπ }Nc

c=1) and use
the chain rule to find

∇ψπ = −ηπ∇θ − pπ∇sπ +
Nc∑
c=1

μc∇Mcπ .

Combining this with the gradient of (47) results in

0 = ηπ∇θ − sπ∇pπ +
Nc∑
c=1

Mcπ∇μc.
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Now, using the chain rule to compute the time derivative of ψ , mass balance, and the previ-
ous equation, one can obtain

d

dt

∫
V (t)

ψ dv =
∫

V (t)

(
T0 −

Np∑
π=1

sπpπ 1

)
· ∇v0 +

Np∑
π=1

sπ∇pπ · vπ dv

−
∫

V (t)

(
ηθ̇ +

Np∑
π=1

ηπ vr
π · ∇θ

)
dv +

Nc∑
c=1

∫
V (t)

(μchc + ∇μc · hc) dv

−
∫

∂V (t)

μc

(
hc +

Np∑
π=1

Mcπ vr
π

)
· nda,

where V (t) is a region convecting with the motion of the solid. Integrating the term involving
∇v0 by parts and then using the force balance (8), under isothermal conditions (θ̇ = 0 and
∇θ = 0) the previous equation becomes

d

dt

∫
V (t)

ψ dv −
∫

V (t)

{
Np∑
π=1

(
Np∑

π ′=0
π ′ �=π

fV ππ ′ · vr
π

)
+

Nc∑
c=1

∇μc · hc

}
dv

=
∫

V (t)

{
Np∑
π=0

sπ bπ · vπ +
Nc∑
c=1

μchc

}
dv

+
∫

∂V (t)

{(
T0 −

Np∑
π=1

sπpπ 1

)
v0 − μc

(
hc +

Np∑
π=1

Mcπ vr
π

)}
· nda.

4 Connection with Other Theories

4.1 Biot Constants

One of the most dominant theories for poroelastic materials in the case of linear elastic re-
sponse for the solid is Biot’s theory [3–6]. See the book by Cheng [10] for a recent overview
of the subject or Sanchez-Palencia [25] for how the theory can be obtained via homoge-
nization. Within this theory, only one fluid phase is considered and a global force balance is
used. Thus, the stress in this theory is the total stress T given as the sum the stresses in the
solid and fluid phases:

T = T0 + T1 = T0 − s1p11.

Constitutive laws for the total stress and the global pressure p are determined by Biot con-
stants. Perhaps surprisingly, one of these constants appears in the constitutive laws for both
the stress and the pressure. This fact has been reproduced using homogenization theory.
Here we show that under certain simplifying assumptions, our theory reproduces these con-
stitutive laws and the Biot constants. In the following calculations, assume that 0 < s0 < 1
so that we are not in a degenerate case. This implies that the KKT multipliers λ1

0 and λ1
0 are

both zero by (24).
To obtain the constitutive laws appearing in Biot’s theory we make two simplifying as-

sumptions:
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– there is no interfacial energy; that is, eI = 0,
– only small displacements and small changes in volume fraction occur.

In Biot’s theory of poroelasticity, there is no mention of any interfacial energy, so the first of
these assumptions is reasonable. Moreover, Biot’s theory is linear, so the second assumption
is also justified.

Notice that by (31)2 the first assumption implies that pπ = p for all π , so there is only
one pressure. Since we will be working with small displacements, it makes sense to work
with a referential description. For J := det F, set

e0R := Je0, s0R := J s0, pR := Jp, η0R := Jη0.

The constitutive law η̂0R for η0R is related to η̂0 by

η̂0R(J e0, J s0,F) = J η̂0(e0, s0,F).

Differentiating this equation with respect to F and using the fact that ∂J
∂F = JF−� results in

θ
∂η0R

∂F
+ s0pRF−� =

(
θ
∂η0

∂F
F� − e01 + θη01

)
JF�,

and hence, from (29), the Piola stress T0R = JT0F−� for the solid is given by

T0R = −θ
∂η0R

∂F
− s0pRF−�.

Since the Piola stress for the fluid phase is given by T1R = −s1pRF−�, it follows that the
total Piola stress is

TR = θ
∂η0R

∂F
− pRF−�. (52)

Based on the small displacements and small changes in volume fraction assumption, the
parameter

ε :=
√

|∇u0|2 + |s0R − s0R◦|2
is small, where u0 is the displacement of the solid and s0R◦ is a given reference volume
fraction for the solid from which we are considering small perturbations. Assuming that η0R

has a local maximum at (e0R, s0R,F) = (e0R◦, s0R◦,1), an asymptotic expansion in ε of the
constitutive law for η0R reads3

η0R = ∇u0 ·A∇u0 + 2(s0R − s0R◦)A · ∇u0 − a2(s0R − s0R◦)2 + o
(
ε2

)
,

where

A := 1

2

∂2η̂0R

∂F2
(e0R◦, s0R◦,1),

A := 1

2

∂2η̂0R

∂s0R∂F
(e0R◦, s0R◦,1),

3One could also consider small changes in eR , but here this is not done so we can compare the result with
the traditional Biot theory, which is isothermal.
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−a2 := 1

2

∂2η̂0R

∂s2
0R

(e0R◦, s0R◦,1).

Taking this expansion as a constitutive law for η0R , from (22) and (31), we obtain

pR

θ
= J

(
2A · ∇u0 − 2a2(s0R − s0R◦)

) = 2A · ∇u0 − 2a2(s0R − s0R◦) + o(ε).

This motivates completing the square in the quadratic asymptotic expansion for η0R in a par-
ticular way so as to obtain a term like the right-hand side of the previous equation. Namely,
we can write

η0R = ∇u0 · Ã∇u0 − 1

a2

(
A · ∇u0 − a2(s0R − s0R◦)

)2
,

where Ã∇u0 := A∇u0 + 1
a2 (A · ∇u0)A. Now, if we set

C := −2θÃ, H := 1

a2
A, h := − 1

2a2θ

we can write

−θη0R = 1

2
∇u0 ·C∇u0 − 1

2h

(
H · ∇u0 − (s0R − s0R◦)

)2
.

Using this in (52) and linearizing the term pRF−� on the right-hand side yields

TR = C∇u0 + pR(H − 1) and s0R − s0R◦ = H · ∇u0 + hpR. (53)

The material constant H appears in both the formula for the stress and for the pressure.
This is consistent with what appears in [10] and [25]. These formulas differ slightly from
those found in the literature since the measure of strain s0R − s0R◦ used here differs from
those used elsewhere. The fourth-order tensor C has the usual major symmetry since it came
from the tensor A, which is a second derivative of the entropy with respect to F. The minor
symmetry of C will follow from the principle of material frame-indifference.

4.2 Alternate Form of Mass Balance

In some formulations of poroelasticity involving only one fluid phase made up of one com-
ponent, the mass balance for this component is replaced by an equation involving the pres-
sure and the volume fraction of the phase. Here this equation is derived under certain as-
sumptions and its relation with mass balance is examined.

The assumptions we will make in the context of the single fluid phase made up of a single
component are the following:

– the fluid phase is incompressible,
– there is no interfacial energy,
– only small displacements and small changes in volume fraction can occur.

By the definition of incompressibility, the fluid phase can only undergo isochoric motions
and thus

d

dt

∫
Vf (t)

s1 dv = 0,
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where Vf (t) is any volume convecting with the fluid phase. Localizing this balance yields

∂

∂t
s1 + div(s1v1) = 0. (54)

Writing this in a reference configuration and using the assumption of small displacements
results in

∂

∂t
s1R + div(s1Rv1) = 0, (55)

where s1R := J s1 is the volume fraction of the fluid per unit volume in the reference config-
uration. Using the fact that the volume fraction of the fluid and solid must add to one and
that the reference volume fraction is constant, with the help of (53)2 the previous equation
can be written as

− ∂

∂t
(H · ∇u0 + hpR) + div(s1Rv1) = 0, (56)

which is sometimes referred to as the storage equation [30].
A relationship between (54), and hence (56), and mass balance becomes clear in the case

where the fluid phase has no mass diffusion and no sources or sinks of mass, in which case
mass balance (6) reads

∂

∂t
m1 + div(m1v1) = 0.

If we let m̄1 denote the mass of the fluid per unit volume of the fluid so that m1 = s1m̄1, then
(54) and the previous equation imply that

∂

∂t
m̄1 + ∇m̄1 · v1 = 0, (57)

which says that m̄1 is constant on particle paths. This means that once the fluid velocity is
known, m̄1 can be found by integrating along such a path. Some authors take the previous
equation as the definition of incompressibility. When this is done, (57) together with mass
balance yields (54). For this reason, (54), or (56) if there are small displacements and small
changes in volume fraction, are sometimes referred to as an alternate form of mass balance.
See, for example, the book by Bear [2].

4.3 Alternative Statements of the Force Balances

The force balance for the fluids used by the authors in [26] to develop a continuum descrip-
tion of porous flow in a rigid medium took the form

0 =
∫

V (t)

Np∑
π ′=0
π ′ �=π

fV ππ ′ dv +
∫

Vπ (t)

bπ dvπ −
∫

∂Vπ (t)

pπ ndaπ ,

where dvπ and daπ are the volume and area elements associated with the volume occupied
by phase π . With the identification dvπ = sπ dv the local form of this law becomes

sπ bπ − sπ∇pπ +
Np∑

π ′=0
π ′ �=π

fV ππ ′ = 0,
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which is identical to Eq. (37) which resulted from the more general force balance postulated
in Sect. 2 and subsequent restrictions due to the second law. A slightly simpler derivation of
the model proposed here is obtained if this force balance is assumed a priori for the fluids,
and the force balance for the solid takes the form

∫
V (t)

(s0b0 + fE)dv +
∫

∂V (t)

T0nda +
Np∑
π=1

∫
V (t)

fV 0π dv = 0,

where fE is the force on the solid due to elastic stresses (pressures) in the fluid. The local
form is

s0b0 + div(T0) + fE +
Np∑
π=1

fV 0π = 0,

and the formula for fE appearing on the right hand side of Eq. (36) follows directly from
Coleman–Noll procedure.

5 Summary

In summary, the constitutive assumptions for the model are determined by

– the entropy ηπ for the fluid phases (16) and the solid phase (17),
– the interfacial energy eI specified by (30),
– local thermodynamics equilibrium, Assumption 1,
– the stress relation (29) for the solid phase,
– the Fick and Fourier laws (39),
– (33) and (36), which along with (13), determine

∑Np

π ′=0
π ′ �=π

fEππ ′ ,

– the formula (40) for fV ππ ′ .

Substituting these constitutive laws into the balances yields a system of partial differential
equations that describe the poroelastic continuum. In this list of balances we use the total
force balance for the system in place of the force balance for the solid phase. The reasoning
for this will be explained at the end of this section.

The mass balance for component c is

∂

∂t
mc + div

(
mcv0 − Kc∇μc +

Np∑
π=1

Mcπ vr
π

)
= hc.

Force balance for fluid phase π is

sπ bπ − sπ∇pπ −
Np∑

π ′=0
π ′ �=π

Aππ ′vr
ππ ′ = 0,

and for the entire continuum is

Np∑
π=0

sπ bπ + div

[(
∂eI

∂F
− θ

∂η0

∂F

)
F� +

(
e0 − θη0 −

Np∑
π=1

sπpπ

)
1

]
= 0. (58)
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The balance of energy becomes

ė − ṁ · μ = r + div(Kθ∇θ) +
Nc∑
c=1

∇μc · Kc∇μc +
Np∑
π=1

(
vr

π ·
Np∑

π ′=0
π ′ �=π

Aππ ′
(
vr

π − vr
π ′

))

+ ∇v0 ·
[(

∂eI

∂F
− θ

∂η0

∂F

)
F� − θη1

]
−

Np∑
π=1

θ div
(
ηπ vr

π

)
.

The mass balance for the solid phase is not listed here since the solid mass does not appear
in any of the other balances and is essentially decoupled from them. Also, the deformation

gradient is determined from the kinematic equation Ḟ = (∇v0)F.
The quantities to be solved for are the velocity v0 and deformation gradient F of the solid,

the relative velocities vr
π of the fluid phases 1 ≤ π ≤ Np , the masses of the components mc ,

and the energy e. The other quantities are either determined by constitutive laws or are given
a priori, such as the external influences hc , bπ , and r . Notice that the force balances for the
fluid phases are algebraic in the velocities.

The force balance for just the solid phase reads

s0b0 + div

[(
∂eI

∂F
− θ

∂η0

∂F

)
F� + (e0 − θη0)1

]
+ p∇s0

+ ∂eI

∂s0
∇s0 + ∂eI

∂F
∇F +

Np∑
π=1

A0π vr
π = 0.

Since we are assuming force balance for all of the fluid phases, using a total force balance
for the continuum or just using the force balance for the solid phase are equivalent. In the
literature on poroelastic continuum, the total force balance (58) is used rather than the solid
force balance. Comparing the two balances it is not hard to see why. The total force balance
has a clear divergence structure and does not involve the relative velocities.
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